Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 276, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605285

RESUMEN

BACKGROUND: Stephania kwangsiensis Lo (Menispermaceae) is a well-known Chinese herbal medicine, and its bulbous stems are used medicinally. The storage stem of S. kwangsiensis originated from the hypocotyls. To date, there are no reports on the growth and development of S. kwangsiensis storage stems. RESULTS: The bulbous stem of S. kwangsiensis, the starch diameter was larger at the stable expanding stage (S3T) than at the unexpanded stage (S1T) or the rapidly expanding stage (S2T) at the three different time points. We used ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and Illumina sequencing to identify key genes involved in bulbous stem development. A large number of differentially accumulated metabolites (DAMs) and differentially expressed genes (DEGs) were identified. Based on the differential expression profiles of the metabolites, alkaloids, lipids, and phenolic acids were the top three differentially expressed classes. Compared with S2T, significant changes in plant signal transduction and isoquinoline alkaloid biosynthesis pathways occurred at both the transcriptional and metabolic levels in S1T. In S2T compared with S3T, several metabolites involved in tyrosine metabolism were decreased. Temporal analysis of S1T to S3T indicated the downregulation of phenylpropanoid biosynthesis, including lignin biosynthesis. The annotation of key pathways showed an up-down trend for genes and metabolites involved in isoquinoline alkaloid biosynthesis, whereas phenylpropanoid biosynthesis was not completely consistent. CONCLUSIONS: Downregulation of the phenylpropanoid biosynthesis pathway may be the result of carbon flow into alkaloid synthesis and storage of lipids and starch during the development of S. kwangsiensis bulbous stems. A decrease in the number of metabolites involved in tyrosine metabolism may also lead to a decrease in the upstream substrates of phenylpropane biosynthesis. Downregulation of lignin synthesis during phenylpropanoid biosynthesis may loosen restrictions on bulbous stem expansion. This study provides the first comprehensive analysis of the metabolome and transcriptome profiles of S. kwangsiensis bulbous stems. These data provide guidance for the cultivation, breeding, and harvesting of S. kwangsiensis.


Asunto(s)
Alcaloides , Plantas Medicinales , Stephania , Stephania/química , Stephania/metabolismo , Plantas Medicinales/metabolismo , Cromatografía Liquida/métodos , Lignina/metabolismo , Espectrometría de Masas en Tándem , Fitomejoramiento , Perfilación de la Expresión Génica , Transcriptoma , Alcaloides/metabolismo , Almidón/metabolismo , Isoquinolinas/metabolismo , Tirosina/metabolismo , Lípidos , Regulación de la Expresión Génica de las Plantas
2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 681-690, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621872

RESUMEN

This study aims to reveal the quality formation of different cultivars of Peucedanum praeruptorum based on the metabolic differences and provide a theoretical basis for the development and utilization of this medicinal herb. The non-target metabonomics analysis based on ultra-high performance liquid chromatography tandem mass spectrometry(UHPLC-MS/MS) was conducted for six cultivars(YS, H, LZ, LY, LX, and Z) of P. praeruptorum of the same origin and at the same development stage. The principal component analysis, orthogonal partial least squares discriminant analysis, and univariate statistical analysis were carried out to screen the differential metabolites of different cultivars. The potential biomarkers associated with quality formation were predicted based on the mass-to-charge ratio, Kyoto Encyclopedia of Genes and Genomes pathway enrichment, information of relevant literature, and correlation analysis. The results showed that metabolites differed significantly among the six cultivars, and 571 and 465 differential metabolites were obtained in the positive and negative ion modes, respectively. From the differential metabolites, 22 potential biomarkers related to quality formation were predicted, which involved 9 metabolic pathways, including phenylalanine, tyrosine and tryptophan biosynthesis, biosynthesis of phenylpropanoids, and biosynthesis of plant hormones. Compared with the YS cultivar, other cultivars showed decreased concentrations of psoralen, imperatorin, and luvangetin and increased concentrations of 7-hydroxycoumarine, esculetin, columbianetin, and jasmonic acid, which were involved in the biosynthesis of phenylpropanoids. The concentrations of 2-succinylbenzoate, heraclenol, and L-tyrosine involved in other metabolic pathways decreased, especially in the Z and H cultivars. Therefore, regulating the biosynthesis of phenylpropanoids is one of the key mechanisms for improving the cultivar quality of P. praeruptorum. The Z and H cultivars have better quality and metabolic processes than other cultivars and thus can be used for the screening and breeding of high-quality germplasm.


Asunto(s)
Fitomejoramiento , Espectrometría de Masas en Tándem , Metabolómica/métodos , Cromatografía Líquida de Alta Presión/métodos , Biomarcadores/metabolismo
3.
Theor Appl Genet ; 137(5): 106, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622441

RESUMEN

KEY MESSAGE: A new resistance locus acting against the potato cyst nematode Globodera pallida was mapped to chromosome VI in the diploid wild potato species Solanum spegazzinii CPC 7195. The potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis are economically important potato pests in almost all regions where potato is grown. One important management strategy involves deployment through introgression breeding into modern cultivars of new sources of naturally occurring resistance from wild potato species. We describe a new source of resistance to G. pallida from wild potato germplasm. The diploid species Solanum spegazzinii Bitter accession CPC 7195 shows resistance to G. pallida pathotypes Pa1 and Pa2/3. A cross and first backcross of S. spegazzinii with Solanum tuberosum Group Phureja cultivar Mayan Gold were performed, and the level of resistance to G. pallida Pa2/3 was determined in progeny clones. Bulk-segregant analysis (BSA) using generic mapping enrichment sequencing (GenSeq) and genotyping-by-sequencing were performed to identify single-nucleotide polymorphisms (SNPs) that are genetically linked to the resistance, using S. tuberosum Group Phureja clone DM1-3 516 R44 as a reference genome. These SNPs were converted into allele-specific PCR assays, and the resistance was mapped to an interval of roughly 118 kb on chromosome VI. This newly identified resistance, which we call Gpa VIlspg, can be used in future efforts to produce modern cultivars with enhanced and broad-spectrum resistances to the major pests and pathogens of potato.


Asunto(s)
Solanum tuberosum , Solanum , Tylenchoidea , Animales , Solanum tuberosum/genética , Solanum/genética , Enfermedades de las Plantas/genética , Fitomejoramiento
4.
Sci Rep ; 14(1): 8523, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609472

RESUMEN

Herb genomics, at the forefront of traditional Chinese medicine research, combines genomics with traditional practices, facilitating the scientific validation of ancient remedies. This integration enhances public understanding of traditional Chinese medicine's efficacy and broadens its scope in modern healthcare. Stachys species encompass annual or perennial herbs or small shrubs, exhibiting simple petiolate or sessile leaves. Despite their wide-ranging applications across various fields, molecular data have been lacking, hindering the precise identification and taxonomic elucidation of Stachys species. To address this gap, we assembled the complete chloroplast (CP) genome of Stachys geobombycis and conducted reannotation and comparative analysis of seven additional species within the Stachys genus. The findings demonstrate that the CP genomes of these species exhibit quadripartite structures, with lengths ranging from 14,523 to 150,599 bp. Overall, the genome structure remains relatively conserved, hosting 131 annotated genes, including 87 protein coding genes, 36 tRNA genes, and 8 rRNA genes. Additionally, 78 to 98 SSRs and long repeat sequences were detected , and notably, 6 highly variable regions were identified as potential molecular markers in the CP genome through sequence alignment. Phylogenetic analysis based on Bayesian inference and maximum likelihood methods strongly supported the phylogenetic position of the genus Stachys as a member of Stachydeae tribe. Overall, this comprehensive bioinformatics study of Stachys CP genomes lays the groundwork for phylogenetic classification, plant identification, genetic engineering, evolutionary studies, and breeding research concerning medicinal plants within the Stachys genus.


Asunto(s)
Genoma del Cloroplasto , Stachys , Teorema de Bayes , Filogenia , Fitomejoramiento
5.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622339

RESUMEN

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Asunto(s)
Coffea , Coffea/genética , Café , Genoma de Planta/genética , Metagenómica , Fitomejoramiento
6.
BMC Plant Biol ; 24(1): 261, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594606

RESUMEN

BACKGROUND: Rhubarb is one of common traditional Chinese medicine with a diverse array of therapeutic efficacies. Despite its widespread use, molecular research into rhubarb remains limited, constraining our comprehension of the geoherbalism. RESULTS: We assembled the genome of Rheum palmatum L., one of the source plants of rhubarb, to elucidate its genome evolution and unpack the biosynthetic pathways of its bioactive compounds using a combination of PacBio HiFi, Oxford Nanopore, Illumina, and Hi-C scaffolding approaches. Around 2.8 Gb genome was obtained after assembly with more than 99.9% sequences anchored to 11 pseudochromosomes (scaffold N50 = 259.19 Mb). Transposable elements (TE) with a continuous expansion of long terminal repeat retrotransposons (LTRs) is predominant in genome size, contributing to the genome expansion of R. palmatum. Totally 30,480 genes were predicted to be protein-coding genes with 473 significantly expanded gene families enriched in diverse pathways associated with high-altitude adaptation for this species. Two successive rounds of whole genome duplication event (WGD) shared by Fagopyrum tataricum and R. palmatum were confirmed. We also identified 54 genes involved in anthraquinone biosynthesis and other 97 genes entangled in flavonoid biosynthesis. Notably, RpALS emerged as a compelling candidate gene for the octaketide biosynthesis after the key residual screening. CONCLUSION: Overall, our findings offer not only an enhanced understanding of this remarkable medicinal plant but also pave the way for future innovations in its genetic breeding, molecular design, and functional genomic studies.


Asunto(s)
Rheum , Rheum/genética , Fitomejoramiento , Antraquinonas , Cromosomas , Tamaño del Genoma , Evolución Molecular
7.
Trop Anim Health Prod ; 56(3): 117, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568238

RESUMEN

Cereals such as triticale may contain high levels of xylans and arabinoxylans, limiting its use in diets since they act as anti-nutritional factors. The objective was to evaluate the effects of the enzyme xylanase included in triticale-based diets on productive performance, digestibility, carcass traits and meat quality in growing-finishing rabbits. Eighty rabbits (New Zealand X California breed), 35 days old, with an average initial live weight of 821 ± 26 g, were used. Twenty animals for treatment were used in each one of the fourth experimental treatments: 0, 4000, 8000 and 12,000 XU/kg of xylanase inclusion (XilaBlend 6X). The rabbits were fed ad libitum and fecal excretion was collected on days 7, 14, 21, 28 and 35 of the experimental period. At the end of the experimental period, the rabbits were slaughtered and carcass characteristics and meat quality were measured. A higher (P < 0.05) live weight was observed in rabbits fed diets with the addition of xylanase enzyme on days 4 and 7 of the experimental period. On the other hand, in the average total tract digestibility of organic matter, no significant difference was observed, similar to what occurred in the carcass traits and nutritional quality of the meat. The inclusion of 8000 XU/kg of xylanase enzyme provided the best values of apparent digestibility of total tract protein and dry matter on the finished stage of rabbits.


Asunto(s)
Triticale , Animales , Conejos , Fitomejoramiento , Dieta/veterinaria , Suplementos Dietéticos , Carne
8.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621973

RESUMEN

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Asunto(s)
Artemisia annua , Artemisininas , Lactonas , Artemisia annua/química , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Fitomejoramiento , Artemisininas/análisis , Aldehídos
9.
Database (Oxford) ; 20242024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557635

RESUMEN

Crop genomics has advanced rapidly during the past decade, which generated a great abundance of omics data from multi-omics studies. How to utilize the accumulating data becomes a critical and urgent demand in crop science. As an attempt to integrate multi-omics data, we developed a database, LettuceDB (https://db.cngb.org/lettuce/), aiming to assemble multidimensional data for cultivated and wild lettuce germplasm. The database includes genome, variome, phenome, microbiome and spatial transcriptome. By integrating user-friendly bioinformatics tools, LettuceDB will serve as a one-stop platform for lettuce research and breeding in the future. Database URL: https://db.cngb.org/lettuce/.


Asunto(s)
Lactuca , Multiómica , Lactuca/genética , Fitomejoramiento , Genómica/métodos , Bases de Datos Genéticas
10.
BMC Plant Biol ; 24(1): 235, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561649

RESUMEN

Drought stress considered a key restrictive factor for a warm-season bermudagrass growth during summers in China. Genotypic variation against drought stress exists among bermudagrass (Cynodon sp.), but the selection of highly drought-tolerant germplasm is important for its growth in limited water regions and for future breeding. Our study aimed to investigate the most tolerant bermudagrass germplasm among thirteen, along latitude and longitudinal gradient under a well-watered and drought stress condition. Current study included high drought-resistant germplasm, "Tianshui" and "Linxiang", and drought-sensitive cultivars; "Zhengzhou" and "Cixian" under drought treatments along longitude and latitudinal gradients, respectively. Under water deficit conditions, the tolerant genotypes showed over-expression of a dehydrin gene cdDHN4, antioxidant genes Cu/ZnSOD and APX which leads to higher antioxidant activities to scavenge the excessive reactive oxygen species and minimizing the membrane damage. It helps in maintenance of cell membrane permeability and osmotic adjustment by producing organic osmolytes. Proline an osmolyte has the ability to keep osmotic water potential and water use efficiency high via stomatal conductance and maintain transpiration rate. It leads to optimum CO2 assimilation rate, high chlorophyll contents for photosynthesis and elongation of leaf mesophyll, palisade and thick spongy cells. Consequently, it results in elongation of leaf length, stolon and internode length; plant height and deep rooting system. The CdDHN4 gene highly expressed in "Tianshui" and "Youxian", Cu/ZnSOD gene in "Tianshui" and "Linxiang" and APX gene in "Shanxian" and "Linxiang". The genotypes "Zhongshan" and "Xiaochang" showed no gene expression under water deficit conditions. Our results indicate that turfgrass show morphological modifications firstly when subjected to drought stress; however the gene expression is directly associated and crucial for drought tolerance in bermudagrass. Hence, current research has provided excellent germplasm of drought tolerant bermudagrass for physiological and molecular study and future breeding.


Asunto(s)
Antioxidantes , Cynodon , Cynodon/fisiología , Antioxidantes/metabolismo , Sequías , Fitomejoramiento , Fotosíntesis/genética , Agua/metabolismo , Expresión Génica
11.
Sci Data ; 11(1): 342, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580686

RESUMEN

Silybum marianum (L.) Gaertn., commonly known as milk thistle, is a medicinal plant belonging to the Asteraceae family. This plant has been recognized for its medicinal properties for over 2,000 years. However, the genome of this plant remains largely undiscovered, having no reference genome at a chromosomal level. Here, we assembled the chromosome-level genome of S. marianum, allowing for the annotation of 53,552 genes and the identification of transposable elements comprising 58% of the genome. The genome assembly from this study showed 99.1% completeness as determined by BUSCO assessment, while the previous assembly (ASM154182v1) showed 36.7%. Functional annotation of the predicted genes showed 50,329 genes (94% of total genes) with known protein functions in public databases. Comparative genome analysis among Asteraceae plants revealed a striking conservation of collinearity between S. marianum and C. cardunculus. The genomic information generated from this study will be a valuable resource for milk thistle breeding and for use by the larger research community.


Asunto(s)
Genoma de Planta , Silybum marianum , Fitomejoramiento , Plantas Medicinales/genética , Silybum marianum/genética , Cromosomas de las Plantas
12.
Theor Appl Genet ; 137(3): 70, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446220

RESUMEN

Predictive breeding approaches, like phenomic or genomic selection, have the potential to increase the selection gain for potato breeding programs which are characterized by very large numbers of entries in early stages and the availability of very few tubers per entry in these stages. The objectives of this study were to (i) explore the capabilities of phenomic prediction based on drone-derived multispectral reflectance data in potato breeding by testing different prediction scenarios on a diverse panel of tetraploid potato material from all market segments and considering a broad range of traits, (ii) compare the performance of phenomic and genomic predictions, and (iii) assess the predictive power of mixed relationship matrices utilizing weighted SNP array and multispectral reflectance data. Predictive abilities of phenomic prediction scenarios varied greatly within a range of - 0.15 and 0.88 and were strongly dependent on the environment, predicted trait, and considered prediction scenario. We observed high predictive abilities with phenomic prediction for yield (0.45), maturity (0.88), foliage development (0.73), and emergence (0.73), while all other traits achieved higher predictive ability with genomic compared to phenomic prediction. When a mixed relationship matrix was used for prediction, higher predictive abilities were observed for 20 out of 22 traits, showcasing that phenomic and genomic data contained complementary information. We see the main application of phenomic selection in potato breeding programs to allow for the use of the principle of predictive breeding in the pot seedling or single hill stage where genotyping is not recommended due to high costs.


Asunto(s)
Fenómica , Solanum tuberosum , Solanum tuberosum/genética , Dispositivos Aéreos No Tripulados , Fitomejoramiento , Fenotipo
13.
PeerJ ; 12: e17116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525286

RESUMEN

The potato (Solanum tuberosum L.), an important field crop consumed extensively worldwide, is adversely affected by abiotic stress factors especially drought. Therefore, it is vital to understand the genetic mechanism under drought stress to decrease loose of yield and quality . This trial aimed to screen drought-responsive gene expressions of potato and determine the drought-tolerant potato cultivar. The trial pattern is a completely randomized block design (CRBD) with four replications under greenhouse conditions. Four cultivars (Brooke, Orwell, Vr808, Shc909) were irrigated with four different water regimes (control and three stress conditions), and the gene expression levels of 10 potato genes were investigated. The stress treatments as follows: Control = 100% field capacity; slight drought = 75% field capacity; moderate drought = 50% field capacity, and severe drought 25% field capacity. To understand the gene expression under drought stress in potato genotypes, RT-qPCR analysis was performed and results showed that the genes most associated with drought tolerance were the StRD22 gene, MYB domain transcription factor, StERD7, Sucrose Synthase (SuSy), ABC Transporter, and StDHN1. The StHSP100 gene had the lowest genetic expression in all cultivars. Among the cultivars, the Orwell exhibited the highest expression of the StRD22 gene under drought stress. Overall, the cultivar with the highest gene expression was the Vr808, closely followed by the Brooke cultivar. As a result, it was determined that potato cultivars Orwell, Vr808, and Brooke could be used as parents in breeding programs to develop drought tolerant potato cultivars.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Sequías , Proteínas de Plantas/genética , Fitomejoramiento , Perfilación de la Expresión Génica/métodos
14.
Sci Rep ; 14(1): 6618, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503783

RESUMEN

Lettuce is a highly perishable horticultural crop with a relatively short shelf-life that limits its commercial value and contributes to food waste. Postharvest senescence varies with influences of both environmental and genetic factors. From a larger pool of romaine lettuce genotypes, we identified three genotypes with variable shelf lives and evaluated their leaf morphology characteristics and transcriptomic profiles at preharvest to predict postharvest quality. Breeding line 60184 had the shortest shelf-life (SSL), cultivar 'Manatee' had an intermediate shelf-life (ISL), and 'Okeechobee' had the longest shelf-life (LSL). We observed significantly larger leaf lamina thickness and higher stomatal index in the SSL genotypes relative to the LSL cultivar. To identify molecular indicators of shelf-life, we used a transcriptional approach between two of the contrasting genotypes, breeding line 60184 and cultivar 'Okeechobee' at preharvest. We identified 552 upregulated and 315 downregulated differentially expressed genes between the genotypes, from which 27% of them had an Arabidopsis thaliana ortholog previously characterized as senescence associated genes (SAGs). Notably, we identified several SAGs including several related to jasmonate ZIM-domain jasmonic acid signaling, chlorophyll a-b binding, and cell wall modification including pectate lyases and expansins. This study presented an innovative approach for identifying preharvest molecular factors linked to postharvest traits for prolonged shelf.


Asunto(s)
Lactuca , Eliminación de Residuos , Lactuca/genética , Clorofila A , Alimentos , Fitomejoramiento
15.
Sci Rep ; 14(1): 5476, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443466

RESUMEN

Climate changes leading to increasingly longer seasonal drought periods in large parts of the world increase the necessity for breeding drought-tolerant crops. Cultivated potato (Solanum tuberosum), the third most important vegetable crop worldwide, is regarded as drought-sensitive due to its shallow root architecture. Two German tetraploid potato cultivars differing in drought tolerance and their F1-progeny were evaluated under various drought scenarios. Bulked segregant analyses were combined with whole-genome sequencing (BSA-Seq) using contrasting bulks of drought-tolerant and drought-sensitive F1-clones. Applying QTLseqr, 15 QTLs comprising 588,983 single nucleotide polymorphisms (SNPs) in 2325 genes associated with drought stress tolerance were identified. SeqSNP analyses in an association panel of 34 mostly starch potato varieties using 1-8 SNPs for each of 188 selected genes narrowed the number of candidate genes down to 10. In addition, ent-kaurene synthase B was the only gene present under QTL 10. Eight of the identified genes (StABP1, StBRI1, StKS, StLEA, StPKSP1, StPKSP2, StYAB5, and StZOG1) address plant development, the other three genes (StFATA, StHGD and StSYP) contribute to plant protection under drought stress. Allelic variation in these genes might be explored in future breeding for drought-tolerant potato varieties.


Asunto(s)
Resistencia a la Sequía , Solanum tuberosum , Humanos , Solanum tuberosum/genética , Tetraploidía , Fitomejoramiento , Sequías
16.
Sci Rep ; 14(1): 7239, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538705

RESUMEN

The study focused on the morphological and chemical characteristics of 200 Hymenocrater longiflorus Benth. genotypes found in natural habitats of eight regions in west of Iran. The primary objective of the study was to assess the morphological and phytochemical variability within populations grown in their natural habitats, with the aim of identifying their potential for domestication and utilization in pre-breeding programs. The plant height (PH) ranged from 50.32 to 69.65 cm, with the highest observed in population P8. The internode distances ranged from 4.7 to 6.47 cm, with the maximum distance found in P4. Flower lengths varied from 1.95 to 2.45 cm, with the minimum and maximum values observed in P4 and P3, respectively. The highest leaf length (5.20 cm) and width (3.87 cm) were recorded in P2. The aerial parts of the plant were utilized to extraction and determine the essential oil (EO) content and composition, which ranged from 0.40 to 0.78% (v/w). The analysis of EO by gas chromatography (GC) and gas chromatography mass spectrometry (GC/MS) identified 26 compounds, constituting 99-99.5% of the EOs. The main compounds in the EO and their percentage range (v/w DW) were tau-cadinol (0.62-55.56), mono (2-ethylhexyl) phthalate (8.10-94.70), elemol (0.21-19.11), ß-spathulenol (0.08-14.39), 4-terpineol (0.23-10.19), and ß-eudesmol (0.21-9.94). The main chemical groups found in EOs included oxygenated sesquiterpenes (1.12-68.43), and phthalates (9.73-94.72). Cluster analysis revealed three distinct chemotypes: chemotype I (populations 1 and 2) with major components of mono (2-ethylhexyl) phthalate, tau-cadinol, and α-elemol; chemotype II (population 5) rich in mono (2-ethylhexyl) phthalate; and chemotype III (populations 3, 4, 6-8) containing tau-cadinol, ß-eudesmol, and 4-terpineol. The study also evaluated total phenolic, total flavonoid, and DPPH free radical scavenging activity in the fifty percent inhibitory concentration (IC50) in leaf and flower samples of the genotypes, along with estimating total anthocyanin content in the flower samples. The total phenolic content (TPC) in leaf and flower samples ranged from 7.89 to 107.18 mg GAE/g DW and 39.98 to 86.62 mg gallic acid equivalent (GAE)/g DW, respectively. Total flavonoid content (TFC) ranged from 81.04 to 143.46 mg QUE/g DW in leaf samples and from 94.82 to 133.26 mg quercetin equivalent (QUE)/g DW in flower samples. DPPHsc IC50 (µg/mL) ranged from 0.65 to 78.74 in leaf samples and from 4.38 to 7.71 in flower samples. Anthocyanin content ranged from 1.89 to 3.75 mg cyanidin-3-glucoside equivalent (C3GE)/g DW among populations. Canonical correspondence analysis and simple correlation demonstrated a strong association and correlations among the studied attributes. The negative correlations between leaf DPPH (DPPH L) IC50 and TFC (- 0.73), TPC (- 0.63), Elemol (- 0.90), and EO (- 0.85) indicate that these compounds have a significant impact on the antioxidant activity of the leaves. Furthermore, Fruit DPPH (DPPH F) IC50 showed a negative correlation with TPC (- 0.79) and TFC (- 0.78), but a positive correlation with flower anthocyanins (0.51), (Z)-ß-Farnesene (0.66), and 4-Terpineol (0.57). Circular cluster analysis categorized the genotypes of all individuals in the eight studied populations into three main categories based on all the studied traits, indicating significant variation in phytochemical and morphological traits among populations, surpassing the within-populations variation.


Asunto(s)
Lamiaceae , Aceites Volátiles , Ácidos Ftálicos , Sesquiterpenos de Eudesmano , Sesquiterpenos , Humanos , Antioxidantes/farmacología , Aceites Volátiles/farmacología , Antocianinas , Irán , Extractos Vegetales/farmacología , Cromatografía de Gases y Espectrometría de Masas , Fitomejoramiento , Fenoles/análisis , Quercetina , Flavonoides/análisis , Fitoquímicos
17.
Sci Rep ; 14(1): 7127, 2024 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531911

RESUMEN

Although Chaenomeles is widely used in horticulture, traditional Chinese medicine and landscape greening, insufficient research has hindered its breeding and seed selection. This study investigated the floral phenology, floral organ characteristics, palynology, and breeding systems of Chaenomeles speciosa (Sweet) Nakai. The floral characteristics of C. speciosa were observed both visually and stereoscopically. The microstructures of the flower organs were observed using scanning electron microscopy. Pollen stainability was determined using triphenyl tetrazolium chloride staining. Stigma receptivity was determined using the benzidine-H2O2 method and the post-artificial pollination pollen germination method. The breeding system was assessed based on the outcrossing index and pollen-ovule ratio. The flowers of C. speciosa were bisexual with a flowering period from March to April. The flowering periods of single flowers ranged from 8 to 19 d, and those of single plants lasted 18-20 d. The anthers were cylindrical, with the base attached to the filament, and were split longitudinally to release pollen. The flower had five styles, with a connate base. The ovaries had five carpels and five compartments. The inverted ovules were arranged in two rows on the placental axis. The stigma of C. speciosa was dry and had many papillary protrusions. In the early flowering stage (1-2 d of flowering), the pollen exhibited high stainability (up to 84.24%), but all stainability was lost at 7 d of flowering. Storage at - 20 °C effectively delayed pollen inactivation. The stigma receptivity of C. speciosa lasted for approximately 7 days, and the breeding system was classified as outcrossing with partial self-compatibility.


Asunto(s)
Polinización , Rosaceae , Embarazo , Femenino , Humanos , Polinización/fisiología , Óvulo Vegetal , Peróxido de Hidrógeno , Fitomejoramiento , Placenta , Reproducción/fisiología , Flores/fisiología , Polen/fisiología
18.
Methods Mol Biol ; 2791: 1-14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532087

RESUMEN

This section describes a set of methods for callus induction followed by the successful regeneration of whole plants and obtaining a culture of transgenic hairy roots from buckwheat plants (Fagopyrum esculentum Moench.). Callus induction and regeneration are key steps for many biotechnological, genetic, and breeding approaches, such as genetic modification, production of biologically active compounds, and propagation of valuable germplasm. Induction of hairy roots using Agrobacterium rhizogenes is also an important tool for functional gene research and plant genome modification. While many efforts were invested into the development of the corresponding protocols, they are not equally efficient for different cultivars. Here, we have tested and optimized the protocols of callus induction, regeneration, and transformation using A. rhizogenes for a set of cultivars of F. esculentum, including wild ancestor of cultivated buckwheat F. esculentum ssp. ancestrale and a self-pollinated accession KK8. The optimal medium for callus induction is Murashige-Skoog basal medium with 3% sucrose which includes hormones 2,4-dichlorophenoxyacetic acid 2 mg/L and kinetin 2 mg/L; for shoot initiation 6-benzylaminopurine 2 mg/L, kinetin 0.2 mg/L, and indole-3-acetic acid 0.2 mg/L; for shoot multiplication 6-benzylaminopurine 3 mg/L and indole-3-acetic acid 0.2 mg/L; and for root initiation half-strength Murashige-Skoog medium with 1.5% sucrose and indole-3-butyric acid 1 mg/L. A. rhizogenes R1000 strain proved to be the most efficient in inducing hairy roots in buckwheat and T-DNA transfer from binary vectors. Seedling explants cut at the root area and immersed in agrobacterium suspension, as well as prickling the cotyledonary area with agrobacteria dipped syringe needle, are the most labor-effective methods of infection, allowing to initiate hairy root growth in 100% of explants.


Asunto(s)
Compuestos de Bencilo , Fagopyrum , Purinas , Cinetina , Raíces de Plantas/genética , Fitomejoramiento , Sacarosa
19.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542215

RESUMEN

The market value of tea is largely dependent on the tea species and cultivar. Therefore, it is important to develop efficient molecular markers covering the entire tea genome that can be used for the identification of tea varieties, marker-assisted breeding, and mapping important quantitative trait loci for beneficial traits. In this study, genome-wide molecular markers based on intron length polymorphism (ILP) were developed for tea trees. A total of 479, 1393, and 1342 tea ILP markers were identified using the PCR method in silico from the 'Shuchazao' scaffold genome, the chromosome-level genome of 'Longjing 43', and the ancient tea DASZ chromosome-level genome, respectively. A total of 230 tea ILP markers were used to amplify six tea tree species. Among these, 213 pairs of primers successfully characterize products in all six species, with 112 primer pairs exhibiting polymorphism. The polymorphism rate of primer pairs increased with the improvement in reference genome assembly quality level. The cross-species transferability analysis of 35 primer pairs of tea ILP markers showed an average amplification rate of 85.17% through 11 species in 6 families, with high transferability in Camellia reticulata and tobacco. We also used 40 pairs of tea ILP primers to evaluate the genetic diversity and population structure of C. tetracocca with 176 plants from Puan County, Guizhou Province, China. These genome-wide markers will be a valuable resource for genetic diversity analysis, marker-assisted breeding, and variety identification in tea, providing important information for the tea industry.


Asunto(s)
Camellia sinensis , Humanos , Intrones/genética , Camellia sinensis/genética , Marcadores Genéticos , Genoma de Planta , Fitomejoramiento ,
20.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542463

RESUMEN

DNA-binding with one finger (Dof) proteins comprise a large family that play central roles in stress tolerance by regulating the expression of stress-responsive genes via the DOFCORE element or by interacting with other regulatory proteins. Although the Dof TF has been identified in a variety of species, its systemic analysis in potato (Solanum tuberosum L.) is lacking and its potential role in abiotic stress responses remains unclear. A total of 36 potential Dof genes in potato were examined at the genomic and transcriptomic levels in this work. Five phylogenetic groups can be formed from these 36 Dof proteins. An analysis of cis-acting elements revealed the potential roles of Dofs in potato development, including under numerous abiotic stress conditions. The cycling Dof factors (CDFs) might be the initial step in the abiotic stress response signaling cascade. In potato, five CDFs (StCDF1/StDof19, StCDF2/StDof4, StCDF3/StDof11, StCDF4/StDof24, and StCDF5/StDof15) were identified, which are homologs of Arabidopsis CDFs. The results revealed that these genes were engaged in a variety of abiotic reactions. Moreover, an expression analysis of StDof genes in two potato cultivars ('Long10' (drought tolerant) and 'DXY' (drought susceptible)) of contrasting tolerances under drought stress was carried out. Further, a regulatory network mediated by lncRNA and its target Dofs was established. The present study provides fundamental knowledge for further investigation of the roles of Dofs in the adaptation of potato to drought stress, aiming to provide insights into a viable strategy for crop improvement and stress-resistance breeding.


Asunto(s)
Arabidopsis , Solanum tuberosum , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Resistencia a la Sequía , Filogenia , Fitomejoramiento , Arabidopsis/genética , Sequías , ADN/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA