Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G488-G500, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36193897

RESUMEN

Oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the "acidic pathway" of cholesterol metabolism. Previously, we demonstrated that an inability to upregulate CYP7B1 in the setting of insulin resistance leads to the accumulation of cholesterol metabolites such as (25R)26-hydroxycholesterol (26HC) that initiate and promote hepatocyte injury; followed by an inflammatory response. The current study demonstrates that dietary coffee improves insulin resistance and restores Cyp7b1 levels in a well-characterized Western diet (WD)-induced nonalcoholic fatty liver disease (NAFLD) mouse model. Ingestion of a WD containing caffeinated (regular) coffee or decaffeinated coffee markedly reduced the serum ALT level and improved insulin resistance. Cyp7b1 mRNA and protein levels were preserved at normal levels in mice fed the coffee containing WD. Additionally, coffee led to upregulated steroid sulfotransferase 2b1 (Sult2b1) mRNA expression. In accordance with the response in these oxysterol metabolic genes, hepatocellular 26HC levels were maintained at physiologically low levels. Moreover, the current study provided evidence that hepatic Cyp7b1 and Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, hepatocyte nuclear factor (HNF)-4α. We conclude coffee achieves its beneficial effects through the modulation of insulin resistance. Both decaffeinated and caffeinated coffee had beneficial effects, demonstrating caffeine is not fundamental to this effect. The effects of coffee feeding on the insulin-HNF4α-Cyp7b1 signaling pathway, whose dysregulation initiates and contributes to the onset and progression of NASH as triggered by insulin resistance, offer mechanistic insight into approaches for the treatment of NAFLD.NEW & NOTEWORTHY This study demonstrated dietary coffee prevented the accumulation of hepatic oxysterols by maintaining Cyp7b1/Sult2b1 expression in a diet-induced NAFLD mice model. Lowering liver oxysterols markedly reduced inflammation in the coffee-ingested mice. Caffeine is not fundamental to this effect. In addition, this study showed Cyp7b1/Sult2b1 responses to insulin signaling can be mediated through a transcriptional factor, HNF4α. The insulin-HNF4α-Cyp7b1/Sult2b1 signaling pathway, which directly correlates to the onset of NASH triggered by insulin resistance, offers insight into approaches for NAFLD treatment.


Asunto(s)
Hepatitis , Resistencia a la Insulina , Insulinas , Enfermedad del Hígado Graso no Alcohólico , Oxiesteroles , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Oxiesteroles/metabolismo , Café/metabolismo , Cafeína/farmacología , Cafeína/metabolismo , Hígado/metabolismo , Modelos Animales de Enfermedad , Colesterol/metabolismo , Hepatitis/metabolismo , Factores Nucleares del Hepatocito/metabolismo , ARN Mensajero/metabolismo , Insulinas/metabolismo , Familia 7 del Citocromo P450/metabolismo , Esteroide Hidroxilasas/metabolismo
2.
Phytomedicine ; 90: 153644, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34274601

RESUMEN

BACKGROUND: Nephrotic syndrome (NS) is a common nephropathy with a complex and diverse aetiology. Both Imperatae rhizoma and Hedyotis diffusa Willd. are herbs that are widely used as medicine and functional food. In traditional Chinese medicine theory, they are used as an herbal pair (HP) to treat inflammation-related diseases in the clinic, especially disorders of the kidney. PURPOSE: This study aimed to investigate the anti-inflammatory and hypolipidaemic effects of HP in an NS rat model and provide scientific data for its clinical application. METHODS: An NS model was established by two-dose injection of Sprague-Dawley rats with adriamycin. Seven groups, including the sham, model, HP treatment (0.25, 0.5 and 1.0 g/kg/d), prednisone (positive control, 5 mg/kg/d), and atorvastatin (positive control, 4 mg/kg/d) groups, were tested. The biochemical indexes of renal function and inflammatory cytokines were determined by ELISA kits and/or qPCR assays, and the crucial protein involved in the signalling pathway were subsequently tested by qPCR and/or Western blotting. Based on specific compounds identified by LC-Q-TOF-MS, network pharmacological study was carried out. RESULTS: The levels of BUN, Scr, Upro, UA, Alb, TC, TG, and LDL-C were significantly elevated in model rats. HP treatment for four weeks improved the renal function and the dyslipidaemia by decreasing the levels of all parameters, except BUN and Scr. HP treatment (0.5 and 1.0 g/kg/d) upregulated the expression of PPARγ, CYP7b1, and LDLR in the liver, while it down-regulated PCSK9, showing a regulatory effect on lipid metabolism disorder. The levels of TNF-α and IL-1ß in the plasma and the mRNA expression of TNF-α, IL-1ß, MCP-1, and TGF-ß1 in the kidney were decreased in HP groups, revealing its anti-inflammatory effect in NS rats. The HP exerted an alleviation effect on the inflammatory response through the NF-κB pathway by inhibiting the mRNA and protein expression of p50 and p65. There were 34 compounds identified or tentatively characterized in HP. In the network pharmacological study, PPARG(PPARγ), PCSK9, RELA(p65), and NF-κB1(p50) were the top 20 targets for HP, supporting the animal experimental results. CONCLUSION: HP exhibited protective effects on NS rats. These effects might be closely related to the inhibition of NF-κB and PCSK9-LDLR and activation of the PPARγ-CYP7B1 signalling pathways.


Asunto(s)
Antiinflamatorios , Medicamentos Herbarios Chinos , Hedyotis , Hipolipemiantes/farmacología , Síndrome Nefrótico , Animales , Antiinflamatorios/farmacología , Familia 7 del Citocromo P450 , Medicamentos Herbarios Chinos/farmacología , Hedyotis/química , FN-kappa B , Síndrome Nefrótico/tratamiento farmacológico , Proproteína Convertasa 9 , Ratas , Ratas Sprague-Dawley , Esteroide Hidroxilasas/uso terapéutico
3.
Cell Cycle ; 18(23): 3337-3350, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31599189

RESUMEN

Gallbladder cancer (GBC) is the common malignancy of the bile tract system with extremely poor clinical outcomes, owing to its metastatic property and intrinsic resistance to the first-line drugs. Although it is well-established that cholesterol abnormity contributes to gallstone formation, a leading risk factor for GBC, the link of cholesterol homeostasis with GBC has not been investigated. The present study systematically examined the genes implicated in cholesterol homeostasis, and revealed altered gene expressions of de novo cholesterol biosynthesis and sterol sulfonation (SULT2B1), reduced bile acid synthesis (CYP7B1 and CYP39A1) and impaired sterol efflux (ABCA1, ABCG5, LCAT, and CETP) in GBC tissues. Suppression of cholesterol biosynthesis by lovastatin inhibited GBC cell proliferation possibly through attenuating the DNA repair process. Further investigation revealed lovastatin sensitized GBC cells to cisplatin-induced apoptosis and suppressed the activation of CHK1, CHK2, and H2AX during DNA damage response. By using chemically distinct statins, HMGCR depletion or supplementing mevalonate, the product of HMGCR, we showed the inhibitory effects on DNA repair process of lovastatin were due to the blockage of the mevalonate pathway. Subcutaneous xenograft mice model suggested lovastatin promoted the therapeutic efficacy of cisplatin, and significantly prolonged the survival times of tumor-bearing mice. Moreover, HMGCR ablation repressed tumor growth in vivo, which can be rescued partially by restored expression of HMGCR, suggesting the on-target effects of lovastatin. Therefore, our study provides the clinical relevance of cholesterol homeostasis with GBC progression, and highlights a novel intervention of combined use of lovastatin and cisplatin for GBC.


Asunto(s)
Colesterol/genética , Cisplatino/efectos adversos , Neoplasias de la Vesícula Biliar/tratamiento farmacológico , Cálculos Biliares/tratamiento farmacológico , Transportador 1 de Casete de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Animales , Apoptosis/efectos de los fármacos , Colesterol/biosíntesis , Proteínas de Transferencia de Ésteres de Colesterol/genética , Cisplatino/farmacología , Familia 7 del Citocromo P450/genética , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Femenino , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Cálculos Biliares/genética , Cálculos Biliares/patología , Xenoinjertos , Humanos , Masculino , Ratones , Fosfatidilcolina-Esterol O-Aciltransferasa/genética , Factores de Riesgo , Esteroide Hidroxilasas/genética , Sulfotransferasas/genética
4.
Zhongguo Zhong Yao Za Zhi ; 42(20): 3901-3905, 2017 Oct.
Artículo en Chino | MEDLINE | ID: mdl-29243425

RESUMEN

Protein complexes are involved in the synthesis of multiple secondary metabolites in plants, and their separation is essential to elucidate plant secondary metabolism and improve in vitro catalytic efficiency. In this study, the transgenic hairy roots of CYP76AH1, a key enzyme of tanshinone synthesis pathway, was constructed and the transgenic hairy roots of Danshen overexpressing CYP76AH1 protein were screened by Western blotting and used as a tissue culture material for the subsequent extraction of protein complex in tanshinone synthesis pathway. By optimizing the type and concentration of the detergent in the protein extraction buffer, the buffer containing 0.5% Triton X-100 was selected as the best extraction buffer, and a relatively large amount of soluble CYP76AH1 protein was isolated. This study lays the foundation for the further separation and purification of protein complexes interacting with CYP76AH1, and provides the idea for deep analysis of tanshinone metabolic pathway.


Asunto(s)
Familia 7 del Citocromo P450/genética , Raíces de Plantas/enzimología , Salvia miltiorrhiza/enzimología , Abietanos/biosíntesis , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Salvia miltiorrhiza/genética
5.
Mol Neurodegener ; 10: 29, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26169917

RESUMEN

BACKGROUND: Amyloid-ß (Aß) 42 has been implicated as the initiating molecule in the pathogenesis of Alzheimer's disease (AD); thus, therapeutic strategies that target Aß42 are of great interest. γ-Secretase modulators (GSMs) are small molecules that selectively decrease Aß42. We have previously reported that many acidic steroids are GSMs with potencies ranging in the low to mid micromolar concentration with 5ß-cholanic acid being the most potent steroid identified GSM with half maximal effective concentration (EC50) of 5.7 µM. RESULTS: We find that the endogenous cholesterol metabolite, 3ß-hydroxy-5-cholestenoic acid (CA), is a steroid GSM with enhanced potency (EC50 of 250 nM) relative to 5ß-cholanic acid. CA i) is found in human plasma at ~100-300 nM concentrations ii) has the typical acidic GSM signature of decreasing Aß42 and increasing Aß38 levels iii) is active in in vitro γ-secretase assay iv) is made in the brain. To test if CA acts as an endogenous GSM, we used Cyp27a1 knockout (Cyp27a1-/-) and Cyp7b1 knockout (Cyp7b1-/-) mice to investigate if manipulation of cholesterol metabolism pathways relevant to CA formation would affect brain Aß42 levels. Our data show that Cyp27a1-/- had increased brain Aß42, whereas Cyp7b1-/- mice had decreased brain Aß42 levels; however, peripheral dosing of up to 100 mg/kg CA did not affect brain Aß levels. Structure-activity relationship (SAR) studies with multiple known and novel CA analogs studies failed to reveal CA analogs with increased potency. CONCLUSION: These data suggest that CA may act as an endogenous GSM within the brain. Although it is conceptually attractive to try and increase the levels of CA in the brain for prevention of AD, our data suggest that this will not be easily accomplished.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Colesterol/análogos & derivados , Fragmentos de Péptidos/metabolismo , Animales , Barrera Hematoencefálica , Células CHO , Células Cultivadas , Colestanotriol 26-Monooxigenasa/deficiencia , Colestanotriol 26-Monooxigenasa/genética , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacología , Ácidos Cólicos/farmacología , Técnicas de Cocultivo , Cricetinae , Cricetulus , Familia 7 del Citocromo P450 , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Neuroglía/metabolismo , Neuronas/metabolismo , Esteroide Hidroxilasas/deficiencia , Esteroide Hidroxilasas/genética , Relación Estructura-Actividad
6.
Biochim Biophys Acta ; 1801(9): 1090-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20553962

RESUMEN

Most of the many biological effects of estrogens are mediated via the estrogen receptors ERalpha and beta. The current study examines the role of CYP7B1-mediated catalysis for activation of ER. Several reports suggest that CYP7B1 may be important for hormonal action but previously published studies are contradictory concerning the manner in which CYP7B1 affects ERbeta-mediated response. In the current study, we examined effects of several CYP7B1-related steroids on ER activation, using an estrogen response element (ERE) reporter system. Our studies showed significant stimulation of ER by 5-androstene-3beta,17beta-diol (Aene-diol) and 5alpha-androstane-3beta,17beta-diol (3beta-Adiol). In contrast, the CYP7B1-formed metabolites from these steroids did not activate the receptor, indicating that CYP7B1-mediated metabolism abolishes the ER-stimulating effect of these compounds. The mRNA level of HEM45, a gene known to be stimulated by estrogens, was strongly up-regulated by Aene-diol but not by its CYP7B1-formed metabolite, further supporting this concept. We did not observe stimulation by dehydroepiandrosterone (DHEA) or 7alpha-hydroxy-DHEA, previously suggested to affect ERbeta-mediated response. As part of these studies we examined metabolism of Aene-diol in pig liver which is high in CYP7B1 content. These experiments indicate that CYP7B1-mediated metabolism of Aene-diol is of a similar rate as the metabolism of the well-known CYP7B1 substrates DHEA and 3beta-Adiol. CYP7B1-mediated metabolism of 3beta-Adiol has been proposed to influence ERbeta-mediated growth suppression. Our results indicate that Aene-diol also might be important for ER-related pathways. Our data indicate that low concentrations of Aene-diol can trigger ER-mediated response equally well for both ERalpha and beta and that CYP7B1-mediated conversion of Aene-diol into a 7alpha-hydroxymetabolite will result in loss of action.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Riñón/metabolismo , Microsomas Hepáticos/metabolismo , Esteroide Hidroxilasas/metabolismo , Adyuvantes Inmunológicos/farmacología , Anabolizantes/farmacología , Androstano-3,17-diol/farmacología , Animales , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Catálisis , Células Cultivadas , Familia 7 del Citocromo P450 , Deshidroepiandrosterona/farmacología , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/genética , Exonucleasas/genética , Exonucleasas/metabolismo , Exorribonucleasas , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Luciferasas/metabolismo , Microsomas Hepáticos/efectos de los fármacos , ARN Mensajero/genética , Elementos de Respuesta , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Esteroide Hidroxilasas/genética , Porcinos
7.
J Neuroimmunol ; 159(1-2): 41-7, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15652401

RESUMEN

The cytochrome P4507B1 (P4507B1) is responsible for the 7alpha-hydroxylation of dehydroepiandrosterone (DHEA) and other 3beta-hydroxysteroids in the brain and other organs. The cDNA of human P4507B1 was used for DNA immunization of mice. The best responding mouse led to the production of monoclonal antibodies (mAbs). The clone D16-37 produced an IgM specific for P4507B1 with no cross-reaction with other human P450s. This antibody permitted the immunohistochemical detection of P4507B1 in slices of human hippocampus. P4507B1 was expressed in neurons only. This new tool will be used for the extensive examination of the P4507B1 presence and determination of its levels in slices of human normal and diseased brain and in other human tissues.


Asunto(s)
Anticuerpos Monoclonales/análisis , Sistema Enzimático del Citocromo P-450/análisis , Sistema Enzimático del Citocromo P-450/inmunología , ADN Complementario/administración & dosificación , Esteroide Hidroxilasas/análisis , Esteroide Hidroxilasas/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/metabolismo , Especificidad de Anticuerpos , Sitios de Unión de Anticuerpos , Catálisis , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 7 del Citocromo P450 , ADN Complementario/inmunología , Deshidroepiandrosterona/antagonistas & inhibidores , Deshidroepiandrosterona/metabolismo , Hipocampo/enzimología , Hipocampo/inmunología , Humanos , Inmunoglobulina M/metabolismo , Inmunohistoquímica , Inyecciones Intramusculares , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Esteroide Hidroxilasas/genética , Esteroide Hidroxilasas/metabolismo , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunología
8.
Neuroscience ; 121(2): 307-14, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14521990

RESUMEN

Neurosteroids such as dehydroepiandrosterone (DHEA), pregnenolone and 17beta-estradiol are synthesized by cytochrome P450s from endogenous cholesterol. We previously reported a new cytochrome P450 enzyme, CYP7B, highly expressed in rat and mouse brain that metabolizes DHEA and related steroids by hydroxylation at the 7alpha position. Such 7-hydroxylation can enhance DHEA bioactivity in vivo. Here we show that the reaction is conserved across mammalian species: in addition to mouse and rat, DHEA hydroxylation activity was present in brain extracts from sheep, marmoset and human. Northern blotting using a human CYP7B complementary deoxyribonucleic acid (cDNA) probe confirmed the presence of CYP7B mRNA in marmoset and human hippocampus; CYP7B mRNA was present in marmoset cerebellum and brainstem, with lower levels in hypothalamus and cortex. In situ hybridization to human brain revealed higher levels of CYP7B mRNA in the hippocampus than in cerebellum, cortex, or other brain regions. We also measured CYP7B expression in Alzheimer's disease (AD). CYP7B mRNA was significantly decreased (approximately 50% decline; P<0.05) in dentate neurons from AD subjects compared with controls. A decline in CYP7B activity may contribute the loss of effects of DHEA with ageing and perhaps to the pathophysiology of AD.


Asunto(s)
Adipatos/metabolismo , Enfermedad de Alzheimer/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Hipocampo/enzimología , Esteroide Hidroxilasas/metabolismo , Adipatos/química , Anciano , Anciano de 80 o más Años , Animales , Northern Blotting , Encéfalo/anatomía & histología , Encéfalo/embriología , Callithrix , Estudios de Casos y Controles , Familia 7 del Citocromo P450 , ADN Complementario/metabolismo , Femenino , Humanos , Hidroxilación , Hidroxiesteroide Deshidrogenasas/metabolismo , Hibridación in Situ , Masculino , Ratones , ARN Mensajero/metabolismo , Ratas , Ovinos
9.
J Lipid Res ; 40(12): 2195-203, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10588945

RESUMEN

Oxysterol 7alpha-hydroxylase has broad substrate specificity for sterol metabolites and may be involved in many metabolic processes including bile acid synthesis and neurosteroid metabolism. The cloned human oxysterol 7alpha-hydroxylase (CYP7B1) cDNA encodes a polypeptide of 506 amino acid residues that shares 40% sequence identity to human cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme in the conversion of cholesterol to bile acids in the liver. In contrast to the liver-specific expression of CYP7A1, CYP7B1 mRNA transcripts were detected in human tissues involved in steroid genesis (brain, testes, ovary, and prostate) and in bile acid synthesis (liver) and reabsorption (colon, kidney, and small intestine). The human oxysterol 7alpha-hydroxylase transiently expressed in 293/T cells was able to catalyze 7alpha-hydroxylation of 27-hydroxycholesterol and dehydroepiandrosterone (DHEA). The human CYP7A1 and CYP7B1 both contain six exons and five introns. However, CYP7B1 spans at least 65 kb of the genome and is about 6-fold longer than CYP7A1. The transcription start site (+1) was localized 204 bp upstream of the initiation codon. No TATA box-like sequence was found near the transcription start site. Transient transfection assays of CYP7B1 promoter/luciferase reporter constructs in HepG2 cells revealed that the promoter was highly active. The 5' upstream region from nt -83 to +189 is the core promoter of the gene.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , ADN Complementario/aislamiento & purificación , Esteroide Hidroxilasas/genética , Animales , Secuencia de Bases , Northern Blotting , Línea Celular , Mapeo Cromosómico , Clonación Molecular , Codón Iniciador , Sistema Enzimático del Citocromo P-450/metabolismo , Familia 7 del Citocromo P450 , ADN Complementario/biosíntesis , Humanos , Hidroxicolesteroles/metabolismo , Luciferasas/genética , Ratones , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos , Esteroide Hidroxilasas/metabolismo , Transcripción Genética/genética , Transfección
10.
Proc Natl Acad Sci U S A ; 94(10): 4925-30, 1997 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-9144166

RESUMEN

Steroids produced locally in brain (neurosteroids), including dehydroepiandrosterone (DHEA), influence cognition and behavior. We previously described a novel cytochrome P450, Cyp7b, strongly expressed in rat and mouse brain, particularly in hippocampus. Cyp7b is most similar to steroidogenic P450s and potentially could play a role in neurosteroid metabolism. To examine the catalytic activity of the enzyme mouse Cyp7b cDNA was introduced into a vaccinia virus vector. Extracts from cells infected with the recombinant showed NADPH-dependent conversion of DHEA (Km, 13.6 microM) and pregnenolone (Km, 4.0 microM) to slower migrating forms on thin layer chromatography. The expressed enzyme was less active against 25-hydroxycholesterol, 17beta-estradiol and 5alpha-androstane-3beta,17beta-diol, with low to undetectable activity against progesterone, corticosterone, and testosterone. On gas chromatography and mass spectrometry of the Cyp7b metabolite of DHEA the retention time and fragmentation patterns were identical to those obtained with authentic 7alpha-hydroxy DHEA. The reaction product also comigrated on thin layer chromatography with 7alpha-hydroxy DHEA but not with 7beta-hydroxy DHEA; when [7alpha-3H]pregnenolone was incubated with Cyp7b extracts the extent of release of radioactivity into the medium suggested that hydroxylation was preferentially at the 7alpha position. Brain extracts also efficiently liberated tritium from [7alpha-3H]pregnenolone and converted DHEA to a product with a chromatographic mobility indistinguishable from 7alpha-hydroxy DHEA. We conclude that Cyp7b is a 7alpha-hydroxylase participating in the synthesis, in brain, of neurosteroids 7alpha-hydroxy DHEA, and 7alpha-hydroxy pregnenolone.


Asunto(s)
17-alfa-Hidroxipregnenolona/metabolismo , Encéfalo/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Deshidroepiandrosterona/análogos & derivados , Esteroide Hidroxilasas , 17-alfa-Hidroxipregnenolona/análogos & derivados , Animales , Sistema Enzimático del Citocromo P-450/biosíntesis , Familia 7 del Citocromo P450 , ADN Complementario , Deshidroepiandrosterona/metabolismo , Vectores Genéticos , Células HeLa , Hipocampo/enzimología , Humanos , Cinética , Ratones , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Transfección , Virus Vaccinia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA