Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Physiol ; 61(7): 1335-1347, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32379869

RESUMEN

Alpha-linolenic acid (ALA, 18:3Δ9,12,15) and γ-linolenic acid \ (GLA, 18:3Δ6,9,12) are important trienoic fatty acids, which are beneficial for human health in their own right, or as precursors for the biosynthesis of long-chain polyunsaturated fatty acids. ALA and GLA in seed oil are synthesized from linoleic acid (LA, 18:2Δ9,12) by the microsomal ω-3 fatty acid desaturase (FAD3) and Δ6 desaturase (D6D), respectively. Cotton (Gossypium hirsutum L.) seed oil composition was modified by transforming with an FAD3 gene from Brassica napus and a D6D gene from Echium plantagineum, resulting in approximately 30% ALA and 20% GLA, respectively. The total oil content in transgenic seeds remained unaltered relative to parental seeds. Despite the use of a seed-specific promoter for transgene expression, low levels of GLA and increased levels of ALA were found in non-seed cotton tissues. At low temperature, the germinating cottonseeds containing the linolenic acid isomers elongated faster than the untransformed controls. ALA-producing lines also showed higher photosynthetic rates at cooler temperature and better fiber quality compared to both untransformed controls and GLA-producing lines. The oxidative stability of the novel cottonseed oils was assessed, providing guidance for potential food, pharmaceutical and industrial applications of these oils.


Asunto(s)
Fibra de Algodón , Aceite de Semillas de Algodón/metabolismo , Germinación/genética , Gossypium/genética , Fotosíntesis/genética , Semillas/crecimiento & desarrollo , Ácido alfa-Linolénico/metabolismo , Ácido gammalinolénico/metabolismo , Brassica napus/genética , Respuesta al Choque por Frío , Fibra de Algodón/normas , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ingeniería Genética , Gossypium/metabolismo , Plantas Modificadas Genéticamente , Semillas/metabolismo , Ácido alfa-Linolénico/genética , Ácido gammalinolénico/genética
2.
Sci Rep ; 10(1): 2084, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034269

RESUMEN

We previously reported on the strong symbiosis of AMF species (Rhizophagus irregularis CD1) with the cotton (Gossypium hirsutum L.) which is grown worldwide. In current study, it was thus investigated in farmland to determine the biological control effect of AMF on phosphorus acquisition and related gene expression regulation, plant growth and development, and a series of agronomic traits associated with yield and fiber quality in cotton. When AMF and cotton were symbiotic, the expression of the specific phosphate transporter family genes and P concentration in the cotton biomass were significantly enhanced. The photosynthesis, growth, boll number per plant and the maturity of the fiber were increased through the symbiosis between cotton and AMF. Statistical analysis showed a highly significant increase in yield for inoculated plots compared with that from the non inoculated controls, with an increase percentage of 28.54%. These findings clearly demonstrate here the benefits of AMF-based inoculation on phosphorus acquisition, growth, seed cotton yield and fiber quality in cotton. Further improvement of these beneficial inoculants on crops will help increase farmers' income all over the world both now and in the future.


Asunto(s)
Fibra de Algodón/normas , Gossypium/crecimiento & desarrollo , Micorrizas/fisiología , Fósforo/metabolismo , Producción de Cultivos , Gossypium/metabolismo , Gossypium/microbiología , Plantones/crecimiento & desarrollo , Simbiosis
3.
Plant Biotechnol J ; 11(3): 296-304, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23078138

RESUMEN

Cottonseed remains a low-value by-product of lint production mainly due to the presence of toxic gossypol that makes it unfit for monogastrics. Ultra-low gossypol cottonseed (ULGCS) lines were developed using RNAi knockdown of δ-cadinene synthase gene(s) in Gossypium hirsutum. The purpose of the current study was to assess the stability and specificity of the ULGCS trait and evaluate the agronomic performance of the transgenic lines. Trials conducted over a period of 3 years show that the ULGCS trait was stable under field conditions and the foliage/floral organs of transgenic lines contained wild-type levels of gossypol and related terpenoids. Although it was a relatively small-scale study, we did not observe any negative effects on either the yield or quality of the fibre and seed in the transgenic lines compared with the nontransgenic parental plants. Compositional analysis was performed on the seeds obtained from plants grown in the field during 2009. As expected, the major difference between the ULGCS and wild-type cottonseeds was in terms of their gossypol levels. With the exception of oil content, the composition of ULGCS was similar to that of nontransgenic cottonseeds. Interestingly, the ULGCS had significantly higher (4%-8%) oil content compared with the seeds from the nontransgenic parent. Field trial results confirmed the stability and specificity of the ULGCS trait suggesting that this RNAi-based product has the potential to be commercially viable. Thus, it may be possible to enhance and expand the nutritional utility of the annual cottonseed output to fulfil the ever-increasing needs of humanity.


Asunto(s)
Gossypium/metabolismo , Gosipol/biosíntesis , Fibra de Algodón/normas , Productos Agrícolas/metabolismo , Gossypium/genética , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Interferencia de ARN , Semillas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA