Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Mol Biol ; 108(1-2): 77-91, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34855067

RESUMEN

KEY MESSAGE: The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiencia , Reguladores del Crecimiento de las Plantas/fisiología , Cápsula de Raíz de Planta/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/fisiología , Cápsula de Raíz de Planta/citología , Cápsula de Raíz de Planta/metabolismo , Transducción de Señal
2.
Endocrinology ; 163(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34967900

RESUMEN

For billions of years before electric light was invented, life on Earth evolved under the pattern of light during the day and darkness during the night. Through evolution, nearly all organisms internalized the temporal rhythm of Earth's 24-hour rotation and evolved self-sustaining biological clocks with a ~24-hour rhythm. These internal rhythms are called circadian rhythms, and the molecular constituents that generate them are called molecular circadian clocks. Alignment of molecular clocks with the environmental light-dark rhythms optimizes physiology and behavior. This phenomenon is particularly true for reproductive function, in which seasonal breeders use day length information to time yearly changes in fertility. However, it is becoming increasingly clear that light-induced disruption of circadian rhythms can negatively impact fertility in nonseasonal breeders as well. In particular, the luteinizing hormone surge promoting ovulation is sensitive to circadian disruption. In this review, we will summarize our current understanding of the neuronal networks that underlie circadian rhythms and the luteinizing hormone surge.


Asunto(s)
Ritmo Circadiano/fisiología , Hormona Luteinizante/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Relojes Circadianos , Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Femenino , Hormona Liberadora de Gonadotropina , Hipotálamo , Kisspeptinas , Luz , Masculino , Neuropéptidos/fisiología , Roedores , Núcleo Supraquiasmático/fisiología , Factores de Transcripción/fisiología
3.
Genes (Basel) ; 12(10)2021 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680983

RESUMEN

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors play critical roles in regulating diverse aspects of plant growth and development, including vegetative phase change, plant architecture, anthocyanin accumulation, lateral root growth, etc. In the present study, 15 SPL genes were identified based on the genome data of Codonopsis pilosula, a well-known medicinal plant. Phylogenetic analysis clustered CpSPLs into eight groups (G1-G8) along with SPLs from Arabidopsis thaliana, Solanum lycopersicum, Oryza sativa and Physcomitrella patens. CpSPLs in the same group share similar gene structure and conserved motif composition. Cis-acting elements responding to light, stress and phytohormone widely exist in their promoter regions. Our qRT-PCR results indicated that 15 CpSPLs were differentially expressed in different tissues (root, stem, leaf, flower and calyx), different developmental periods (1, 2 and 3 months after germination) and various conditions (NaCl, MeJA and ABA treatment). Compared with the control, overexpression of CpSPL2 or CpSPL10 significantly promoted not only the growth of hairy roots, but also the accumulation of total saponins and lobetyolin. Our results established a foundation for further investigation of CpSPLs and provided novel insights into their biological functions. As far as we know, this is the first experimental research on gene function in C. pilosula.


Asunto(s)
Codonopsis/genética , Genoma de Planta , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Factores de Transcripción/genética , Codonopsis/crecimiento & desarrollo , Codonopsis/metabolismo , Exones , Perfilación de la Expresión Génica , Intrones , Filogenia , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
4.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299303

RESUMEN

Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. Several major mechanisms cause AF in patients, including genetic predispositions to AF development. Genome-wide association studies have identified a number of genetic variants in association with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription PITX2. Because of the inherent complexity of the human heart, experimental and basic research is insufficient for understanding the functional impacts of PITX2 variants on AF. Linking PITX2 properties to ion channels, cells, tissues, atriums and the whole heart, computational models provide a supplementary tool for achieving a quantitative understanding of the functional role of PITX2 in remodelling atrial structure and function to predispose to AF. It is hoped that computational approaches incorporating all we know about PITX2-related structural and electrical remodelling would provide better understanding into its proarrhythmic effects leading to development of improved anti-AF therapies. In the present review, we discuss advances in atrial modelling and focus on the mechanistic links between PITX2 and AF. Challenges in applying models for improving patient health are described, as well as a summary of future perspectives.


Asunto(s)
Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Proteínas de Homeodominio/genética , Modelos Cardiovasculares , Factores de Transcripción/genética , Animales , Fibrilación Atrial/fisiopatología , Remodelación Atrial/genética , Remodelación Atrial/fisiología , Tipificación del Cuerpo/genética , Simulación por Computador , Genes Homeobox , Predisposición Genética a la Enfermedad , Variación Genética , Estudio de Asociación del Genoma Completo , Corazón/embriología , Proteínas de Homeodominio/fisiología , Humanos , Canales Iónicos/genética , Canales Iónicos/fisiología , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Factores de Transcripción/fisiología , Proteína del Homeodomínio PITX2
5.
Plant Signal Behav ; 16(7): 1913310, 2021 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-33853500

RESUMEN

Phosphate (Pi) deficiency is one of the major adverse factors limiting plant growth and production. Enhanced RH development is thought to be the typical root morphological response under Pi deficiency, which will enhance the utilization of Pi resources from soil. Here, we report that MYB30-EIN3 module is functionally implicated in Pi deficiency-induced RH development in Arabidopsis. MYB30 and EIN3 antagonistically regulate RH growth via transcriptional regulation of RSL4 as well as other PSR genes, resulting in fine-tuned Pi uptake under Pi deficiency.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Proteínas de Unión al ADN/fisiología , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Raíces de Plantas/crecimiento & desarrollo
6.
Int J Biol Macromol ; 171: 435-447, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33434548

RESUMEN

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is an economical crop with excellent edible, nutritional, and medicinal values. However, the production of Tartary buckwheat is very low and it is urgent to breed high-yield varieties for satisfying the increasing market demand. Heterotrimeric G-protein signaling involves in the regulation of agronomical traits and fruit development in several plant species. In this study, fifteen genes involved in G-protein signaling were characterized in Tartary buckwheat and their potential roles in fruit development were revealed by expression analysis. The exon-intron organization and conserved motif of Tartary buckwheat G-protein signaling genes were similar to those in other dicot plants. All these genes were ubiquitously and differently expressed in five tissues. The expression patterns of Tartary buckwheat G-protein signaling genes in fruit suggested they may play important roles in the fruit at early development stage, which was supported by meta-analysis of G-protein signaling genes' expression in the fruits from different species. Furthermore, we found the expression of G-protein signaling genes in fruit showed high correlation with 178 transcription factors, which indicated a transcriptional regulatory loop moderating G-protein signaling genes' expression during fruit development. This paper provides new insights into the physiological functions of G-protein signaling in fruit.


Asunto(s)
Fagopyrum/genética , Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Ananas/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Secuencia Conservada , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Fragaria/genética , Frutas/genética , Perfilación de la Expresión Génica , Proteínas de Unión al GTP Heterotriméricas/fisiología , Solanum lycopersicum/genética , Familia de Multigenes , Especificidad de Órganos , Filogenia , Proteínas de Plantas/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Zea mays/genética
7.
Plant J ; 105(4): 855-869, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33220113

RESUMEN

Plants regulate their reproductive cycles under the influence of environmental cues, such as day length, temperature and water availability. In Solanum tuberosum (potato), vegetative reproduction via tuberization is known to be regulated by photoperiod, in a very similar way to flowering. The central clock output transcription factor CYCLING DOF FACTOR 1 (StCDF1) was shown to regulate tuberization. We now show that StCDF1, together with a long non-coding RNA (lncRNA) counterpart, named StFLORE, also regulates water loss through affecting stomatal growth and diurnal opening. Both natural and CRISPR-Cas9 mutations in the StFLORE transcript produce plants with increased sensitivity to water-limiting conditions. Conversely, elevated expression of StFLORE, both by the overexpression of StFLORE or by the downregulation of StCDF1, results in an increased tolerance to drought through reducing water loss. Although StFLORE appears to act as a natural antisense transcript, it is in turn regulated by the StCDF1 transcription factor. We further show that StCDF1 is a non-redundant regulator of tuberization that affects the expression of two other members of the potato StCDF gene family, as well as StCO genes, through binding to a canonical sequence motif. Taken together, we demonstrate that the StCDF1-StFLORE locus is important for vegetative reproduction and water homeostasis, both of which are important traits for potato plant breeding.


Asunto(s)
Proteínas de Plantas/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Deshidratación , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/fisiología , Regiones Promotoras Genéticas , ARN sin Sentido/metabolismo , ARN sin Sentido/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , ARN de Planta/genética , ARN de Planta/fisiología , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
8.
Int J Dev Biol ; 65(4-5-6): 195-205, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32930382

RESUMEN

Rax (Rx) genes encode paired-type homeodomain-containing transcription factors present in virtually all metazoan groups. In vertebrates, studies in fish, amphibian, chick and mouse models have revealed that these genes play important roles in the development of structures located at the anterior portion of the central nervous system, in particular the eyes, the hypothalamus and the pituitary gland. In addition, human patients with eye and brain defects carry mutations in the two human Rax paralogues, RAX and RAX2. Here, we review work done in the last years on Rax genes, focusing especially on the function that mouse Rax and its zebrafish homologue, rx3, play in hypothalamic and pituitary development. Work on both of these model organisms indicate that Rax genes are necessary for the patterning, growth and differentiation of the hypothalamus, in particular the ventro-tuberal and dorso-anterior hypothalamus, where they effect their action by controlling expression of the secreted signalling protein, Sonic hedgehog (Shh). In addition, Rax/rx3 mutations disturb the development of the pituitary gland, mimicking phenotypes observed in human subjects carrying mutations in the RAX gene. Thus, along with their crucial role in eye morphogenesis, Rax genes play a conserved role in the development of the hypothalamus and adjacent structures in the vertebrate clade.


Asunto(s)
Proteínas del Ojo , Proteínas de Homeodominio , Hipotálamo/crecimiento & desarrollo , Hipófisis/crecimiento & desarrollo , Factores de Transcripción , Pez Cebra , Animales , Proteínas del Ojo/fisiología , Proteínas Hedgehog/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Humanos , Ratones , Factores de Transcripción/fisiología , Pez Cebra/genética , Pez Cebra/fisiología
9.
Plant Sci ; 302: 110720, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288026

RESUMEN

Glutamine plays a critical role in ammonium assimilation, and contributes substantially to the taste and nutritional quality of tea. To date, little research has been done on glutamine synthesis in tea plants. Here, a zinc finger protein CsDOF and a glutamine synthetase (GS)-encoding gene CsGS2 from tea plant (Camellia sinensis cv 'Shuchazao') were characterized, and their role in glutamine biosynthesis was determined using transient suppression assays in tea leaves and overexpression in Arabidopsis thaliana. The expression patterns of CsDOF and CsGS2, the GS activity and the glutamine content of photosynthetic tissues (leaf and bud) were significantly induced by shade. Suppressing the expression of CsDOF resulted in downregulated expression of CsGS2 and reduction of the leaf glutamine content. Moreover, in CsDOF-silenced plants, the expression of CsDOF and the glutamine content under shade treatment were higher than in natural light. The glutamine content and CsGS2 transcript level were also decreased in tea leaves when CsGS2 was suppressed, while they were higher under shade treatment than in natural light in CsGS2-silenced plants. In addition, the glutamine content and GS2 transcript level were increased when CsDOF and CsGS2 was overexpressed in Arabidopsis thaliana, respectively. In binding analyses, CsDOF directly bound to an AAAG motif in the promoter of CsGS2, and promotes its activity. The study shed new light on the molecular mechanism by which CsDOF activates CsGS2 gene expression and contributes to glutamine biosynthesis in tea plants.


Asunto(s)
Camellia sinensis/metabolismo , Glutamina/metabolismo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Dedos de Zinc/fisiología , Arabidopsis , Camellia sinensis/genética , Ensayo de Cambio de Movilidad Electroforética , Regulación de la Expresión Génica de las Plantas , Glutamato-Amoníaco Ligasa/metabolismo , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Dedos de Zinc/genética
10.
J Diabetes Res ; 2020: 6927429, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33015193

RESUMEN

Nuclear factor of activated T cells 5 (NFAT5), a Rel/nuclear factor- (NF-) κB family member, is the only known gene regulator of the mammalian adaptive response to osmotic stress. Exposure to elevated glucose increases the expression and nuclear translocation of NFAT5, as well as NFAT5-driven transcriptional activity in vivo and in vitro. Increased expression of NFAT5 is closely correlated with the progression of diabetes in patients. The distinct structure of NFAT5 governs its physiological and pathogenic roles, indicating its opposing functions. The ability of NFAT5 to maintain cell homeostasis and proliferation is impaired in patients with diabetes. NFAT5 promotes the formation of aldose reductase, pathogenesis of diabetic vascular complications, and insulin resistance. Additionally, NFAT5 activates inflammation at a very early stage of diabetes and induces persistent inflammation. Recent studies revealed that NFAT5 is an effective therapeutic target for diabetes. Here, we describe the current knowledge about NFAT5 and its relationship with diabetes, focusing on its diverse regulatory functions, and highlight the importance of this protein as a potential therapeutic target in patients with diabetes.


Asunto(s)
Complicaciones de la Diabetes/genética , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Regulación de la Expresión Génica , Resistencia a la Insulina , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Animales , Núcleo Celular/metabolismo , Proliferación Celular , Citocinas/metabolismo , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/tratamiento farmacológico , Perfilación de la Expresión Génica , Terapia Genética , Homeostasis , Humanos , Inflamación , Medicina Tradicional China , Ratones , Presión Osmótica , Especies Reactivas de Oxígeno , Riesgo , Transcripción Genética , Resultado del Tratamiento
11.
Curr Biol ; 30(14): 2815-2828.e8, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32559445

RESUMEN

The origin of a terrestrial flora in the Ordovician required adaptation to novel biotic and abiotic stressors. Oil bodies, a synapomorphy of liverworts, accumulate secondary metabolites, but their function and development are poorly understood. Oil bodies of Marchantia polymorpha develop within specialized cells as one single large organelle. Here, we show that a class I homeodomain leucine-zipper (C1HDZ) transcription factor controls the differentiation of oil body cells in two different ecotypes of the liverwort M. polymorpha, a model genetic system for early divergent land plants. In flowering plants, these transcription factors primarily modulate responses to abiotic stress, including drought. However, loss-of-function alleles of the single ortholog gene, MpC1HDZ, in M. polymorpha did not exhibit phenotypes associated with abiotic stress. Rather, Mpc1hdz mutant plants were more susceptible to herbivory, and total plant extracts of the mutant exhibited reduced antibacterial activity. Transcriptomic analysis of the mutant revealed a reduction in expression of genes related to secondary metabolism that was accompanied by a specific depletion of oil body terpenoid compounds. Through time-lapse imaging, we observed that MpC1HDZ expression maxima precede oil body formation, indicating that MpC1HDZ mediates differentiation of oil body cells. Our results indicate that M. polymorpha oil bodies, and MpC1HDZ, are critical for defense against herbivory, but not for abiotic stress tolerance. Thus, C1HDZ genes were co-opted to regulate separate responses to biotic and abiotic stressors in two distinct land plant lineages.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Artrópodos , Herbivoria , Gotas Lipídicas/metabolismo , Marchantia/genética , Marchantia/metabolismo , Proteínas Mitocondriales/fisiología , Transportadores de Ácidos Monocarboxílicos/fisiología , Aceites de Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas/genética , Animales , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expresión Génica , Leucina Zippers/fisiología , Marchantia/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Factores de Transcripción/fisiología
12.
Plant Mol Biol ; 102(4-5): 359-372, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31848919

RESUMEN

KEY MESSAGE: Protein degradation is essential in plant growth and development. The stability of Cullin3 substrate adaptor protein BPM1 is regulated by multiple environmental cues pointing on manifold control of targeted protein degradation. A small family of six MATH-BTB genes (BPM1-6) is described in Arabidopsis thaliana. BPM proteins are part of the Cullin E3 ubiquitin ligase complexes and are known to bind at least three families of transcription factors: ERF/AP2 class I, homeobox-leucine zipper and R2R3 MYB. By targeting these transcription factors for ubiquitination and subsequent proteasomal degradation, BPMs play an important role in plant flowering, seed development and abiotic stress response. In this study, we generated BPM1-overexpressing plants that showed an early flowering phenotype, resistance to abscisic acid and tolerance to osmotic stress. We analyzed BPM1-GFP protein stability and found that the protein has a high turnover rate and is degraded by the proteasome 26S in a Cullin-dependent manner. Finally, we found that BPM1 protein stability is environmentally conditioned. Darkness and salt stress triggered BPM1 degradation, whereas elevated temperature enhanced BPM1 stability and accumulation in planta.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Flores/fisiología , Estrés Fisiológico , Factores de Transcripción/fisiología , Ácido Abscísico , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes , Raíces de Plantas/fisiología , Plantas Modificadas Genéticamente , Plásmidos/genética , Polen/fisiología , Complejo de la Endopetidasa Proteasomal/fisiología , Proteolisis , Semillas/fisiología , Ubiquitina-Proteína Ligasas/fisiología
13.
Int J Mol Sci ; 20(20)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627263

RESUMEN

C-repeat binding factors (CBFs) are key signaling genes that can be rapidly induced by cold and bind to the C-repeat/dehydration-responsive motif (CRT/DRE) in the promoter region of the downstream cold-responsive (COR) genes, which play a vital role in the plant response to low temperature. However, the CBF family in tea plants has not yet been elucidated, and the possible target genes regulated by this family under low temperature are still unclear. In this study, we identified five CsCBF family genes in the tea plant genome and analyzed their phylogenetic tree, conserved domains and motifs, and cis-elements. These results indicate that CsCBF3 may be unique in the CsCBF family. This is further supported by our findings from the low-temperature treatment: all the CsCBF genes except CsCBF3 were significantly induced after treatment at 4 °C. The expression profiles of eight tea plant tissues showed that CsCBFs were mainly expressed in winter mature leaves, roots and fruits. Furthermore, 685 potential target genes were identified by transcriptome data and CRT/DRE element information. These target genes play a functional role under the low temperatures of winter through multiple pathways, including carbohydrate metabolism, lipid metabolism, cell wall modification, circadian rhythm, calcium signaling, transcriptional cascade, and hormone signaling pathways. Our findings will further the understanding of the stress regulatory network of CsCBFs in tea plants.


Asunto(s)
Camellia sinensis/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencias de Aminoácidos , Sitios de Unión , Frío , Secuencia Conservada , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , Estrés Fisiológico , Factores de Transcripción/química , Factores de Transcripción/fisiología
14.
J Plant Physiol ; 241: 153014, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31487619

RESUMEN

Tuberization in potato is governed by many intrinsic and extrinsic factors. Various molecular signals, such as red light photoreceptor (StPHYB), BEL1-like transcription factor (StBEL5), CYCLING DOF FACTOR1 (StCDF1), StCO1/2 (CONSTANS1/2) and StSP6A (Flowering Locus T orthologue), function as crucial regulators during the photoperiod-dependent tuberization pathway. StCDF1 induces tuberization by increasing StSP6A levels via StCO1/2 suppression. Although the circadian clock proteins, GIGANTEA (StGI) and FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (StFKF1), are reported as StCDF1 interactors, how the StCDF1 gene is regulated in potato is unknown. The BEL-KNOX heterodimer regulates key tuberization genes through tandem TGAC core motifs in their promoters. A recent study reported the presence of six tandem TGAC core motifs in the StCDF1 promoter, suggesting possible regulation of StCDF1 by StBEL5. In our study, we observed a positive correlation between StBEL5 and StCDF1 expression, whereas StCDF1 and its known repressor, StFKF1, showed a negative correlation for the tested tissue types. To investigate the StBEL5-StCDF1 interaction, we generated transgenic potato promoter lines containing a wild-type or mutated (deletion of six tandem TGAC sites) StCDF1 promoter fused to GUS. Wild-type promoter transgenic lines exhibited widespread GUS activity, whereas this activity was absent in the mutated promoter transgenic lines. Moreover, StBEL5 and StCDF1 transcript levels were significantly higher in the stolon-to-tuber stages under short-day conditions compared to long-day conditions. Using wild-type and mutated prStCDF1 as baits in Y1H assays, we further demonstrated that StBEL5 interacts with the StCDF1 promoter through tandem TGAC motifs, indicating direct regulation of StCDF1 by StBEL5 in potato.


Asunto(s)
Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Solanum tuberosum/genética , Solanum tuberosum/fisiología , Estrés Fisiológico , Secuencias Repetidas en Tándem/genética , Secuencias Repetidas en Tándem/fisiología , Factores de Transcripción/fisiología , Transcriptoma/genética , Técnicas del Sistema de Dos Híbridos
15.
Cancer Res ; 79(20): 5260-5271, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31444154

RESUMEN

Loss of expression of context-specific tumor suppressors is a critical event that facilitates the development of prostate cancer. Zinc finger and BTB domain containing transcriptional repressors, such as ZBTB7A and ZBTB16, have been recently identified as tumor suppressors that play important roles in preventing prostate cancer progression. In this study, we used combined ChIP-seq and RNA-seq analyses of prostate cancer cells to identify direct ZBTB7A-repressed genes, which are enriched for transcriptional targets of E2F, and identified that the androgen receptor (AR) played a critical role in the transcriptional suppression of these E2F targets. AR recruitment of the retinoblastoma protein (Rb) was required to strengthen the E2F-Rb transcriptional repression complex. In addition, ZBTB7A was rapidly recruited to the E2F-Rb binding sites by AR and negatively regulated the transcriptional activity of E2F1 on DNA replication genes. Finally, ZBTB7A suppressed the growth of castration-resistant prostate cancer (CRPC) in vitro and in vivo, and overexpression of ZBTB7A acted in synergy with high-dose testosterone treatment to effectively prevent the recurrence of CRPC. Overall, this study provides novel molecular insights of the role of ZBTB7A in CRPC cells and demonstrates globally its critical role in mediating the transcriptional repression activity of AR. SIGNIFICANCE: ZBTB7A is recruited to the E2F-Rb binding sites by AR and negatively regulates the transcriptional activity of E2F1 on DNA replication genes.


Asunto(s)
Adenocarcinoma/genética , Proteínas de Unión al ADN/fisiología , Proteínas de Neoplasias/fisiología , Neoplasias de la Próstata/genética , Receptores Androgénicos/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Sitios de Unión , Línea Celular Tumoral , Replicación del ADN/efectos de los fármacos , Factor de Transcripción E2F1/fisiología , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Transporte de Proteínas , Interferencia de ARN , Recurrencia , Proteína de Retinoblastoma/fisiología , Testosterona/farmacología
16.
BMC Plant Biol ; 19(1): 342, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31387526

RESUMEN

BACKGROUND: GRAS are plant-specific transcription factors that play important roles in plant growth and development. Although the GRAS gene family has been studied in many plants, there has been little research on the GRAS genes of Tartary buckwheat (Fagopyrum tataricum), which is an important crop rich in rutin. The recently published whole genome sequence of Tartary buckwheat allows us to study the characteristics and expression patterns of the GRAS gene family in Tartary buckwheat at the genome-wide level. RESULTS: In this study, 47 GRAS genes of Tartary buckwheat were identified and divided into 10 subfamilies: LISCL, HAM, DELLA, SCR, PAT1, SCL4/7, LAS, SHR, SCL3, and DLT. FtGRAS genes were unevenly distributed on 8 chromosomes, and members of the same subfamily contained similar gene structures and motif compositions. Some FtGRAS genes may have been produced by gene duplications; tandem duplication contributed more to the expansion of the GRAS gene family in Tartary buckwheat. Real-time PCR showed that the transcription levels of FtGRAS were significantly different in different tissues and fruit development stages, implying that FtGRAS might have different functions. Furthermore, an increase in fruit weight was induced by exogenous paclobutrazol, and the transcription level of the DELLA subfamily member FtGRAS22 was significantly upregulated during the whole fruit development stage. Therefore, FtGRAS22 may be a potential target for molecular breeding or genetic editing. CONCLUSIONS: Collectively, this systematic analysis lays a foundation for further study of the functional characteristics of GRAS genes and for the improvement of Tartary buckwheat crops.


Asunto(s)
Fagopyrum/genética , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Genoma de Planta , Familia de Multigenes , Filogenia , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sintenía , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triazoles/farmacología
17.
Circ Res ; 125(3): 309-327, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31195886

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by enhanced proliferation of pulmonary artery smooth muscle cells (PASMCs) accompanying increased production of inflammatory factors and adaptation of the mitochondrial metabolism to a hyperproliferative state. However, all the drugs in clinical use target pulmonary vascular dilatation, which may not be effective for patients with advanced PAH. OBJECTIVE: We aimed to discover a novel drug for PAH that inhibits PASMC proliferation. METHODS AND RESULTS: We screened 5562 compounds from original library using high-throughput screening system to discover compounds which inhibit proliferation of PASMCs from patients with PAH (PAH-PASMCs). We found that celastramycin, a benzoyl pyrrole-type compound originally found in a bacteria extract, inhibited the proliferation of PAH-PASMCs in a dose-dependent manner with relatively small effects on PASMCs from healthy donors. Then, we made 25 analogs of celastramycin and selected the lead compound, which significantly inhibited cell proliferation of PAH-PASMCs and reduced cytosolic reactive oxygen species levels. Mechanistic analysis demonstrated that celastramycin reduced the protein levels of HIF-1α (hypoxia-inducible factor 1α), which impairs aerobic metabolism, and κB (nuclear factor-κB), which induces proinflammatory signals, in PAH-PASMCs, leading to reduced secretion of inflammatory cytokine. Importantly, celastramycin treatment reduced reactive oxygen species levels in PAH-PASMCs with increased protein levels of Nrf2 (nuclear factor erythroid 2-related factor 2), a master regulator of cellular response against oxidative stress. Furthermore, celastramycin treatment improved mitochondrial energy metabolism with recovered mitochondrial network formation in PAH-PASMCs. Moreover, these celastramycin-mediated effects were regulated by ZFC3H1 (zinc finger C3H1 domain-containing protein), a binding partner of celastramycin. Finally, celastramycin treatment ameliorated pulmonary hypertension in 3 experimental animal models, accompanied by reduced inflammatory changes in the lungs. CONCLUSIONS: These results indicate that celastramycin ameliorates pulmonary hypertension, reducing excessive proliferation of PAH-PASMCs with less inflammation and reactive oxygen species levels, and recovered mitochondrial energy metabolism. Thus, celastramycin is a novel drug for PAH that targets antiproliferative effects on PAH-PASMCs.


Asunto(s)
Miocitos del Músculo Liso/efectos de los fármacos , Naftoquinonas/farmacología , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Pirroles/farmacología , Resorcinoles/farmacología , Animales , Células Cultivadas , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Metabolismo Energético/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/biosíntesis , Indoles/toxicidad , Masculino , Metaboloma/efectos de los fármacos , Ratones , Mitocondrias/efectos de los fármacos , Monocrotalina/toxicidad , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/biosíntesis , Naftoquinonas/uso terapéutico , Estrés Oxidativo , Hipertensión Arterial Pulmonar/inducido químicamente , Arteria Pulmonar/citología , Pirroles/uso terapéutico , Pirroles/toxicidad , Ratas , Especies Reactivas de Oxígeno/metabolismo , Resorcinoles/uso terapéutico , Factores de Transcripción/fisiología
18.
BMC Plant Biol ; 19(1): 263, 2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-31215400

RESUMEN

BACKGROUND: Because flavonoids and trichomes play crucial roles in plant defence, their formation requires fine transcriptional control by multiple transcription factor families. However, little is known regarding the mechanism of the R2R3-MYB transcription factors that regulate both flavonoid metabolism and trichome development. RESULTS: Here, we identified a unique SG4-like-MYB TF from Tartary buckwheat, FtMYB8, which harbours the C2 repression motif and an additional TLLLFR repression motif. The expression profiles of FtMYB8 combined with the transcriptional activity of PFtMYB8 promoter showed that FtMYB8 mRNA mainly accumulated in roots during the true leaf stage and flowering stage and in bud trichomes and flowers, and the expression of this gene was markedly induced by MeJA, ABA and UV-B treatments but repressed by dark treatment. Overexpression of FtMYB8 in Arabidopsis reduces the accumulation of anthocyanin/proanthocyanidin by specifically inhibiting TT12 expression, which may depend on the interaction between FtMYB8 and TT8. Interestingly, this interaction may also negatively regulate the marginal trichome initiation in Arabidopsis leaves. CONCLUSIONS: Taken together, our results suggest that FtMYB8 may fine-tune the accumulation of anthocyanin/proanthocyanidin in the roots and flowers of Tartary buckwheat by balancing the inductive effects of transcriptional activators, and probably regulate trichome distribution in the buds of Tartary buckwheat.


Asunto(s)
Antocianinas/metabolismo , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Proantocianidinas/metabolismo , Factores de Transcripción/metabolismo , Tricomas/crecimiento & desarrollo , Arabidopsis , Fagopyrum/genética , Fagopyrum/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transcriptoma , Tricomas/metabolismo
19.
Cancer Res ; 79(9): 2327-2338, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31043430

RESUMEN

When pancreatic cancer cannot be removed surgically, patients frequently experience morbidity and death from progression of their primary tumor. Radiation therapy (RT) cannot yet substitute for an operation because radiation causes fatal bleeding and ulceration of the nearby stomach and intestines before achieving tumor control. There are no FDA-approved medications that prevent or reduce radiation-induced gastrointestinal injury. Here, we overcome this fundamental problem of anatomy and biology with the use of the oral EGLN inhibitor FG-4592, which selectively protects the intestinal tract from radiation toxicity without protecting tumors. A total of 70 KPC mice with autochthonous pancreatic tumors received oral FG-4592 or vehicle control ± ablative RT to a cumulative 75 Gy administered in 15 daily fractions to a limited tumor field. Although ablative RT reduced complications from local tumor progression, fatal gastrointestinal bleeding was observed in 56% of mice that received high-dose RT with vehicle control. However, radiation-induced bleeding was completely ameliorated in mice that received high-dose RT with FG-4592 (0% bleeding, P < 0.0001 compared with vehicle). Furthermore, FG-4592 reduced epithelial apoptosis by half (P = 0.002) and increased intestinal microvessel density by 80% compared with vehicle controls. EGLN inhibition did not stimulate cancer growth, as treatment with FG-4592 alone, or overexpression of HIF2 within KPC tumors independently improved survival. Thus, we provide a proof of concept for the selective protection of the intestinal tract by the EGLN inhibition to enable ablative doses of cytotoxic therapy in unresectable pancreatic cancer by reducing untoward morbidity and death from radiation-induced gastrointestinal bleeding. SIGNIFICANCE: Selective protection of the intestinal tract by EGLN inhibition enables potentially definitive doses of radiation therapy. This might allow radiation to be a surgical surrogate for unresectable pancreatic cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/9/2327/F1.large.jpg.


Asunto(s)
Glicina/análogos & derivados , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Isoquinolinas/farmacología , Neoplasias Pancreáticas/mortalidad , Traumatismos por Radiación/prevención & control , Protectores contra Radiación/farmacología , Radioterapia/mortalidad , Animales , Apoptosis , Femenino , Glicina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/radioterapia , Proteínas Proto-Oncogénicas p21(ras)/fisiología , Traumatismos por Radiación/etiología , Traumatismos por Radiación/mortalidad , Radioterapia/efectos adversos , Factores de Transcripción/fisiología , Proteína p53 Supresora de Tumor/fisiología
20.
Plant Cell Physiol ; 60(7): 1457-1470, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30994920

RESUMEN

Heat stress during Brassica napus seed filling severely impairs yield and oil content. However, the mechanisms underlying heat-stress effects on B. napus seed photosynthesis and oil accumulation remain elusive. In this study, we showed that heat stress resulted in reduction of seed oil accumulation, whereas the seed sugar content was enhanced, which indicated that incorporation of carbohydrates into triacylglycerols was impaired. Photosynthesis and respiration rates, and the maximum quantum yield of photosystem II in developing seeds were inhibited by heat stress. Transcriptome analysis revealed that heat stress led to up-regulation of genes associated with high light response, providing evidence that photoinhibition was induced by heat stress. BnWRI1 and its downstream genes, including genes involved in de novo fatty acid biosynthesis pathway, were down-regulated by heat stress. Overexpression of BnWRI1 with a seed-specific promoter stabilized both oil accumulation and photosynthesis under the heat-stress condition, which suggested BnWRI1 plays an important role in mediating the effect of heat stress on fatty acid biosynthesis. A number of sugar transporter genes were inhibited by heat stress, resulting in defective integration of carbohydrates into triacylglycerols units. The results collectively demonstrated that disturbances of the seed photosynthesis machinery, impairment of carbohydrates incorporation into triacylglycerols and transcriptional deregulation of the BnWRI1 pathway by heat stress might be the major cause of decreased oil accumulation in the seed.


Asunto(s)
Brassica napus/metabolismo , Fotosíntesis , Proteínas de Plantas/metabolismo , Aceite de Brassica napus/metabolismo , Factores de Transcripción/metabolismo , Brassica napus/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Fotosíntesis/fisiología , Proteínas de Plantas/fisiología , Transducción de Señal , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA