Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Med Sci Sports Exerc ; 45(3): 542-52, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22968306

RESUMEN

INTRODUCTION: Resistance training has been well established as an effective treatment strategy to increase skeletal muscle mass and strength in the elderly. We assessed whether dietary protein supplementation can further augment the adaptive response to prolonged resistance-type exercise training in healthy elderly men and women. METHODS: Healthy elderly men (n = 31, 70 ± 1 yr) and women (n = 29, 70 ± 1 yr) were randomly assigned to a progressive, 24-wk resistance-type exercise training program with or without additional protein supplementation (15 g·d-1). Muscle hypertrophy was assessed on a whole-body Dual-energy X-ray absorptiometry (DXA), limb (computed tomography), and muscle fiber (biopsy) level. Strength was assessed regularly by 1-repetition maximum (RM) strength testing. Functional capacity was assessed with a sit-to-stand and handgrip test. RESULTS: One-RM strength increased by 45% ± 6% versus 40% ± 3% (women) and 41% ± 4% versus 44% ± 3% (men) in the placebo versus protein group, respectively (P < 0.001), with no differences between groups. Leg muscle mass (women, 4% ± 1% vs 3% ± 1%; men, 3% ± 1% vs 3% ± 1%) and quadriceps cross-sectional area (women, 9% ± 1% vs 9% ± 1%; men, 9% ± 1% vs 10% ± 1%) increased similarly in the placebo versus protein groups (P < 0.001). Type II muscle fiber size increased over time in both placebo and protein groups (25% ± 13% vs 30% ± 9% and 23% ± 12% vs 22% ± 10% in the women and men, respectively). Sit-to-stand improved by 18% ± 2% and 19% ± 2% in women and men, respectively (P < 0.001). CONCLUSION: Prolonged resistance-type exercise training increases skeletal muscle mass and strength, augments functional capacity, improves glycemia and lipidemia, and reduces blood pressure in healthy elderly men and women. Additional protein supplementation (15 g·d-1) does not further increase muscle mass, strength, and/or functional capacity.


Asunto(s)
Adaptación Fisiológica , Proteínas en la Dieta/administración & dosificación , Suplementos Dietéticos , Músculo Cuádriceps/anatomía & histología , Músculo Cuádriceps/fisiología , Entrenamiento de Fuerza , Absorciometría de Fotón , Anciano , Análisis de Varianza , Composición Corporal , Colesterol/sangre , Creatinina/sangre , Femenino , Hemoglobina Glucada/metabolismo , Fuerza de la Mano , Humanos , Resistencia a la Insulina , Lipoproteínas LDL/sangre , Masculino , Fibras Musculares de Contracción Rápida/citología , Fuerza Muscular , Nitrógeno/orina , Músculo Cuádriceps/diagnóstico por imagen , Tomografía Computarizada por Rayos X
2.
J Physiol Sci ; 57(2): 133-6, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17349108

RESUMEN

Hyperbaric exposure with high oxygen concentration inhibits a growth-related increase in the glucose and insulin of diabetic rats. In this study, 5-week-old diabetic Goto-Kakizaki rats were exposed to a hyperbaric environment (1.25 atmospheric pressure) with a high oxygen concentration (36%) for 6 h daily. Fiber type distributions and oxidative enzyme activities in the fast-twitch plantaris muscle of Goto-Kakizaki rats were examined after hyperbaric exposure for 4 weeks. The percentages of high-oxidative type I and type IIA fibers increased and that of low-oxidative type IIB fibers decreased after hyperbaric exposure. Furthermore, the fiber oxidative enzyme activity increased after hyperbaric exposure, regardless of fiber type. It is concluded that altered patterns of fiber types in the plantaris muscle of diabetic rats shift toward normal, which is observed in nondiabetic rats, following hyperbaric exposure with high oxygen concentration.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Oxigenoterapia Hiperbárica , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Animales , Recuento de Células , Insulina/sangre , Masculino , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Lenta/citología , Músculo Esquelético/citología , Músculo Esquelético/enzimología , Ratas , Ratas Mutantes , Ratas Wistar
3.
J Cell Sci ; 119(Pt 8): 1604-11, 2006 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-16569660

RESUMEN

Calcineurin-NFAT signaling has been shown to control activity-dependent muscle gene regulation and induce a program of gene expression typical of slow oxidative muscle fibers. Following Ca2+-calmodulin stimulation, calcineurin dephosphorylates NFAT proteins and induces their translocation into the nucleus. However, NFAT nuclear translocation has never been investigated in skeletal muscle in vivo. To determine whether NFATc1 nucleocytoplasmic shuttling depends on muscle activity, we transfected fast and slow mouse muscles with plasmids coding for an NFATc1-GFP fusion protein. We found that NFATc1-GFP has a predominantly cytoplasmic localization in the fast tibialis anterior muscle but a predominantly nuclear localization in the slow soleus muscle, with a characteristic focal intranuclear distribution. Two hours of complete inactivity, induced by denervation or anaesthesia, cause NFATc1 export out of the nucleus in soleus muscle fibers, whereas electrostimulation of tibialis anterior with a low-frequency tonic impulse pattern, mimicking the firing pattern of slow motor neurons, causes NFATc1 nuclear translocation. The activity-dependent nuclear import and export of NFATc1 is a rapid event, as visualized directly in vivo by two-photon microscopy. The calcineurin inhibitor cain/cabin1 causes nuclear export of NFATc1 both in normal soleus and stimulated tibialis anterior muscle. These findings support the notion that in skeletal muscle NFATc1 is a calcineurin-dependent nerve activity sensor.


Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Lenta/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción NFATC/metabolismo , Transporte Activo de Núcleo Celular , Animales , Calcineurina/metabolismo , Inhibidores de la Calcineurina , Estimulación Eléctrica , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Masculino , Ratones , Microscopía/métodos , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/citología , Fibras Musculares de Contracción Lenta/fisiología
4.
Proc Natl Acad Sci U S A ; 101(29): 10590-5, 2004 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-15247427

RESUMEN

Calcineurin (Cn) signaling has been implicated in nerve activity-dependent fiber type specification in skeletal muscle, but the downstream effector pathway has not been established. We have investigated the role of the transcription factor nuclear factor of activated T cells (NFAT), a major target of Cn, by using an in vivo transfection approach in regenerating and adult rat muscles. NFAT transcriptional activity was monitored with two different NFAT-dependent reporters and was found to be higher in slow compared to fast muscles. NFAT activity is decreased by denervation in slow muscles and is increased by electrostimulation of denervated muscles with a tonic low-frequency impulse pattern, mimicking the firing pattern of slow motor neurons, but not with a phasic high-frequency pattern typical of fast motor neurons. To determine the role of NFAT, we transfected regenerating and adult rat muscles with a plasmid coding for VIVIT, a specific peptide inhibitor of Cn-mediated NFAT activation. VIVIT was found to block the expression of slow myosin heavy chain (MyHC-slow) induced by slow motor neuron activity in regenerating slow soleus muscle and to inhibit the expression of MyHC-slow transcripts and the activity of a MyHC-slow promoter in adult soleus. The role of NFAT was confirmed by the finding that a constitutively active NFATc1 mutant stimulates the MyHC-slow, inhibits the fast MyHC-2B promoter in adult fast muscles, and induces MyHC-slow expression in regenerating muscles. These results support the notion that Cn-NFAT signaling acts as a nerve activity sensor in skeletal muscle in vivo and controls nerve activity-dependent myosin switching.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Neuronas Motoras/metabolismo , Músculo Esquelético/fisiología , Miosinas/metabolismo , Proteínas Nucleares , Factores de Transcripción/metabolismo , Animales , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Unión al ADN/genética , Estimulación Eléctrica , Genes Reporteros , Técnicas In Vitro , Masculino , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/citología , Fibras Musculares de Contracción Lenta/fisiología , Músculo Esquelético/citología , Músculo Esquelético/inervación , Miosinas/genética , Factores de Transcripción NFATC , Oligopéptidos/metabolismo , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/genética
5.
Am J Physiol Cell Physiol ; 285(1): C56-63, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12606309

RESUMEN

The calcineurin-mediated signal transduction via nuclear factor of activated T cells (NFATc1) is involved in upregulating slow myosin heavy chain (MHC) gene expression during fast-to-slow transformation of skeletal muscle cells. This study aims to investigate the Ca2+ signal necessary to activate the calcineurin-NFATc1 cascade in skeletal muscle. Electrostimulation of primary myocytes from rabbit for 24 h induced a distinct fast-to-slow transformation at the MHC mRNA level and a full activation of the calcineurin-NFATc1 pathway, although resting Ca2+ concentration ([Ca2+]i) remained unaltered at 70 nM. During activation, the calcium transients of these myocytes reach a peak concentration of approximately 500 nM. Although 70 nM [Ca2+]i does not activate calcineurin-NFAT, we show by the use of Ca2+ ionophore that the system is fully activated when [Ca2+]i is >or=150 nM in a sustained manner. We conclude that the calcineurin signal transduction pathway and the slow MHC gene in cultured skeletal muscle cells are activated by repetition of the rapid high-amplitude calcium transients that are associated with excitation-contraction coupling rather than by a sustained elevation of resting Ca2+ concentration.


Asunto(s)
Calcineurina/metabolismo , Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/enzimología , Proteínas Nucleares , Factores de Transcripción/metabolismo , Animales , Calcimicina/farmacología , Señalización del Calcio/fisiología , Núcleo Celular/metabolismo , Células Cultivadas , Estimulación Eléctrica , Expresión Génica/fisiología , Ionóforos/farmacología , Contracción Muscular/fisiología , Fibras Musculares de Contracción Rápida/citología , Fibras Musculares de Contracción Rápida/enzimología , Fibras Musculares de Contracción Lenta/citología , Fibras Musculares de Contracción Lenta/enzimología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Factores de Transcripción NFATC , Conejos , Regulación hacia Arriba/fisiología
6.
Am J Respir Crit Care Med ; 155(5): 1583-9, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9154861

RESUMEN

The effects of 8 wk of moderate load intermittent inspiratory resistive loading on diaphragm contractility, and histochemistry of the diaphragm, scalenes, and gastrocnemius were studied in rats. A resistance was placed in the inspiratory port of a Hans-Rudolph valve, through which each animal breathed during 30 min/d, 5 times/wk (loaded group, n = 10). These rats were compared with animals breathing through the same device without inspiratory resistance (control group, n = 10). During loading, animals generated mean inspiratory pressures of -3.2 +/- 1.7 cm H2O with a TI/Ttot of 0.69 +/- 0.06, resulting in a tension-time index of 0.050. At the end of training, the diaphragm mass increased in loaded animals (0.17 +/- 0.01% body mass) compared with control animals (0.15 +/- 0.01%, p < 0.01), while scalene and gastrocnemius mass remained unchanged. Diaphragmatic force as well as fatigue resistance were similar in both groups, whereas time to peak tension was significantly (p < 0.01) shorter in loaded rats (18.8 +/- 1.7 ms) compared with control rats (21.2 +/- 1.8 ms), half-relaxation time remaining unchanged. Finally, hypertrophy of diaphragmatic type IIa (+19%, p < 0.01) and IIx/b (+12%, p < 0.05) was present in the loaded group. Histochemistry of the scalenes remained unchanged, whereas type IIx/b hypertrophy (+12%, p < 0.001) was observed in the gastrocnemius internus. We speculate that the latter was due to multiple escape maneuvers. We conclude that intermittent inspiratory muscle training: (1) caused fast twitch fiber hypertrophy in the diaphragm; (2) did not produce any effect in the scalenes.


Asunto(s)
Ejercicios Respiratorios , Diafragma/citología , Fibras Musculares de Contracción Rápida/citología , Adaptación Fisiológica , Adenosina Trifosfatasas/análisis , Animales , Peso Corporal , Diafragma/anatomía & histología , Diafragma/química , Diafragma/fisiología , Estimulación Eléctrica , Histocitoquímica , Técnicas In Vitro , Masculino , Contracción Muscular , Músculo Esquelético/anatomía & histología , Músculo Esquelético/química , Tamaño de los Órganos , Presión , Ratas , Ratas Wistar , Músculos Respiratorios/anatomía & histología , Músculos Respiratorios/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA