Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochem Pharmacol ; 224: 116230, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643905

RESUMEN

One of the effective therapeutic strategies to treat rheumatoid arthritis (RA)-related bone resorption is to target excessive activation of osteoclasts. We discovered that 6-O-angeloylplenolin (6-OAP), a pseudoguaianolide from Euphorbia thymifolia Linn widely used for the treatment of RA in traditional Chinese medicine, could inhibit RANKL-induced osteoclastogenesis and bone resorption in both RAW264.7 cells and BMMs from 1 µM and protect a collagen-induced arthritis (CIA) mouse model from bone destruction in vivo. The severity of arthritis and bone erosion observed in paw joints and the femurs of the CIA model were attenuated by 6-OAP administered at both dosages (1 or 5 mg/kg, i.g.). BMD, Tb.N and BV/TV were also improved by 6-OAP treatment. Histological analysis and TRAP staining of femurs further confirmed the protective effects of 6-OAP on bone erosion, which is mainly due to reduced osteoclasts. Molecular docking indicated that c-Src might be a target of 6-OAP and phosphorylation of c-Src was suppressed by 6-OAP treatment. CETSA and SPR assay further confirmed the potential interaction between 6-OAP and c-Src. Three signaling molecules downstream of c-Src that are vital to the differentiation and function of osteoclasts, NF-κB, c-Fos and NFATc1, were also suppressed by 6-OAP in vitro. In summary, the results demonstrated that the function of c-Src was disrupted by 6-OAP, which led to the suppression of downstream signaling vital to osteoclast differentiation and function. In conclusion, 6-OAP has the potential to be further developed for the treatment of RA-related bone erosion.


Asunto(s)
Artritis Experimental , Resorción Ósea , FN-kappa B , Factores de Transcripción NFATC , Osteoclastos , Osteogénesis , Animales , Ratones , Factores de Transcripción NFATC/metabolismo , Células RAW 264.7 , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/metabolismo , Resorción Ósea/prevención & control , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Artritis Experimental/inducido químicamente , Osteogénesis/efectos de los fármacos , FN-kappa B/metabolismo , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Proteína Tirosina Quinasa CSK/metabolismo , Simulación del Acoplamiento Molecular , Familia-src Quinasas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores
2.
Chin J Integr Med ; 30(4): 299-310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38212502

RESUMEN

OBJECTIVE: To investigate the effect of isorhamnetin on the pathology of rheumatoid arthritis (RA). METHODS: Tumor necrosis factor (TNF)- α -induced fibroblast-like synoviocytes (FLS) was exposed to additional isorhamnetin (10, 20 and 40 µ mol/L). Overexpression vectors for matrix metalloproteinase-2 (MMP2) or MMP9 or SRC were transfected to explore their roles in isorhamnetin-mediated RA-FLS function. RA-FLS viability, migration, and invasion were evaluated. Moreover, a collagen-induced arthritis (CIA) rat model was established. Rats were randomly divided to sham, CIA, low-, medium-, and high-dosage groups using a random number table (n=5 in each group) and administed with normal saline or additional isorhamnetin [2, 10, and 20 mg/(kg·day)] for 4 weeks, respectively. Arthritis index was calculated and synovial tissue inflammation was determined in CIA rats. The levels of MMP2, MMP9, TNF-α, interleukin-6 (IL-6), and IL-1 ß, as well as the phosphorylation levels of SRC, extracellular regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding (CREB), were detected in RA-FLS and synovial tissue. Molecular docking was also used to analyze the binding of isorhamnetin to SRC. RESULTS: In in vitro studies, isorhamnetin inhibited RA-FLS viability, migration and invasion (P<0.05). Isorhamnetin downregulated the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß in RA-FLS (P<0.05). The overexpression of either MMP2 or MMP9 reversed isorhamnetin-inhibited RA-FLS migration and invasion, as well as the levels of TNF-α, IL-6, and IL-1 ß (P<0.05). Furthermore, isorhamnetin bound to SRC and reduced the phosphorylation of SRC, ERK, and CREB (P<0.05). SRC overexpression reversed the inhibitory effect of isorhamnetin on RA-FLS viability, migration and invasion, as well as the negative regulation of MMP2 and MMP9 (P<0.05). In in vivo studies, isorhamnetin decreased arthritis index scores (P<0.05) and alleviated synovial inflammation. Isorhamnetin reduced the levels of MMP2, MMP9, TNF-α, IL-6, and IL-1 ß, as well as the phosphorylation of SRC, ERK, and CREB in synovial tissue (P<0.05). Notably, the inhibitory effect of isorhamnetin was more pronounced at higher concentrations (P<0.05). CONCLUSION: Isorhamnetin exhibited anti-RA effects through modulating SRC/ERK/CREB and MMP2/MMP9 signaling pathways, suggesting that isorhamnetin may be a potential therapeutic agent for RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Quercetina/análogos & derivados , Ratas , Animales , Metaloproteinasa 2 de la Matriz/metabolismo , Familia-src Quinasas/metabolismo , Familia-src Quinasas/farmacología , Familia-src Quinasas/uso terapéutico , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Simulación del Acoplamiento Molecular , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Inflamación/patología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Células Cultivadas , Fibroblastos , Proliferación Celular
3.
J Ethnopharmacol ; 305: 116015, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36563890

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora flavescens Aiton (Family: Leguminosae), an herbal plant, has been used in East Asian home remedies for centuries for treating ulcers, skin burns, fevers, and inflammatory disorders. In addition, the dried root of S. flavescens was also applied for antipyretic, analgesic, antihelmintic, and stomachic uses. AIM OF STUDY: Nonetheless, how this plant can show various pharmacological activities including anti-inflammatory responses was not fully elucidated. In this study, therefore, we aimed to investigate the curative effects of S. flavescens on inflammation and its molecular mechanism. MATERIALS AND METHODS: For reaching this aim, various in vitro and in vivo experimental models with LPS-treated RAW264.7 cells, HCl/EtOH-induced gastric ulcer, and LPS-triggered lung injury conditions were employed and anti-inflammatory activity of S. flavescens methanol extract (Sf-ME) was also tested. Fingerprinting profile of Sf-ME was identified via LC-MS analysis. Its anti-inflammatory molecular mechanism was also examined by immunoblotting analysis. RESULTS: Nitric oxide production and mRNA expression levels of iNOS, COX-2, IL-1ß, and TNF-α were decreased. Additionally, phosphorylation of Src in the signaling cascade was decreased, and activities of the transcriptional factor NF-κB were reduced as determined by a luciferase reporter assay. Moreover, in vivo, gastritis and lung injury lesions were attenuated by Sf-ME. CONCLUSION: Taken together, these findings suggest that Sf-ME could be a potential anti-inflammatory therapeutic agent via suppression of Src kinase activity and regulation of IL-1ß secretion.


Asunto(s)
Lesión Pulmonar , Metanol , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Lipopolisacáridos/farmacología , Lesión Pulmonar/tratamiento farmacológico , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Fosforilación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Células RAW 264.7 , Sophora flavescens , Familia-src Quinasas/metabolismo
4.
Eur J Pain ; 26(9): 1967-1978, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35900227

RESUMEN

BACKGROUND: Transient receptor potential vanilloid-1 (TRPV1), activated by heat, acidic pH, endogenous vanilloids and capsaicin, is essential for thermal hyperalgesia. Under inflammatory conditions, phosphorylation of TRPV1 by protein kinase C (PKC) can sensitize the channel and decrease the activation threshold. Src kinase also phosphorylates TRPV1, promoting channel trafficking to the plasma membrane. These post-translational modifications are important for several chronic pain conditions. This study presents a previously undescribed relationship between Src and PKC phosphorylation of TRPV1, influencing the thermal hypersensitivity associated with TRPV1 activation. METHODS: We assessed TRPV1 channel activity using intracellular calcium imaging and patch-clamp electrophysiology in mouse dorsal root ganglion cultures. Additionally, we used behavioural experiments to evaluate plantar thermal sensitivity following intraplantar injections of activators of known modulators of TRPV1 with and without an Src antagonist. RESULTS: Using calcium imaging and patch-clamp techniques, we demonstrated that pharmacological inhibition of Src kinase or mutation of the Src phosphorylation site on TRPV1 prevented PKC but not PKA-mediated sensitization of TRPV1 in vitro. We found that intraplantar injection of the PKC activator phorbol 12-myristate 13-acetate (PMA) or bradykinin produces thermal hypersensitivity that can be attenuated by pharmacological inhibition of Src. Additionally, complete Freund's Adjuvant (CFA)-induced inflammatory hypersensitivity could also be attenuated by local Src kinase inhibition. CONCLUSIONS: Our data demonstrate that Src phosphorylation is critical for PKC-mediated sensitization of TRPV1. Further, in a model of inflammatory pain, CFA, Src kinase inhibition could reduce thermal hypersensitivity. Targeting of Src kinase may have analgesic benefits in inflammatory pain conditions. SIGNIFICANCE: Src kinase-mediated phosphorylation of TRPV1 is a critical regulator of the PKC-induced sensitization induced by multiple inflammatory mediators. This suggest a new regulatory mechanism governing TRPV1 function and a potential therapeutic target for inflammatory type pain, including cancer pain where Src antagonists are currently utilized.


Asunto(s)
Dolor Crónico , Proteína Quinasa C , Canales Catiónicos TRPV , Familia-src Quinasas , Animales , Calcio/metabolismo , Capsaicina/farmacología , Dolor Crónico/metabolismo , Adyuvante de Freund/efectos adversos , Ganglios Espinales/metabolismo , Hiperalgesia , Ratones , Fosforilación , Proteína Quinasa C/metabolismo , Canales Catiónicos TRPV/metabolismo , Familia-src Quinasas/metabolismo
5.
Phytomedicine ; 95: 153705, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34538671

RESUMEN

BACKGROUND: Liver cancer is one of the leading causes of cancer-related death worldwide. Dihydrotanshinone I (DHI) was shown to inhibit the growth of several types of cancer. However, research related to hepatoma treatment using DHI is limited. PURPOSE: Here, we explored the inhibitory effect of DHI on the growth of hepatoma cells, and investigated the underlying molecular mechanisms. METHODS: The proliferation of Hep3B, SMCC-7721 and SK-Hep1 hepatoma cells was evaluated using the MTS and Edu staining assay. Hepatoma cell death was analyzed with a LIVE/DEAD Cell Imaging Kit. The relative expression and phosphorylation of proto-oncogene tyrosine-protein kinase Src (Src) and signal transducer and activator of transcription-3 (STAT3) proteins in hepatoma cells, as well as the expression of other protein components, were measured by western blotting. The structural interaction of DHI with Src proteins was evaluated by molecular docking, molecular dynamics simulation, surface plasmon resonance imaging and Src kinase inhibition assay. Src overexpression was achieved by infection with an adenovirus vector encoding human Src. Subsequently, the effects of DHI on tumor growth inhibition were further validated using mouse xenograft models of hepatoma. RESULTS: In vitro studies showed that treatment with DHI inhibited the proliferation and promoted cell death of Hep3B, SMCC-7721 and SK-Hep1 hepatoma cells. We further identified and verified Src as a direct target of DHI by using molecular stimulation, surface plasmon resonance image and Src kinase inhibition assay. Treatment with DHI reduced the in vitro phosphorylation levels of Src and STAT3, a transcription factor regulated by Src. In the xenograft mouse models, DHI dose-dependently suppressed tumor growth and Src and STAT3 phosphorylation. Moreover, Src overexpression partly abrogated the inhibitory effects of DHI on the proliferation and cell death in hepatoma cells. CONCLUSION: Our results suggest that DHI inhibits the growth of hepatoma cells by direct inhibition of Src.


Asunto(s)
Carcinoma Hepatocelular , Furanos/farmacología , Fenantrenos , Quinonas/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular , Ratones , Simulación del Acoplamiento Molecular , Fenantrenos/farmacología , Fosforilación , Factor de Transcripción STAT3/metabolismo , Familia-src Quinasas/metabolismo
6.
J Neuroendocrinol ; 34(1): e13071, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904297

RESUMEN

Neural circuits in female rats are exposed to sequential estradiol and progesterone to regulate the release of luteinizing hormone (LH) and ultimately ovulation. Estradiol induces progesterone receptors (PGRs) in anteroventral periventricular nucleus (AVPV) kisspeptin neurons, and as estradiol reaches peak concentrations, neuroprogesterone (neuroP) synthesis is induced in hypothalamic astrocytes. This local neuroP signals to PGRs expressed in kisspeptin neurons to trigger the LH surge. We tested the hypothesis that neuroP-PGR signaling through Src family kinase (Src) underlies the LH surge. As observed in vitro, PGR and Src are co-expressed in AVPV neurons. Estradiol treatment increased the number of PGR immunopositive cells and PGR and Src colocalization. Furthermore, estradiol treatment increased the number of AVPV cells that had extranuclear PGR and Src in close proximity (< 40 nm). Infusion of the Src inhibitor (PP2) into the AVPV region of ovariectomized/adrenalectomized (ovx/adx) rats attenuated the LH surge in trunk blood collected 53 h post-estradiol (50 µg) injection that induced neuroP synthesis. Although PP2 reduced the LH surge in estradiol benzoate treated ovx/adx rats, activation of either AVPV PGR or Src in 2 µg estradiol-primed animals significantly elevated LH concentrations compared to dimethyl sulfoxide infused rats. Finally, antagonism of either AVPV PGR or Src blocked the ability of PGR or Src activation to induce an LH surge in estradiol-primed ovx/adx rats. These results indicate that neuroP, which triggers the LH surge, signals through an extranuclear PGR-Src signaling pathway.


Asunto(s)
Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/fisiología , Familia-src Quinasas/fisiología , Animales , Femenino , Hipotálamo/metabolismo , Ovulación/sangre , Ovulación/metabolismo , Ratas , Ratas Long-Evans , Receptores de Progesterona/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
7.
Biomed Pharmacother ; 146: 112487, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34883449

RESUMEN

Age-related meibomian gland dysfunction (MGD) is the main cause of evaporative dry eye disease in an aging population. Decreased meibocyte cell renewal and lipid synthesis are associated with age-related MGD. Here, we found an obvious decline of Ki67, ΔNp63, and Na+/K+ ATPase expression in aged meibomian glands. Potential Na+/K+ ATPase agonist periplocin, a naturally occurring compound extracted from the traditional herbal medicine cortex periplocae, could promote the proliferation and stem cell activity of meibocyte cells in vitro. Moreover, we observed that periplocin treatment effectively increased the expression of Na+ /K+ ATPase, accompanied with the enhanced expression of Ki67 and ΔNp63 in aged meibomian glands, indicating that periplocin may accelerate meibocyte cell renewal in aged mice. LipidTox staining showed increased lipid accumulation after periplocin treatment in cultured meibomian gland cells and aged meibomian glands. Furthermore, we demonstrated that the SRC pathway was inhibited in aged meibomian glands; however, it was activated by periplocin. Accordingly, the inhibition of the SRC signaling pathway by saracatinib blocked periplocin-induced proliferation and lipid accumulation in meibomian gland cells. In sum, we suggest periplocin-ameliorated meibocyte cell renewal and lipid synthesis in aged meibomian glands via the SRC pathway, which could be a promising candidate for age-related MGD.


Asunto(s)
Disfunción de la Glándula de Meibomio/tratamiento farmacológico , Saponinas/uso terapéutico , Envejecimiento/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Disfunción de la Glándula de Meibomio/metabolismo , Glándulas Tarsales/citología , Glándulas Tarsales/efectos de los fármacos , Glándulas Tarsales/metabolismo , Ratones Endogámicos C57BL , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Familia-src Quinasas/metabolismo
8.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681640

RESUMEN

The molecular mechanisms by which ATP1A1 mutation-mediated cell proliferation or tumorigenesis in aldosterone-producing adenomas (APAs) have not been elucidated. First, we investigated whether the APA-associated ATP1A1 L104R mutation stimulated cell proliferation. Second, we aimed to clarify the molecular mechanisms by which the ATP1A1 mutation-mediated cell proliferated. We performed transcriptome analysis in APAs with ATP1A1 mutation. ATP1A1 L104R mutation were modulated in human adrenocortical carcinoma (HAC15) cells (ATP1A1-mutant cells), and we evaluated cell proliferation and molecular signaling events. Transcriptome and immunohistochemical analysis showed that Na/K-ATPase (NKA) expressions in ATP1A1 mutated APA were more abundant than those in non-functioning adrenocortical adenoma or KCNJ5 mutated APAs. The significant increase of number of cells, amount of DNA and S-phase population were shown in ATP1A1-mutant cells. Fluo-4 in ATP1A1-mutant cells were significantly increased. Low concentration of ouabain stimulated cell proliferation in ATP1A1-mutant cells. ATP1A1-mutant cells induced Src phosphorylation, and low concentration of ouabain supplementation showed further Src phosphorylation. We demonstrated that NKAs were highly expressed in ATP1A1 mutant APA, and the mutant stimulated cell proliferation and Src phosphorylation in ATP1A1-mutant cells. NKA stimulations would be a risk factor for the progression and development to an ATP1A1 mutant APA.


Asunto(s)
Adenoma/patología , Aldosterona/metabolismo , Proliferación Celular , ATPasa Intercambiadora de Sodio-Potasio/genética , Adenoma/metabolismo , Adenoma Corticosuprarrenal/metabolismo , Adenoma Corticosuprarrenal/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Humanos , Mutación , Ouabaína/farmacología , Fosforilación/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transcriptoma , Familia-src Quinasas/metabolismo
9.
Pharm Biol ; 59(1): 799-810, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34190667

RESUMEN

CONTEXT: Among the plants in the genus Barringtonia (Lecythidaceae) used as traditional medicines to treat arthralgia, chest pain, and haemorrhoids in Indonesia, Barringtonia racemosa L. and Barringtonia acutangula (L.) Gaertn. have demonstrated anti-inflammatory activity in systemic inflammatory models. OBJECTIVE: The anti-inflammatory activity of Barringtonia angusta Kurz has not been investigated. We prepared a methanol extract of the leaves and stems of B. angusta (Ba-ME) and systemically evaluated its anti-inflammatory effects in vitro and in vivo. MATERIALS AND METHODS: RAW264.7 cells stimulated with LPS or Pam3CSK4 for 24 h were treated with Ba-ME (12.5, 25, 50, 100, and 150 µg/mL), and NO production and mRNA levels of inflammatory genes were evaluated. Luciferase reporter gene assay, western blot analysis, overexpression experiments, and cellular thermal shift assay were conducted to explore the mechanism of Ba-ME. In addition, the anti-gastritis activity of Ba-ME (50 and 100 mg/kg, administered twice per day for two days) was evaluated using an HCl/EtOH-induced gastritis mouse model. RESULTS: Ba-ME dose-dependently suppressed NO production [IC50 = 123.33 µg/mL (LPS) and 46.89 µg/mL (Pam3CSK4)] without affecting cell viability. Transcriptional expression of iNOS, IL-1ß, COX-2, IL-6, and TNF-α and phosphorylation of Src, IκBα, p50/105, and p65 were inhibited by Ba-ME. The extract specifically targeted the Src protein by binding to its SH2 domain. Moreover, Ba-ME significantly ameliorated inflammatory lesions in the HCl/EtOH-induced gastritis model. DISCUSSION AND CONCLUSIONS: The anti-inflammatory activity of Ba-ME is mediated by targeting of the Src/NF-κB signalling pathway, and B. angusta has potential as an anti-inflammatory drug.


Asunto(s)
Antiinflamatorios/administración & dosificación , Barringtonia , Sistemas de Liberación de Medicamentos/métodos , Gastritis/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Familia-src Quinasas/antagonistas & inhibidores , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/metabolismo , Relación Dosis-Respuesta a Droga , Gastritis/inducido químicamente , Gastritis/metabolismo , Células HEK293 , Humanos , Masculino , Metanol/administración & dosificación , Metanol/metabolismo , Ratones , Ratones Endogámicos ICR , FN-kappa B , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Hojas de la Planta , Tallos de la Planta , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
10.
Phytomedicine ; 87: 153590, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34033998

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is an autoimmune disease. The pathogenesis of IBD is complicated and intestinal mucosal barrier damage is considered as the trigger factor for the initiation and recurrence of IBD. Total Glucosides of Paeony (TGP) has shown good inhibitory effects on immune-inflammation in clinic studies. However, its effect and mechanism on IBD are largely unknown. PURPOSE: The purpose of this study is to evaluate the effect and mechanism of TGP on IBD. STUDY DESIGN: DSS-induced colitis mouse model was used. TGP was given by gavage. Caco-2 cells were stimulated by outer membrane vesicles (OMV) to establish an in vitro model. METHODS: C57BL/6 mice were divided into normal control group, model group, mesalazine group, paeoniflorin (PA) group, high-dose group of TGP, and low-dose group of TGP. The model was induced with 2.5% DSS for 7 days, and TGP was intragastrically administered for 10 days. The therapeutic effect of TGP was evaluated by symptoms, histochemical analysis, RT-qPCR and ELISA. The mechanism was explored by intestinal permeability, Western blot and immunofluorescence in vivo and in vitro. RESULTS: Our results showed that TGP could significantly improve the symptoms and pathological changes, with reduced levels of TNF-α, IL-17A, IL-23 and IFN-γ in the colon tissues and serum under a dose-dependent manner. TGP also reduced the intestinal permeability and restored the protein expression of tight junction and adherens junction proteins of intestinal epithelial cells in vivo and in vitro. Furthermore, TGP could inhibit the expression of p-Lyn and Snail and prevent Snail nuclear localization, thereby maintaining tight and adherens junctions. CONCLUSION: TGP effectively improves the symptoms of DSS-induced colitis in mice, protects the intestinal epithelial barrier by inhibiting the Lyn/Snail signaling pathway, and maybe a promise therapeutic agent for IBD treatment.


Asunto(s)
Colitis/tratamiento farmacológico , Glucósidos/farmacología , Paeonia/química , Familia-src Quinasas/metabolismo , Animales , Células CACO-2 , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Glucósidos/química , Humanos , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Masculino , Ratones Endogámicos C57BL , Monoterpenos/farmacología , Permeabilidad , Factores de Transcripción de la Familia Snail/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo
11.
Pharmacol Res ; 167: 105513, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33617975

RESUMEN

A large number of macrophages in inflamed sites not only amplify the severity of inflammatory responses but also contribute to the deleterious progression of many chronic inflammatory diseases, autoimmune diseases and cancers. Macrophage migration is a prerequisite for their entry into inflammatory sites and their participation of macrophages in the pathologic processes. Inhibition of macrophage migration is therefore a potential anti-inflammatory mechanism. Moreover, alleviation of inflammation also prevents the macrophages infiltration. Sinomenine (SIN) is an alkaloid derived from the Chinese medicinal plant Sinomenium acutum. It has multiple pharmacological effects, including anti-inflammation, immunosuppression, and anti-arthritis. However, its anti-inflammatory molecular mechanisms and effect on macrophage migration are not fully understood. The purpose of this research was to investigate the pharmacological effects and the molecular mechanism of SIN on macrophage migration in vivo and in vitro as well as to elucidate its anti-inflammatory mechanisms associated with macrophage migration. Our results showed that SIN reduced the number of RAW264.7 cells migrating into inflammatory paws and blocked lipopolysaccharide (LPS)-induced RAW264.7 cells and bone marrow-derived macrophages (BMDMs) migration in vitro. Furthermore, SIN attenuated the 3D mesenchymal migration of BMDMs. The absence of macrophage migration after circulatory and periphery macrophages depletion led to a reduction in the severity of inflammatory response. In macrophages depleted (macrophages-/-) mice, as inflammatory severity decreased, RAW264.7 cells migration was suppressed. A non-obvious effect of SIN on the inflammatory response was found in macrophages-/- mice, while the inhibitory effect of SIN on RAW264.7 cells migration was still observed. Furthermore, the migration of RAW264.7 cells pre-treated with SIN was suppressed in normal mice. Finally, Src/focal adhesion kinase (FAK)/P130Cas axis activation, which supports macrophages mesenchymal migration, and iNOS expression, NO production, integrin αV and in integrin ß3 expressions, which promote Src/FAK/P130Cas activation, were down-regulated by SIN. However, SIN had no obvious effect on the expression of the monocyte chemoattractant protein-1 (MCP-1), which is an important chemokine for macrophage migration. These results indicated that SIN significantly inhibited macrophage mesenchymal migration by down-regulating on Src/FAK/P130Cas axis activation. There was a mutual regulatory correlation between the inflammatory response and macrophage migration, and the effects of SIN on macrophage migration were involved in its anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/farmacología , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Macrófagos/efectos de los fármacos , Morfinanos/farmacología , Animales , Antiinflamatorios/química , Proteína Sustrato Asociada a CrK/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Morfinanos/química , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Sinomenium/química , Familia-src Quinasas/metabolismo
12.
Pharm Biol ; 59(1): 74-86, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33439064

RESUMEN

CONTEXT: Sauropus brevipes Müll. Arg. (Phyllanthaceae) has been used as an effective ingredient in a decoction for the treatment of diarrhoea. However, there was no report on its modulatory role in inflammation. OBJECTIVE: This study investigates anti-inflammatory effect of S. brevipes in various inflammation models. MATERIALS AND METHODS: The aerial part of S. brevipes was extracted with 95% ethanol to produce Sb-EE. RAW264.7 cells pre-treated with Sb-EE were stimulated by lipopolysaccharide (LPS), and Griess assay and PCR were performed. High-performance liquid chromatography (HPLC) analysis, luciferase assay, Western blotting and kinase assay were employed. C57BL/6 mice (10 mice/group) were orally administered with Sb-EE (200 mg/kg) once a day for five days, and peritonitis was induced by an intraperitoneal injection of LPS (10 mg/kg). ICR mice (four mice/group) were orally administered with Sb-EE (20 or 200 mg/kg) or ranitidine (positive control) twice a day for two days, and EtOH/HCl was orally injected to induce gastritis. RESULTS: Sb-EE suppressed nitric oxide (NO) release (IC50=34 µg/mL) without cytotoxicity and contained flavonoids (quercetin, luteolin and kaempferol). Sb-EE (200 µg/mL) reduced the mRNA expression of inducible NO synthase (iNOS). Sb-EE blocked the activities of Syk and Src, while inhibiting interleukin-1 receptor associated kinases (IRAK1) by 68%. Similarly, orally administered Sb-EE (200 mg/kg) suppressed NO production by 78% and phosphorylation of Src and Syk in peritonitis mice. Sb-EE also decreased inflammatory lesions in gastritis mice. DISCUSSION AND CONCLUSIONS: This study demonstrates the inhibitory effect of Sb-EE on the inflammatory response, suggesting that Sb-EE can be developed as a potential anti-inflammatory agent.


Asunto(s)
Antiinflamatorios/farmacología , Sistemas de Liberación de Medicamentos/métodos , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Extractos Vegetales/uso terapéutico , Quinasa Syk/antagonistas & inhibidores , Familia-src Quinasas/antagonistas & inhibidores , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/uso terapéutico , Etanol/farmacología , Etanol/uso terapéutico , Gastritis/tratamiento farmacológico , Gastritis/metabolismo , Células HEK293 , Humanos , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Peritonitis/tratamiento farmacológico , Peritonitis/metabolismo , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Células RAW 264.7 , Quinasa Syk/metabolismo , Familia-src Quinasas/metabolismo
13.
J Ethnopharmacol ; 267: 113473, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33068649

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Metastasis is the main cause of death in lung cancer patients. Circulating tumor cells (CTCs) may be an important target of metastasis intervention. Previous studies have shown that Jinfukang could prevent the recurrence and metastasis of lung cancer, and we have established a circulating lung tumor cell line CTC-TJH-01. However, whether Jinfukang inhibition of lung cancer metastasis is related to CTCs is still unknown. AIM OF THE STUDY: To further explore the mechanism of Jinfukang in anti-metastasis of lung cancer from the perspective of intervention of CTCs. MATERIALS AND METHODS: CTC-TJH-01 and H1975 cells were treated with Jinfukang. Cell viability was detected by CCK8, and the cell apoptosis was detected by flow cytometry. Transwell was used to detected cell migration and invasion. Cell anoikis was detected by anoikis detection kit. Protein expression was analysis by Western blot. RESULTS: Jinfukang could inhibit the proliferation, migration and invasion of CTC-TJH-01 and H1975 cells. Besides, Jinfukang could also induce anoikis in CTC-TJH-01 and H1975 cells. Analysis of the mRNA expression profile showed ECM-receptor interaction and focal adhesion were regulated by Jinfukang. Moreover, it was also find that Jinfukang significantly inhibited integrin/Src pathway in CTC-TJH-01 and H1975 cells. When suppress the expression of integrin with ATN-161, it could promote Jinfukang to inhibit migration and induce anoikis in CTC-TJH-01 and H1975 cells. CONCLUSIONS: Our results indicate that the migration and invasion of CTCs are inhibited by Jinfukang, and the mechanism may involve the suppression of integrin/Src axis to induce anoikis. These data suggest that Jinfukang exerts anti-metastatic effects in lung cancer may through anoikis.


Asunto(s)
Anoicis/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Movimiento Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Integrinas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Células Neoplásicas Circulantes/efectos de los fármacos , Familia-src Quinasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Invasividad Neoplásica , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Transducción de Señal
14.
Biomed Pharmacother ; 134: 111166, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33373915

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease. Strong evidence supports that excessive activation of B cells plays a critical role in the pathogenesis of RA. Fc gamma receptor b (FcγRIIb) is the B cell inhibitory receptor and inhibits BCR (B cell receptor) signalling in part by selectively dephosphorylating CD19 which is considered a co-receptor for BCR and is essential for B cell activation. Our previous study demonstrated that a FcγRIIb I232T polymorphism presented a strong genetic link to RA and may lead to the excessive activation of B cells. Therefore, novel therapeutic strategies and drugs that can effectively inhibit the excessive activation of B cells by regulating the FcγRIIb are necessary for the treatment of RA. Therefore, we used Burkitt's lymphoma ST486 human B cells (lacking endogenous FcγRIIb) transfected with the 232Thr loss-of-function mutant to construct a FcγRIIb mutant cell line (ST486), and we demonstrated that YSTB treatment not only reduced proliferation and promoted apoptosis in ST486 cells but also did so in a dose-dependent manner. Furthermore, the intracellular Ca2+ flux of ST486 cells was decreased after treatment with YSTB, inhibiting the excessive activation of ST486 cells, and these effects correlated with the CD19/FcγRIIb-Lyn-SHP-1 pathways. Our data showed that YSTB treatment inhibited the expression of phosphorylated CD19 and upregulated the protein expression of FcγRIIb, Lyn, and SHP-1. Additionally, the CIA model was established to explore the anti-inflammatory and inhibitory effects of YSTB on bone destruction, and we found that YSTB decreased the paw oedema and arthritis index (AI) in CIA rats. It is worth mentioning that YSTB clearly decreased the AI earlier than methotrexate (MTX) (day 10 vs 16). Moreover, synovial hyperplasia, inflammatory cell infiltration and cartilage surface erosion in CIA rats were noticeably reduced after treatment with YSTB as evidenced by histopathological examination. Finally, we found that YSTB treatment suppressed bone erosion and joint space score (JNS) in CIA rats as evidenced by radiographic assessment. In summary, these data suggest that YSTB has great therapeutic potential for RA treatment.


Asunto(s)
Antiinflamatorios/farmacología , Artritis Experimental/prevención & control , Linfocitos B/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Articulaciones/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores de IgG/metabolismo , Familia-src Quinasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Artritis Experimental/inducido químicamente , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colágeno Tipo II , Femenino , Humanos , Articulaciones/inmunología , Articulaciones/metabolismo , Articulaciones/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Ratas Wistar , Receptores de IgG/genética , Transducción de Señal , Familia-src Quinasas/genética
15.
J Stroke Cerebrovasc Dis ; 30(3): 105165, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33360522

RESUMEN

BACKGROUND: Cerebral infarction is one of the most common causes of disability and death worldwide. It is reported that electric acupuncture was able to improve the prognosis of cerebral infarction by promoting angiogenesis. However, the corresponding signal pathways of angiogenesis promotes by electric acupuncture treatment needs to be further explored. METHODS: MCAO rat was employed as the animal model, and clopidogrel hydrogen sulfate treatment was set as the positive control. Behaviors of rats, H&E staining, and TTC-staining was used to evaluate the recovery of infarcted brain tissue and nervous function. After that, immunocytochemical and immunofluorescence staining was used to quantify the angiogenesis and compensatory circulation, which including the analysis of microvessel density, field/ microvessel area ratio, and microvessel diameter. Western blot and RT-PCR for the detection of the related signal molecule, PI3K, Src, and EphB4/ephrinB2. RESULTS: The neurologic impairment scores were decreased, and the brain tissue damage that showed with H&E and TTC-staining was relieved by the treatment of electric acupuncture in MCAO rat. The quantification of microvessel density and field/ microvessel area ratio was improved obviously, and the microvessel diameter was decreased which represent the angiogenesis of capillary in day 3 and 7 by the electric acupuncture treatment. We also found that the level of Src and PI3K was increased markedly followed by the up-regulation of EphB4 and EphrinB2 mRNA during the electric acupuncture treatment, and the pre-treatment of Src and/or PI3K inhibitor was able to disturb the angiogenesis of capillary. CONCLUSIONS: We proved that electric acupuncture was able to accelerate the recovery of infarcted brain tissue and nervous function in MCAO rat by the promotion of angiogenesis, which was regulated by EphB4/EphrinB2 mediated Src/PI3K signal pathway. Our study provides a potential therapy and theoretical basis for the clinical treatment of cerebral infarction by the use of electric acupuncture.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/enzimología , Electroacupuntura , Efrina-B2/metabolismo , Infarto de la Arteria Cerebral Media/terapia , Neovascularización Fisiológica , Fosfatidilinositol 3-Quinasa/metabolismo , Receptor EphB4/metabolismo , Familia-src Quinasas/metabolismo , Animales , Modelos Animales de Enfermedad , Efrina-B2/genética , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/fisiopatología , Densidad Microvascular , Ratas Sprague-Dawley , Receptor EphB4/genética , Recuperación de la Función , Transducción de Señal , Factores de Tiempo
16.
Phytomedicine ; 80: 153391, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33113502

RESUMEN

BACKGROUND: Pseudo-allergic reactions are potentially fatal hypersensitivity responses caused by mast cell activation. α-linolenic acid (ALA) is known for its anti-allergic properties. However, its potential anti-pseudo-allergic effects were not much investigated. PURPOSE: To investigate the inhibitory effects of ALA on IgE-independent allergy in vitro, and in vivo, as well as the mechanism underlying its effects. METHODS/STUDY DESIGNS: The anti-anaphylactoid activity of ALA was evaluated in passive cutaneous anaphylaxis reaction (PCA) and systemic anaphylaxis models. Calcium imaging was used to assess intracellular Ca2+ mobilization. The release of cytokines and chemokines was measured using enzyme immunoassay kits. Western blot analysis was conducted to investigate the molecules of Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. RESULTS: ALA (0, 1.0, 2.0, and 4.0 mg/kg) dose-dependently reduced serum histamine, chemokine release, vasodilation, eosinophil infiltration, and the percentage of degranulated mast cells in C57BL/6 mice. In addition, ALA (0, 50, 100, and 200 µM) reduced Compound 48/80 (C48/80) (30 µg/ml)-or Substance P (SP) (4 µg/ml)-induced calcium influx, mast cell degranulation and cytokines and chemokine release in Laboratory of Allergic Disease 2 (LAD2) cells via Lyn-PLCγ-IP3R-Ca2+ and Lyn-p38/NF-κB signaling pathway. Moreover, ALA (0, 50, 100, and 200 µM) inhibited C48/80 (30 µg/ml)- and SP (4 µg/ml)-induced calcium influx in Mas-related G-protein coupled receptor member X2 (MrgX2)-HEK293 cells and in vitro kinase assays confirmed that ALA inhibited the activity of Lyn kinase. In response to 200 µM of ALA, the activity of Lyn kinase by (7.296 ± 0.03751) × 10-5 units/µl and decreased compared with C48/80 (30 µg/ml) by (8.572 ± 0.1365) ×10-5 units/µl. CONCLUSION: Our results demonstrate that ALA might be a potential Lyn kinase inhibitor, which could be used to treat pseudo-allergic reaction-related diseases such as urticaria.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Antialérgicos/farmacología , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Animales , Degranulación de la Célula/efectos de los fármacos , Quimiocinas/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Inmunoglobulina E/inmunología , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , p-Metoxi-N-metilfenetilamina/toxicidad , Familia-src Quinasas/química , Familia-src Quinasas/inmunología , Familia-src Quinasas/metabolismo
17.
Biomed Res Int ; 2020: 5891016, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33145355

RESUMEN

BACKGROUND: Kaempferol is a natural polyphenol in lots of Chinese herbs, which has shown promising treatment for gastric cancer (GC). However, the molecular mechanisms of its action have not been systematically revealed yet. In this work, a network pharmacology approach was used to elucidate the potential mechanisms of kaempferol in the treatment of GC. METHODS: The kaempferol was input into the PharmMapper and SwissTargetPrediction database to get its targets, and the targets of GC were obtained by retrieving the Online Mendelian Inheritance in Man (OMIM) database, MalaCards database, Therapeutic Target Database (TTD), and Coolgen database. The molecular docking was performed to assess the interactions between kaempferol and these targets. Next, the overlap targets of kaempferol and GC were identified for GO and KEGG enrichment analyses. Afterward, a protein-protein interaction (PPI) network was constructed to get the hub targets, and the expression and overall survival analysis of the hub target were investigated. Finally, the overall survival (OS) analysis of hub targets was performed using the Kaplan-Meier Plotter online tool. RESULTS: A total of 990 genes related to GC and 10 overlapping genes were determined through matching the 24 potential targets of kaempferol with disease-associated genes. The result of molecular docking indicated that kaempferol can bind with these hub targets with good binding scores. These targets were further mapped to 140 GO biological process terms and 11 remarkable pathways. In the PPI network analysis, 3 key targets were identified, including ESR1, EGFR, and SRC. The mRNA and protein expression levels of EGFR and SRC were obviously higher in GC tissues. High expression of these targets was related to poor OS in GC patients. CONCLUSIONS: This study provided a novel approach to reveal the therapeutic mechanisms of kaempferol on GC, which will ease the future clinical application of kaempferol in the treatment of GC.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Receptor alfa de Estrógeno/antagonistas & inhibidores , Quempferoles/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias Gástricas/tratamiento farmacológico , Familia-src Quinasas/antagonistas & inhibidores , Adenocarcinoma/genética , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Anciano , Sitios de Unión , Medicamentos Herbarios Chinos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Terapia Molecular Dirigida/métodos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Farmacogenética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Análisis de Supervivencia , Familia-src Quinasas/química , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
18.
Phytomedicine ; 79: 153346, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33002828

RESUMEN

BACKGROUND: Immunoglobulin E (IgE)-mediated mast cell (MC) activation is crucial in multiple allergic diseases. Parkinson disease protein 7 (DJ-1) and Lyn kinase were reported as the receptor-proximal events in IgE receptor (FcεRI) signals in human MC. Kaempferol, a natural flavonol mainly derived from the rhizome of traditional Chinese herb Kaempferia galanga L. (Zingiberaceae), has been known to inhibit allergic reactions, but it was limited to the receptor-distal signals on rat basophilic leukemia cells. A thorough investigation of the inhibitory effects of kaempferol on human MC has not been done. PURPOSE: To investigate the inhibitory effects of kaempferol on IgE-mediated anaphylaxis in vivo and in human MCs, as well as the mechanism underlying its effects, especially the receptor-proximal signals. METHODS: IgE-mediated passive cutaneous anaphylaxis and systemic anaphylaxis model were applied to elucidate the antiallergic activity of kaempferol in vivo. The degranulation assay, calcium imaging, the release of cytokines and chemokines on the laboratory of allergic disease 2 (LAD2) cells were used to evaluate the antiallergic effect of kaempferol in vitro. Western blot analysis was performed to investigate the DJ-1/Lyn signaling pathway and downstream molecules. Kinase activity assay, immunofluorescence, and molecular docking were conducted to confirm the influence of kaempferol on DJ-1/Lyn molecules. RESULTS: Kaempferol dose-dependently attenuated ovalbumin/IgE-induced mice paw swelling, primary MC activation from paw skin, as well as rehabilitated the hypothermia, and reduced the serum concentrations of histamine, tumor necrosis factor-alpha, interleukin-8, and monocyte chemo-attractant protein-1. Additionally, kaempferol suppressed IgE-mediated LAD2 cell degranulation and calcium fluctuation. Remarkably, kaempferol was found to bind with DJ-1 protein, and initially prevented DJ-1 from translocating to the plasma membrane, thereby inhibited full activation of Lyn, and eventually restrained those receptor-distal signaling molecules, involved Syk, Btk, PLCγ, IP3R, PKC, MAPKs, Akt and NF-κB. CONCLUSION: Kaempferol could be used as a DJ-1 modulator for preventing MC-mediated allergic disorders through attenuating Lyn activation.


Asunto(s)
Anafilaxia/tratamiento farmacológico , Antialérgicos/farmacología , Quempferoles/farmacología , Mastocitos/efectos de los fármacos , Anafilaxia/inmunología , Animales , Degranulación de la Célula/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Inmunoglobulina E/efectos adversos , Inmunoglobulina E/metabolismo , Quempferoles/química , Masculino , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Ovalbúmina/toxicidad , Anafilaxis Cutánea Pasiva/efectos de los fármacos , Fosfolipasa C gamma/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Receptores de IgE/metabolismo , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo
19.
Toxicol In Vitro ; 69: 104973, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32818624

RESUMEN

Ophiopogonin D, a steroidal glycoside extracted from the Traditional Chinese Medicine Ophiopogon japonicus, shows anti-tumor property in several lines of cancers; however, its effect on triple-negative breast cancer (TNBC) has not been investigated. In this study, the anti-metastatic effect of Ophiopogonin D in TNBC cells as well as the underlying mechanism in such process was explored. Ophiopogonin D dose-dependently decreased cell proliferation of MDA-MB-231 cells. Meanwhile, Ophiopogonin D significantly inhibited TGF-ß1-induced metastatic behavior of MDA-MB-231 cells, including EMT, anoikis resistance as well as migration and invasion, via suppressing MMP-9 activity. Mechanically, Ophiopogonin D achieved its effect through efficiently abolishing ITGB1 expression, thus reducing the phosphorylation of FAK, Src and AKT, as well as upregulating nuclear ß-catenin. ITGB1 overexpression partly recovered Ophiopogonin D's inhibitory effect on metastatic behavior via activating MMP-9. These results demonstrated that Ophiopogonin D could suppress TGF-ß1-mediated metastatic behavior of MDA-MB-231 cells by regulating ITGB1/FAK/Src/AKT/ß-catenin/MMP-9 signaling axis, which might provide new insight for the control of TNBC metastasis.


Asunto(s)
Antineoplásicos/farmacología , Saponinas/farmacología , Espirostanos/farmacología , Neoplasias de la Mama Triple Negativas , Anoicis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Integrina beta1/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Cicatrización de Heridas/efectos de los fármacos , beta Catenina/metabolismo , Familia-src Quinasas/metabolismo
20.
Zhongguo Zhen Jiu ; 40(7): 765-70, 2020 Jul 12.
Artículo en Chino | MEDLINE | ID: mdl-32648402

RESUMEN

OBJECTIVE: To observe the effect of electroacupuncture (EA) preconditioning on the expressions of tyrosine kinase Lyn and spleen tyrosine kinase (Syk) in mast cells of subcutaneous loose connective tissue in the rats with urticaria and explore the potential biological mechanism of EA in the intervention of urticaria. METHODS: A total of 32 SD rats were randomized into a blank group, a model group, an EA group and a positive medication group, 8 rats in each one. Except of the blank group, the passive cutaneous anaphylaxis (PCA) was adopted to prepare the model of urticaria in the rats of the rest three groups. In the EA group, EA was applied to bilateral "Quchi" (LI 11), "Xuehai" (SP 10) and "Zusanli" (ST 36), with disperse-dense wave, 2 Hz/15 Hz in frequency and 1 mA in current intensity, once daily, for 20 min each time, consecutively for 7 days. In the positive medication group, loratadine (1 mg•kg-1•d-1) was for intragastric administration, once daily, consecutively for 7 days. The samples were collected for index detection 30 min after PCA antigen challenge in the rats of each group. Spectrophotometer was adopted to determine the effusion quantity of Evans blue in the allergized site of skin. HE staining was used to observe the morphological changes in the allergized site of skin. Toluidine blue staining was provided to observe mast cell degranulation in subcutaneous loose connective tissue in the allergized site of skin. Immunohistochemistry was applied to determine the protein expressions of Lyn and Syk during degranulation of mast cells. RESULTS: In the rats of the odel group, the eipdermis of allergized site was thickening, cells were disorganized in hierarchy and inflammatory cells were infiltrated largely in the dermis. In the positive medication group and the EA group, the epidermis was getting thin, cell arrangement was clear and the inflammatory cell infiltration was obviously alleviated as compared with the model group. Compared with the blank group, the OD value of skin dye effusion quantity, the degranulation rate of mast cells and the positive expressions of Lyn and Syk were all increased in the model group (P<0.01). Compared with the model group, the OD value of skin dye effusion quantity, the degranulation rate of mast cells and the positive expressions of Lyn and Syk were all reduced in the EA group and the positive medication group (P<0.01). Compared with the positive medication group, the degranulation rate of mast cells was increased significantly in the EA group (P<0.01). CONCLUSION: Electroacupuncture at "Quchi" (LI 11), "Xuehai" (SP 10) and "Zusanli" (ST 36) reduces vascular permeability and gives play to the role of anti-allergy by the way of regulating and controlling the degranulation of mast cells in the rats with urticaria and the effect mechanism of electroacupuncture may be related to the inhibition of protein expressions of Lyn and Syk in mast cells.


Asunto(s)
Tejido Conectivo/metabolismo , Electroacupuntura , Mastocitos/metabolismo , Quinasa Syk/metabolismo , Urticaria/terapia , Familia-src Quinasas/metabolismo , Puntos de Acupuntura , Animales , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA