Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
Intervalo de año de publicación
1.
PeerJ ; 12: e16882, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38406295

RESUMEN

Sugar beet, an important sugar crop, contributes significantly to the world's sugar production. However, genotype-environment interactions (GEI) often affect the quality characteristics of sugar beet. Hence, understanding the effects of GEI on sugar beet quality can aid in identifying high-quality genotypes that can adapt to different environments. Traditional variance analysis can only be used to examine the yield of a variety and not its specific adaptability to specific conditions. Therefore, more comprehensive analytical methods are required to evaluate the characteristics of the variety under specific environments. Additive main effects and multiplicative interaction (AMMI) and genotype main effect and genotype × environment interaction (GGE) biplot models can be employed to comprehensively evaluate different varieties and address the drawbacks associated with a single evaluation method. Moreover, these models also allow us to explore new varieties more objectively and comprehensively. In this study, the adaptability and stability of 16 sugar beet varieties, in terms of yield and sugar content, were evaluated using AMMI and GGE biplot analysis in seven pilot projects undertaken in 2022. In the assessment of a small but significant proportion of the total GEI variance for the two qualitative traits (yield and sugar content), 80.58% of the variance was explained by the cumulative contribution of IPC1, IPC2, and IPC3. AMMI and GGE biplots clearly highlighted that KWS4207 (G3) exhibited high and stable quality. They also demonstrated that the experiments in Jalaid Banner (Inner Mongolia) (E7) were the most representative. Together, the results suggested that the comprehensive application of AMMI and GGE biplot analysis allowed for a more comprehensive, scientific, and effective evaluation of sugar beet varieties across different regions. The findings offer a theoretical basis for sugar beet breeding and could guide the rational design of experiments for testing new varieties of sugar beet.


Asunto(s)
Ammi , Beta vulgaris , Interacción Gen-Ambiente , Beta vulgaris/genética , Fitomejoramiento/métodos , Genotipo , Azúcares
2.
Sci Rep ; 13(1): 23111, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172529

RESUMEN

The genotype by environment interaction significantly influences plant yield, making it imperative to understand its nature for the creation of breeding programs to enhance crop production. However, this is not the only obstacle in the yield improvement process. Breeders also face the significant challenge of unfavorable and negative correlations among key traits. In this study, the stability of root yield and white sugar yield, and the association between the key traits of root yield, sugar content, nitrogen, sodium, and potassium were examined in 20 sugar beet genotypes. The study was conducted using a randomized complete block design with four replications over two consecutive years across five locations. The combined analysis of variance results revealed significant main effects of year, location, and genotype on both root yield and white sugar yield. Notably, two-way and three-way interactions between these main effects on root yield and white sugar yield resulted in a significant difference. The additive main effect and multiplicative interaction analysis revealed that the first five interaction principal components significantly impacted both the root yield and white sugar yield. The linear mixed model results for root yield and white sugar yield indicated that the genotype effect and the genotype by environment interaction were significant. The weighted average absolute scores of the best linear unbiased predictions biplot demonstrated that genotypes 20, 4, 7, 2, 16, 3, 6, 1, 14, and 15 were superior in terms of root yield. For white sugar yield, genotypes 4, 16, 3, 7, 5, 1, 10, 20, 2, and 6 stood out. These genotypes were not only stable but also had a yield value higher than the total average. All key traits, which include sugar content, sodium, potassium, and alpha amino nitrogen, demonstrated a negative correlation with root yield. Based on the genotype by yield*trait analysis results, genotypes 20, 19, and 16 demonstrated optimal performance when considering the combination of root yield with sugar content, sodium, alpha amino nitrogen, and potassium. The multi-trait stability study, genotype 13 ranked first, and genotypes 10, 8, and 9 were identified as the most ideal stable genotypes across all traits. According to the multi-trait stability index, genotype 13 emerged as the top-ranking genotype. Additionally, genotypes 10, 8, and 9 were recognized as the most stable genotypes.


Asunto(s)
Beta vulgaris , Beta vulgaris/genética , Carbohidratos , Genotipo , Fitomejoramiento/métodos , Potasio , Sodio , Azúcares
3.
Genes (Basel) ; 14(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38136959

RESUMEN

Red perilla is an important medicinal plant used in Kampo medicine. The development of elite varieties of this species is urgently required. Medicinal compounds are generally considered target traits in medicinal plant breeding; however, selection based on compound phenotypes (i.e., conventional selection) is expensive and time consuming. Here, we propose genomic selection (GS) and marker-assisted selection (MAS), which use marker information for selection, as suitable selection methods for medicinal plants, and we evaluate the effectiveness of these methods in perilla breeding. Three breeding populations generated from crosses between one red and three green perilla genotypes were used to elucidate the genetic mechanisms underlying the production of major medicinal compounds using quantitative trait locus analysis and evaluating the accuracy of genomic prediction (GP). We found that GP had a sufficiently high accuracy for all traits, confirming that GS is an effective method for perilla breeding. Moreover, the three populations showed varying degrees of segregation, suggesting that using these populations in breeding may simultaneously enhance multiple target traits. This study contributes to research on the genetic mechanisms of the major medicinal compounds of red perilla, as well as the breeding efficiency of this medicinal plant.


Asunto(s)
Perilla , Plantas Medicinales , Sitios de Carácter Cuantitativo , Perilla/genética , Fitomejoramiento/métodos , Fenotipo , Genómica/métodos
4.
Theor Appl Genet ; 137(1): 12, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38112758

RESUMEN

Root and tuber crop breeding is at the front and center of CIP's science program, which seeks to develop and disseminate sustainable agri-food technologies, information and practices to serve objectives including poverty alleviation, income generation, food security and the sustainable use of natural resources. CIP was established in 1971 in Peru, which is part of potato's center of origin and diversity, with an initial mandate on potato and expanding to include sweetpotato in 1986. Potato and sweetpotato are among the top 10 most consumed food staples globally and provide some of the most affordable sources of energy and vital nutrients. Sweetpotato plays a key role in securing food for many households in Africa and South Asia, while potato is important worldwide. Both crops grow in a range of conditions with relatively few inputs and simple agronomic techniques. Potato is adapted to the cooler environments, while sweetpotato grows well in hot climates, and hence, the two crops complement each other. Germplasm enhancement (pre-breeding), the development of new varieties and building capacity for breeding and variety testing in changing climates with emphasis on adaptation, resistance, nutritional quality and resource-use efficiency are CIP's central activities with significant benefits to the poor. Investments in potato and sweetpotato breeding and allied disciplines at CIP have resulted in the release of many varieties some of which have had documented impact in the release countries. Partnership with diverse types of organizations has been key to the centers way of working toward improving livelihoods through crop production in the global South.


Asunto(s)
Solanum tuberosum , Fitomejoramiento/métodos , Tubérculos de la Planta , Productos Agrícolas/genética , África
5.
Plant Genome ; 16(2): e20327, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37177848

RESUMEN

Genomic selection (GS) is used in many animal and plant breeding programs to enhance genetic gain for complex traits. However, its optimal integration in clone breeding programs, for example potato, that up to now relied on phenotypic selection (PS) requires further research. In this study, we performed computer simulations based on an empirical genomic dataset of tetraploid potato to (i) investigate under a fixed budget how the weight of GS relative to PS, the stage of implementing GS, the correlation between an auxiliary trait and the target trait, the variance components, and the prediction accuracy affect the genetic gain of the target trait, (ii) determine the optimal allocation of resources maximizing the genetic gain of the target trait, and (iii) make recommendations to breeders how to implement GS in clone and especially potato breeding programs. In our simulation results, any selection strategy involving GS had a higher short-term genetic gain for the target trait than Standard-PS. In addition, we showed that implementing GS in consecutive selection stages can largely enhance short-term genetic gain and recommend the breeders to implement GS at single hills and A clone stages. Furthermore, we observed for selection strategies involving GS that the optimal allocation of resources maximizing the genetic gain of the target trait differed considerably from those typically used in potato breeding programs and, thus, require the adjustment of the selection and phenotyping intensities. The trends are described in our study. Therefore, our study provides new insight for breeders regarding how to optimally implement GS in a commercial potato breeding program to improve the short-term genetic gain for their target trait.


Asunto(s)
Solanum tuberosum , Animales , Solanum tuberosum/genética , Selección Genética , Fitomejoramiento/métodos , Genómica , Simulación por Computador
6.
Plant Genome ; 16(1): e20282, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36349831

RESUMEN

Tea [Camellia sinensis (L.) O. Kuntze] is mainly grown in low- to middle-income countries (LMIC) and is a global commodity. Breeding programs in these countries face the challenge of increasing genetic gain because the accuracy of selecting superior genotypes is low and resources are limited. Phenotypic selection (PS) is traditionally the primary method of developing improved tea varieties and can take over 16 yr. Genomic selection (GS) can be used to improve the efficiency of tea breeding by increasing selection accuracy and shortening the generation interval and breeding cycle. Our main objective was to investigate the potential of implementing GS in tea-breeding programs to speed up genetic progress despite the low cost of PS in LMIC. We used stochastic simulations to compare three GS-breeding programs with a Pedigree and PS program. The PS program mimicked a practical commercial tea-breeding program over a 40-yr breeding period. All the GS programs achieved at least 1.65 times higher genetic gains than the PS program and 1.4 times compared with Seed-Ped program. Seed-GSc was the most cost-effective strategy of implementing GS in tea-breeding programs. It introduces GS at the seedlings stage to increase selection accuracy early in the program and reduced the generation interval to 2 yr. The Seed-Ped program outperformed PS by 1.2 times and could be implemented where it is not possible to use GS. Our results indicate that GS could be used to improve genetic gain per unit time and cost even in cost-constrained tea-breeding programs.


Asunto(s)
Fitomejoramiento , Selección Genética , Fitomejoramiento/métodos , Genoma , Genómica/métodos ,
7.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36077378

RESUMEN

Potato is an important crop due to its nutritional value and high yield potential. Improving the quality and quantity of tubers remains one of the most important breeding objectives. Genetic mapping helps to identify suitable markers for use in the molecular breeding, and combined with transgenic approaches provides an efficient way for gaining desirable traits. The advanced plant breeding tools and molecular techniques, e.g., TALENS, CRISPR-Cas9, RNAi, and cisgenesis, have been successfully used to improve the yield and nutritional value of potatoes in an increasing world population scenario. The emerging methods like genome editing tools can avoid incorporating transgene to keep the food more secure. Multiple success cases have been documented in genome editing literature. Recent advances in potato breeding and transgenic approaches to improve tuber quality and quantity have been summarized in this review.


Asunto(s)
Solanum tuberosum , Edición Génica/métodos , Fenotipo , Fitomejoramiento/métodos , Tubérculos de la Planta/genética , Solanum tuberosum/genética
8.
Plant Sci ; 325: 111474, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36174801

RESUMEN

Genome engineering has been re-shaping plant biotechnology and agriculture. Crop improvement using the recently developed gene editing techniques is now easier, faster, and more precise than ever. Although considered to be a global food security crop, potato has not benefitted enough from diverse collection of these techniques. Unique genetic features of cultivated potatoes such as tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression hamper conventional breeding of this important crop. Therefore, genome editing provides an excellent arsenal of tools for trait improvement in potato. Moreover, using specific transformation protocols, it is possible to engineer transgene free commercial varieties. In this review we first describe the past achievements in potato genome editing and highlight some of the missing aspects of these efforts. Then, we discuss about technical challenges of genome editing in potato and present approaches to overcome these difficulties. Finally, we talk about genome editing applications that have not been explored in potato and point out some of the missing venues in literature.


Asunto(s)
Edición Génica , Solanum tuberosum , Edición Génica/métodos , Solanum tuberosum/genética , Sistemas CRISPR-Cas/genética , Fitomejoramiento/métodos , Plantas/genética , Genoma de Planta/genética
9.
PeerJ ; 10: e13629, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35818359

RESUMEN

Micronutrients, including vitamins, minerals, and other bioactive compounds, have tremendous impacts on human health. Much progress has been made in improving the micronutrient content of inbred lines in various crops through biofortified breeding. However, biofortified breeding still falls short for the rapid generation of high-yielding hybrids rich in multiple micronutrients. Here, we bred multi-biofortified sweet corn hybrids efficiently through marker-assisted selection. Screening by molecular markers for vitamin E and folic acid, we obtained 15 inbred lines carrying favorable alleles (six for vitamin E, nine for folic acid, and three for both). Multiple biofortified corn hybrids were developed through crossing and genetic diversity analysis.


Asunto(s)
Biofortificación , Alimentos Fortificados , Glutamato Formimidoiltransferasa , Micronutrientes , Biofortificación/métodos , Ácido Fólico , Glutamato Formimidoiltransferasa/genética , Micronutrientes/genética , Fitomejoramiento/métodos , Verduras/genética , Vitamina E , Zea mays/genética
10.
Planta ; 256(1): 14, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35713718

RESUMEN

MAIN CONCLUSION: An efficient method of DNA-free gene-editing in potato protoplasts was developed using linearized DNA fragments, UBIQUITIN10 promoters of several plant species, kanamycin selection, and transient overexpression of the BABYBOOM transcription factor. Plant protoplasts represent a reliable experimental system for the genetic manipulation of desired traits using gene editing. Nevertheless, the selection and regeneration of mutated protoplasts are challenging and subsequent recovery of successfully edited plants is a significant bottleneck in advanced plant breeding technologies. In an effort to alleviate the obstacles related to protoplasts' transgene expression and protoplasts' regeneration, a new method was developed. In so doing, it was shown that linearized DNA could efficiently transfect potato protoplasts and that UBIQUITIN10 promoters from various plants could direct transgene expression in an effective manner. Also, the inhibitory concentration of kanamycin was standardized for transfected protoplasts, and the NEOMYCIN PHOSPHOTRANSFERASE2 (NPT2) gene could be used as a potent selection marker for the enrichment of transfected protoplasts. Furthermore, transient expression of the BABYBOOM (BBM) transcription factor promoted the regeneration of protoplast-derived calli. Together, these methods significantly increased the selection for protoplasts that displayed high transgene expression, and thereby significantly increased the rate of gene editing events in protoplast-derived calli to 95%. The method developed in this study facilitated gene-editing in tetraploid potato plants and opened the way to sophisticated genetic manipulation in polyploid organisms.


Asunto(s)
Edición Génica , Solanum tuberosum , Sistemas CRISPR-Cas/genética , ADN/metabolismo , Edición Génica/métodos , Genoma de Planta , Kanamicina/metabolismo , Fitomejoramiento/métodos , Protoplastos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tetraploidía , Factores de Transcripción/genética , Transfección
11.
PLoS Genet ; 18(2): e1010017, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108269

RESUMEN

Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program.


Asunto(s)
Pinus/crecimiento & desarrollo , Pinus/genética , Extractos Vegetales/genética , Brasil , China , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo/métodos , Fitomejoramiento/métodos , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética , Madera/genética , Madera/crecimiento & desarrollo
12.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35216116

RESUMEN

1258A is a new line of B.napus with Nsa cytoplasmic male sterility (CMS) with potential applications in hybrid rapeseed breeding. Sterile cytoplasm was obtained from XinJiang Sinapis arvensis through distant hybridization and then backcrossed with 1258B for many generations. However, the characteristics and molecular mechanisms underlying pollen abortion in this sterile line are poorly understood. In this study, a cytological analysis revealed normal microsporogenesis and uninucleate pollen grain formation. Pollen abortion was due to non-programmed cell death in the tapetum and the inability of microspores to develop into mature pollen grains. Sucrose, soluble sugar, and adenosine triphosphate (ATP) contents during microspore development were lower than those of the maintainer line, along with an insufficient energy supply, reduced antioxidant enzyme activity, and substantial malondialdehyde (MDA) accumulation in the anthers. Transcriptome analysis revealed that genes involved in secondary metabolite biosynthesis, glutathione metabolism, phenylpropane biosynthesis, cyanoamino acid metabolism, starch and sucrose metabolism, and glycerolipid metabolism may contribute to pollen abortion. The down regulation of nine cytochrome P450 monooxygenases genes were closely associated with pollen abortion. These results suggest that pollen abortion in 1258A CMS stems from abnormalities in the chorioallantoic membranes, energy deficiencies, and dysfunctional antioxidant systems in the anthers. Our results provide insight into the molecular mechanism underlying pollen abortion in Nsa CMS and provide a theoretical basis for better heterosis utilization in B.napus.


Asunto(s)
Brassica napus/genética , Citoplasma/genética , Hibridación Genética/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Citosol/fisiología , Flores/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Fitomejoramiento/métodos , Infertilidad Vegetal/genética , Polen/genética , Almidón/genética
13.
PLoS One ; 17(1): e0262705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35045129

RESUMEN

Onion (Allium cepa L) is a major reservoir of important nutraceutical ingredients. Herein, nutraceutical profiling of elite germplasm was assessed and hybrids with improved nutraceutical quality were selected. The nutraceutical components were screened through Fourier Transform Infrared Spectroscopy (FTIR) analysis (scan range 4000-400cm-1) followed by spectrophotometric/colorimetric quantification in oven dried bulb samples. Line × Tester (L×T) analysis was used to identify potential hybrids with better nutraceutical quality. Based on common functional groups obtained from FTIR analysis, as well as bulb color, the onion genotypes were categorized into six groups viz., white, yellowish brown, light brown, dark brown, brown and purplish brown. Results indicated that the purplish brown, yellowish brown and dark brown genotypes had maximum concentration of pyruvic acid, total flavonoids and total phenolic content, while vitamin C content showed weak association with color pigmentation. The onion variety 'Onion Swat' contained the highest level of pyruvic acid (17.18 µM) and 'MKS8823GO' had the highest vitamin C content (13.83mg/100mL). The L×T analysis revealed that out of 35 crosses, 'MKS-77127 × Onion Swat' and 'MKS-77127 × MKS777' were the best hybrids with improved nutraceutical quality. Further, observations for specific combining ability, general combining ability, genetic versus environmental variance, heritability and heterosis indicated that the studied parameters were genetically inherited and could be improved significantly by adopting an appropriate breeding strategy.


Asunto(s)
Suplementos Dietéticos/análisis , Cebollas/metabolismo , Semillas/metabolismo , Antioxidantes/análisis , Flavonoides/análisis , Genotipo , Cebollas/química , Cebollas/genética , Fenoles/análisis , Fenotipo , Pigmentación , Fitomejoramiento/métodos , Raíces de Plantas/química , Ácido Pirúvico/análisis , Espectrofotometría , Espectroscopía Infrarroja por Transformada de Fourier/métodos
14.
PLoS One ; 17(1): e0262278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986177

RESUMEN

To select elite Robinia pseudoacacia L. germplasm resources for production, 13 phenotypes and three physiological indicators of 214 seedlings from 20 provenances were systematically evaluated and analyzed. The leaf phenotypic and physiological coefficients of variation among the genotypes ranged from 3.741% to 19.599% and from 8.260% to 42.363%, respectively. The Kentucky provenance had the largest coefficient of variation (18.541%). The average differentiation coefficients between and within provenances were 34.161% and 38.756%, respectively. These close percentages showed that R. pseudoacacia presented high genetic variation among and within provenances, which can be useful for assisted migration and breeding programs. Furthermore, based on the results of correlations, principal component analysis and cluster analysis, breeding improvements targeting R. pseudoacacia's ornamental value, food value, and stress resistance of were performed. Forty and 30 excellent individuals, accounting for 18.692% and 14.019%, respectively, of the total resources. They were ultimately screened, after comprehensively taking into considering leaf phenotypic traits including compound leaf length, leaflet number and leaflet area and physiological characteristics including proline and soluble protein contents. These selected individuals could provide a base material for improved variety conservation and selection.


Asunto(s)
Robinia/genética , Robinia/fisiología , Kentucky , Fenotipo , Fitomejoramiento/métodos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Robinia/metabolismo , Plantones/genética , Plantones/fisiología
15.
Gene ; 808: 145976, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34592351

RESUMEN

Soybean is a major source of edible protein and oil. Oil content is a quantitative trait that is significantly determined by genetic and environmental factors. Over the past 30 years, a large volume of soybean genetic, genomic, and transcriptomic data have been accumulated. Nevertheless, integrative analyses of such data remain scarce, in spite of their importance for crop improvement. We hypothesized that the co-occurrence of genomic regions for oil-related traits in different studies may reveal more stable regions encompassing important genetic determinants of oil content and quality in soybean. We integrated publicly available data, obtained with distinct techniques, to discover and prioritize candidate genes involved in oil biosynthesis and regulation in soybean. We detected key fatty acid biosynthesis genes (e.g., BCCP2 and ACCase, FADs, KAS family proteins) and several transcription factors, which are likely regulators of oil biosynthesis. In addition, we identified new candidates for seed oil accumulation and quality, such as Glyma.03G213300 and Glyma.19G160700, which encode a translocator protein homolog and a histone acetyltransferase, respectively. Further, oil and protein genomic hotspots are strongly associated with breeding and not with domestication, suggesting that soybean domestication prioritized other traits. The genes identified here are promising targets for breeding programs and for the development of soybean lines with increased oil content and quality.


Asunto(s)
Glycine max/genética , Aceite de Soja/biosíntesis , Aceite de Soja/genética , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Fitomejoramiento/métodos , Aceites de Plantas , Polimorfismo de Nucleótido Simple/genética , Proteómica/métodos , Sitios de Carácter Cuantitativo/genética , Semillas/genética
16.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830333

RESUMEN

Temperature-sensitive male sterility is a heritable agronomic trait affected by genotype-environment interactions. In rapeseed (Brassica napus), Polima (pol) temperature-sensitive cytoplasmic male sterility (TCMS) is commonly used for two-line breeding, as the fertility of pol TCMS lines can be partially restored at certain temperatures. However, little is known about the underlying molecular mechanism that controls fertility restoration. Therefore, we aimed to investigate the fertility conversion mechanism of the pol TCMS line at two different ambient temperatures (16 °C and 25 °C). Our results showed that the anthers developed and produced vigorous pollen at 16 °C but not at 25 °C. In addition, we identified a novel co-transcript of orf224-atp6 in the mitochondria that might lead to fertility conversion of the pol TCMS line. RNA-seq analysis showed that 1637 genes were significantly differentially expressed in the fertile flowers of 596-L when compared to the sterile flower of 1318 and 596-H. Detailed analysis revealed that differentially expressed genes were involved in temperature response, ROS accumulation, anther development, and mitochondrial function. Single-molecule long-read isoform sequencing combined with RNA sequencing revealed numerous genes produce alternative splicing transcripts at high temperatures. Here, we also found that alternative oxidase, type II NAD(P)H dehydrogenases, and transcription factor Hsfs might play a crucial role in male fertility under the low-temperature condition. RNA sequencing and bulked segregant analysis coupled with whole-genome sequencing identified the candidate genes involved in the post-transcriptional modification of orf224. Overall, our study described a putative mechanism of fertility restoration in a pol TCMS line controlled by ambient temperature that might help utilise TCMS in the two-line breeding of Brassica crops.


Asunto(s)
Brassica napus/genética , Fitomejoramiento/métodos , Infertilidad Vegetal/genética , Proteínas de Plantas/genética , Brassica napus/metabolismo , Fertilidad/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Mitocondrias/genética , Mitocondrias/metabolismo , NADPH Deshidrogenasa/genética , NADPH Deshidrogenasa/metabolismo , Proteínas de Plantas/metabolismo , Polen/genética , Polen/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducción/genética , Temperatura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuenciación Completa del Genoma
17.
Genetics ; 219(3)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740237

RESUMEN

Over the last decade, multiparental populations have become a mainstay of genetics research in diploid species. Our goal was to extend this paradigm to autotetraploids by developing software for quantitative trait locus (QTL) mapping in connected F1 populations derived from a set of shared parents. For QTL discovery, phenotypes are regressed on the dosage of parental haplotypes to estimate additive effects. Statistical properties of the model were explored by simulating half-diallel diploid and tetraploid populations with different population sizes and numbers of parents. Across scenarios, the number of progeny per parental haplotype (pph) largely determined the statistical power for QTL detection and accuracy of the estimated haplotype effects. Multiallelic QTL with heritability 0.2 were detected with 90% probability at 25 pph and genome-wide significance level 0.05, and the additive haplotype effects were estimated with over 90% accuracy. Following QTL discovery, the software enables a comparison of models with multiple QTL and nonadditive effects. To illustrate, we analyzed potato tuber shape in a half-diallel population with three tetraploid parents. A well-known QTL on chromosome 10 was detected, for which the inclusion of digenic dominance lowered the Deviance Information Criterion (DIC) by 17 points compared to the additive model. The final model also contained a minor QTL on chromosome 1, but higher-order dominance and epistatic effects were excluded based on the DIC. In terms of practical impacts, the software is already being used to select offspring based on the effect and dosage of particular haplotypes in breeding programs.


Asunto(s)
Mapeo Cromosómico/métodos , Modelos Genéticos , Fitomejoramiento/métodos , Sitios de Carácter Cuantitativo , Solanum tuberosum/genética , Alelos , Cromosomas de las Plantas , Diploidia , Ligamiento Genético , Haplotipos , Herencia Multifactorial , Programas Informáticos , Tetraploidía
18.
J Genet ; 1002021.
Artículo en Inglés | MEDLINE | ID: mdl-34706997

RESUMEN

Interspecific hybridization with 'Satputia' (bisexual and cluster bearing) can be highly useful for the introgression of cluster bearing, high yield and gynoecism in sponge gourd (monoecious and solitary bearing). However, the occurrence of self-pollination in closed flowers and anthesis of two species at different time intervals creates hindrance in interspecific hybridization. The present investigation highlighted that the reciprocal interspecific cross (Satputia × sponge gourd) is more successful for development of F1 hybrid and its further utilization in development of segregating generations. Pre-anthesis emasculation (28 h before anthesis) of Satputia buds in the evening and pollination with sponge gourd (PSG-9) in the morning on the day of anthesis resulted in high fruit set. Interspecific hybrids were monoecious and morphologically intermediate for most of the vegetative, flower and fruit traits. The seed of hybrid vines was vigorous than both the parents with respect to size and weight. Ample pollen production, pollen viability and high fruit set on selfing confirmed the fertility status of vines. Although pollen size was less than both the parents, but the pollen density improved in F1 vines. Fertile hybrids could be easily used to generate F2 and BC1P2 and TCH segregating generations. In F2 generation, gynoecious, adroecious, andromonoecoius, monoecious and cluster bearing vines of variable length and fruit size were observed. In back cross and triple cross generations, most of the vines were monoecious except a few adroecious and gynoecious with improved fruit size, vine growth and bearing capacity. Backcross and triple cross with sponge gourd displayed a shift towards this species.


Asunto(s)
Hibridación Genética , Luffa/crecimiento & desarrollo , Luffa/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Cruzamientos Genéticos , Fertilidad , Flores/genética , Introgresión Genética , Endogamia , Fitomejoramiento/métodos , Polen/genética
19.
Molecules ; 26(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34500608

RESUMEN

A collection of herbs from the natural environment remains not only a source of raw material but also provides evidence of chemical differentiation of the local populations. This work aimed at performing a phytosociological analysis of seven different stands of meadowsweet (Filipendula ulmaria (L.) Maxim.) occurrence. A determination of total phenolic compounds and salicylates and the antioxidant activity of dried meadowsweet inflorescences (Flos ulmariae) was also performed. Active chemical compounds in F. ulmaria inflorescences were related to chemotype and diversified between investigated populations. Geographical distance and variation in phytosociological locations affected chemical composition in different ways, shaping the content of biochemical compounds crucial for herbal material quality. The obtained results can be a valuable indicator for Nexo and Baligród populations, which are good genetic material for research, breeding, and cultivation due to their biochemical composition, especially with respect to salicylates, as major compounds of determining market quality of Flos ulmariae.


Asunto(s)
Filipendula/química , Inflorescencia/química , Antioxidantes/química , Ecosistema , Fenoles/química , Fitomejoramiento/métodos , Extractos Vegetales/química
20.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-34206810

RESUMEN

Recently, crop breeders have widely adopted a new biotechnology-based process, termed Seed Production Technology (SPT), to produce hybrid varieties. The SPT does not produce nuclear male-sterile lines, and instead utilizes transgenic SPT maintainer lines to pollinate male-sterile plants for propagation of nuclear-recessive male-sterile lines. A late-stage pollen-specific promoter is an essential component of the pollen-inactivating cassette used by the SPT maintainers. While a number of plant pollen-specific promoters have been reported so far, their usefulness in SPT has remained limited. To increase the repertoire of pollen-specific promoters for the maize community, we conducted a comprehensive comparative analysis of transcriptome profiles of mature pollen and mature anthers against other tissue types. We found that maize pollen has much less expressed genes (>1 FPKM) than other tissue types, but the pollen grain has a large set of distinct genes, called pollen-specific genes, which are exclusively or much higher (100 folds) expressed in pollen than other tissue types. Utilizing transcript abundance and correlation coefficient analysis, 1215 mature pollen-specific (MPS) genes and 1009 mature anther-specific (MAS) genes were identified in B73 transcriptome. These two gene sets had similar GO term and KEGG pathway enrichment patterns, indicating that their members share similar functions in the maize reproductive process. Of the genes, 623 were shared between the two sets, called mature anther- and pollen-specific (MAPS) genes, which represent the late-stage pollen-specific genes of the maize genome. Functional annotation analysis of MAPS showed that 447 MAPS genes (71.7% of MAPS) belonged to genes encoding pollen allergen protein. Their 2-kb promoters were analyzed for cis-element enrichment and six well-known pollen-specific cis-elements (AGAAA, TCCACCA, TGTGGTT, [TA]AAAG, AAATGA, and TTTCT) were found highly enriched in the promoters of MAPS. Interestingly, JA-responsive cis-element GCC box (GCCGCC) and ABA-responsive cis-element-coupling element1 (ABRE-CE1, CCACC) were also found enriched in the MAPS promoters, indicating that JA and ABA signaling likely regulate pollen-specific MAPS expression. This study describes a robust and straightforward pipeline to discover pollen-specific promotes from publicly available data while providing maize breeders and the maize industry a number of late-stage (mature) pollen-specific promoters for use in SPT for hybrid breeding and seed production.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Fitomejoramiento/métodos , Polen/genética , Transcriptoma , Zea mays/genética , Regulación de la Expresión Génica de las Plantas , Infertilidad Vegetal/genética , Polen/metabolismo , Regiones Promotoras Genéticas , Semillas/genética , Semillas/metabolismo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA