Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Braz. J. Pharm. Sci. (Online) ; 58: e20766, 2022. graf
Artículo en Inglés | LILACS | ID: biblio-1420428

RESUMEN

Abstract Kombucha (tea and biocelluose) has been used worldwide due to its high nutritional, functional, and economic potential. This fermented tea has been used in folk medicine to treat several pathological conditions and its biocellulose in the industrial sector. In this context, this paper presents a scientific literature review on the main phytochemicals of Kombucha and respective biological activities to assess their potential uses. The tea has presented a wide range of bioactive compounds such as amino acids, anions, flavonoids, minerals, polyphenols, vitamins, and microorganisms. Moreover, its biocellulose is rich in fibers. These compounds contribute to various biological responses such as antioxidant, hepatoprotective, antitumoral, antidiabetic, and antihypercholesterolemic effects. In this sense, both the tea and its biocellulose are promising for human use. Besides, Kombucha presents itself as a drink option for vegetarians and/or those seeking healthier diets, as its biocellulose can bring metabolic benefits. Our review demonstrates that both can be used as functional foods and/or sources of bioactive compounds for food and industrial applications.


Asunto(s)
Té de Kombucha/análisis , Té de Kombucha/efectos adversos , Alimentos Funcionales/clasificación , Fermentación , Fitoquímicos/antagonistas & inhibidores
2.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670407

RESUMEN

Natural compounds such as herbal medicines and/or phyto-compounds from foods, have frequently been used to exert synergistic therapeutic effects with anti-brain disorder drugs, supplement the effects of nutrients, and boost the immune system. However, co-administration of natural compounds with the drugs can cause synergistic toxicity or impeditive drug interactions due to changes in pharmacokinetic properties (e.g., absorption, metabolism, and excretion) and various drug transporters, particularly brain transporters. In this review, natural compound-drug interactions (NDIs), which can occur during the treatment of brain disorders, are emphasized from the perspective of pharmacokinetics and cellular transport. In addition, the challenges emanating from NDIs and recent approaches are discussed.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encefalopatías/tratamiento farmacológico , Proteínas de Transporte de Membrana/metabolismo , Fitoquímicos , Plantas Medicinales , Animales , Transporte Biológico , Barrera Hematoencefálica/patología , Encefalopatías/metabolismo , Encefalopatías/patología , Interacciones Farmacológicas , Humanos , Fitoquímicos/agonistas , Fitoquímicos/antagonistas & inhibidores , Fitoquímicos/farmacocinética , Fitoquímicos/uso terapéutico
3.
Ann Clin Microbiol Antimicrob ; 17(1): 16, 2018 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-29609660

RESUMEN

BACKGROUND: Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported. METHODS: Computational approaches have been instrumental in designing and discovering new drugs for several diseases. The present study highlights the impact of ginger phytochemicals on Staphylococcus aureus SaHPPK. Herein, we have retrieved eight ginger phytochemicals from published literature and investigated their inhibitory interactions with SaHPPK. To authenticate our work, the investigation proceeds considering the known antibiotics alongside the phytochemicals. Molecular docking was performed employing GOLD and CDOCKER. The compounds with the highest dock score from both the docking programmes were tested for their inhibitory capability in vitro. The binding conformations that were seated within the binding pocket showing strong interactions with the active sites residues rendered by highest dock score were forwarded towards the molecular dynamic (MD) simulation analysis. RESULTS: Based on molecular dock scores, molecular interaction with catalytic active residues and MD simulations studies, two ginger phytochemicals, gingerenone-A and shogaol have been proposed as candidate inhibitors against Staphylococcus aureus. They have demonstrated higher dock scores than the known antibiotics and have represented interactions with the key residues within the active site. Furthermore, these compounds have rendered considerable inhibitory activity when tested in vitro. Additionally, their superiority was corroborated by stable MD results conducted for 100 ns employing GROMACS package. CONCLUSIONS: Finally, we suggest that gingerenone-A and shogaol may either be potential SaHPPK inhibitors or can be used as fundamental platforms for novel SaHPPK inhibitor development.


Asunto(s)
Catecoles/antagonistas & inhibidores , Diarilheptanoides/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fitoquímicos/antagonistas & inhibidores , Extractos Vegetales/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Zingiber officinale/química , Antibacterianos/farmacología , Sitios de Unión , Dominio Catalítico , Catecoles/química , Diarilheptanoides/química , Humanos , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Fitoquímicos/química , Extractos Vegetales/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA