Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.000
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Endocr Res ; 49(2): 106-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38597376

RESUMEN

BACKGROUND: Phytoestrogens have been praised for their beneficial health effects, whereas synthetic xenoestrogens have been connected to ailments. AIMS: To ascertain whether the toxicities of natural and synthetic estrogens differ, we examined the potent phytoestrogen 8-prenylnaringenin (8-PN), the common synthetic xenoestrogen tartrazine, and the physiological estrogen 17ß-estradiol (E2). METHODS: These three compounds were tested for cytotoxicity, cell proliferation and genotoxicity in human HepG2 and rat H4IIE hepatoma cells. RESULTS: All three estrogens elicited cytotoxicity at high concentrations in both cell lines. They also inhibited cell proliferation, with E2 being the most effective. They all tended to increase micronuclei formation. CONCLUSION: Natural estrogens were no less toxic than a synthetic one.


Asunto(s)
Proliferación Celular , Estradiol , Flavanonas , Tartrazina , Humanos , Animales , Ratas , Estradiol/farmacología , Flavanonas/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Tartrazina/farmacología , Carcinoma Hepatocelular , Neoplasias Hepáticas/inducido químicamente , Células Hep G2 , Estrógenos/farmacología , Congéneres del Estradiol/farmacología , Fitoestrógenos/farmacología
2.
Phytomedicine ; 128: 155425, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518634

RESUMEN

BACKGROUND: Intestinal barrier dysfunction caused by the disrupted balance of group 3 innate lymphoid cells (ILC3)/group 1 innate lymphoid cells (ILC1) is a significant feature in the pathogenesis of inflammatory bowel disease (IBD). Activation of aryl hydrocarbon receptor (AhR) signaling contributes to the maintenance of ILC3/ILC1 balance. Wogonin, a natural flavonoid from Scutellaria baicalensis Georgi, can repair intestinal mucosal damage of IBD. However, it remains unclear if wogonin can exert a therapeutic effect by activating the AhR pathway to regulate the plasticity of ILC3/ILC1. PURPOSE: In this study, we investigated the immunomodulatory effects of wogonin on IBD and its potential mechanisms in vitro and in vivo. STUDY DESIGN AND METHODS: Chronic colitis was induced by four cycles of 2 % DSS treatment in mice. 20 mg kg-1/day wogonin was administrated by oral gavage and mice were treated intraperitoneally with 10 mg kg-1/2 days CH223191 to block the AhR pathway. Colon tissues were processed for histopathological examination and evaluation of the epithelial barrier function by immunohistochemistry. The activation of the AhR pathway and the plasticity of ILC3/ILC1 were determined by western blot and flow cytometry. Then, we also detected the intestinal microflora and their metabolites by 16 s sequencing and non-targeted Metabolomics analysis. Furthermore, an in vitro culture system consisting of MNK3 cells and NCM460 cells, and a CETSA assay were performed to confirm the molecular mechanism. RESULTS: Wogonin ameliorated histological severity of the colon, decreased the secretion of inflammatory factors, and increased tight junction proteins in colitis mice. These effects are associated with the tendency of conversion from ILC3 to ILC1 prevented by wogonin, which was offset by AhR antagonist CH223191. In addition, wogonin exerted the curative effect by altering gut microbiota to produce metabolites such as Kynurenic acid, and 1H-Indole-3-carboxaldehyde as AhR endogenous ligands. In vitro data further verified that wogonin as an exogenous ligand directly binds to the structural domain of AhR by CETSA. Also, the supernatant of MNK-3 cells stimulated with wogonin enhanced expression of Occludin and Claudin1 in NCM460 cells induced by LPS. CONCLUSION: Cumulatively, our study illustrated that wogonin improved the outcomes of DSS-induced chronic colitis via regulating the plasticity of ILC3/ILC1. Its specific mechanism is to binding to AhR directly, and to activate the AhR pathway indirectly by altering the tryptophan metabolisms of gut microbiota.


Asunto(s)
Colitis , Flavanonas , Inmunidad Innata , Linfocitos , Ratones Endogámicos C57BL , Receptores de Hidrocarburo de Aril , Transducción de Señal , Flavanonas/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Ratones , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Linfocitos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Masculino , Scutellaria baicalensis/química , Mucosa Intestinal/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Sulfato de Dextran , Microbioma Gastrointestinal/efectos de los fármacos , Colon/efectos de los fármacos
3.
Pharmacol Res ; 202: 107124, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428704

RESUMEN

Metabolic syndrome has become major health problems in recent decades, and natural compounds receive considerable attention in the management of metabolic syndrome. Among them, naringin is abundant in citrus fruits and tomatoes. Many studies have investigated the therapeutic effects of naringin in metabolic syndrome. This review discusses in vitro and in vivo studies on naringin and implications for clinical trials on metabolic syndrome such as diabetes mellitus, obesity, nonalcoholic fatty liver disease, dyslipidemia, and hypertension over the past decades, overviews the molecular mechanisms by which naringin targets metabolic syndrome, and analyzes possible correlations between the different mechanisms. This review provides a theoretical basis for the further application of naringin in the treatment of metabolic syndrome.


Asunto(s)
Flavanonas , Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Humanos , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Obesidad/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico
4.
Phytomedicine ; 128: 155423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38518646

RESUMEN

BACKGROUND: Polycystic ovary syndrome is a metabolic and hormonal disorder that is closely linked to oxidative stress. Within individuals diagnosed with PCOS, changes occur in the ovaries, resulting in an excessive buildup of iron and peroxidation of lipids, both of which may be associated with the occurrence of ferroptosis. Baicalein, a flavonoid found in the roots of Scutellaria baicalensis and widely known as Chinese skullcap, is known for its anti-inflammatory and anti-ferroptotic properties, which protect against various diseases. Nevertheless, there has been no investigation into the impact of baicalein on polycystic ovary syndrome. PURPOSE: This study aimed to correlate ferroptosis with polycystic ovary syndrome and to assess the effects of baicalein on ovarian dysfunction and placental development in pregnant patients. STUDY DESIGN AND METHODS: Polycystic ovary syndrome was induced in a rat model through the administration of dehydroepiandrosterone, and these rats were treated with baicalein. Oxidative stress and inflammation levels were assessed in serum and ovaries, and tissue samples were collected for histological and protein analyses. Furthermore, different groups of female rats were mated with male rats to observe pregnancy outcomes and tissue samples were obtained for histological, protein, and RNA sequencing. Then, RNA sequencing of the placenta was performed to determine the key genes involved in ferroptosis negative regulation (FNR) signatures. RESULTS: Baicalein was shown to reduce ovarian oxidative stress and pathology. Baicalein also ameliorated polycystic ovary syndrome by decreasing lipid peroxidation and chronic inflammation and modulating mitochondrial functions and ferroptosis in the ovaries. Specifically, glutathione peroxidase and ferritin heavy chain 1 were considerably downregulated in polycystic ovary syndrome gravid rats compared to their expression in the control group, and most of these differences were reversed after baicalein intervention. CONCLUSIONS: Our findings, initially, indicated that baicalein could potentially enhance the prognosis of individuals suffering from polycystic ovary syndrome by reducing oxidative stress and ferroptosis, thus potentially influencing the formulation of a therapeutic approach to address this condition.


Asunto(s)
Ferroptosis , Flavanonas , Ovario , Estrés Oxidativo , Placenta , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Femenino , Flavanonas/farmacología , Ferroptosis/efectos de los fármacos , Animales , Estrés Oxidativo/efectos de los fármacos , Embarazo , Placenta/efectos de los fármacos , Placenta/metabolismo , Ovario/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Scutellaria baicalensis/química , Modelos Animales de Enfermedad , Peroxidación de Lípido/efectos de los fármacos , Masculino
5.
Phytomedicine ; 128: 155558, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547614

RESUMEN

BACKGROUND: The experimental autoimmune myocarditis (EAM) model is valuable for investigating myocarditis pathogenesis. M1-type macrophages and CD4+T cells exert key pathogenic effects on EAM initiation and progression. Baicalein (5,6,7-trihydroxyflavone, C15H10O5, BAI), which is derived from the Scutellaria baicalensis root, is a primary bioactive compound with potent anti-inflammatory and antioxidant properties. BAI exerts good therapeutic effects against various autoimmune diseases; however, its effect in EAM has not been thoroughly researched. PURPOSE: This study aimed to explore the possible inhibitory effect of BAI on M1 macrophage polarisation and CD4+T cell differentiation into Th1 cells via modulation of the JAK-STAT1/4 signalling pathway, which reduces the secretion of pro-inflammatory factors, namely, TNF-α and IFN-γ, and consequently inhibits TNF-α- and IFN-γ-triggered apoptosis in cardiomyocytes of the EAM model mice. STUDY DESIGN AND METHODS: Flow cytometry, immunofluorescence, real-time quantitative polymerase chain reaction (q-PCR), and western blotting were performed to determine whether BAI alleviated M1/Th1-secreted TNF-α- and IFN-γ-induced myocyte death in the EAM model mice through the inhibition of the JAK-STAT1/4 signalling pathway. RESULTS: These results indicate that BAI intervention in mice resulted in mild inflammatory infiltrates. BAI inhibited JAK-STAT1 signalling in macrophages both in vivo and in vitro, which attenuated macrophage polarisation to the M1 type and reduced TNF-α secretion. Additionally, BAI significantly inhibited the differentiation of CD4+T cells to Th1 cells and IFN-γ secretion both in vivo and in vitro by modulating the JAK-STAT1/4 signalling pathway. This ultimately led to decreased TNF-α and IFN-γ levels in cardiac tissues and reduced myocardial cell apoptosis. CONCLUSION: This study demonstrates that BAI alleviates M1/Th1-secreted TNF-α- and IFN-γ-induced cardiomyocyte death in EAM mice by inhibiting the JAK-STAT1/4 signalling pathway.


Asunto(s)
Apoptosis , Modelos Animales de Enfermedad , Flavanonas , Interferón gamma , Quinasas Janus , Miocarditis , Miocitos Cardíacos , Factor de Transcripción STAT1 , Transducción de Señal , Factor de Necrosis Tumoral alfa , Animales , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Quinasas Janus/metabolismo , Ratones , Flavanonas/farmacología , Masculino , Interferón gamma/metabolismo , Apoptosis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Miocarditis/tratamiento farmacológico , Factor de Transcripción STAT4/metabolismo , Enfermedades Autoinmunes/tratamiento farmacológico , Ratones Endogámicos BALB C , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Scutellaria baicalensis/química , Células TH1/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
6.
Phytother Res ; 38(4): 1951-1970, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38358770

RESUMEN

The herb Sophora flavescens displays anti-inflammatory activity and can provide a source of antipsoriatic medications. We aimed to evaluate whether S. flavescens extracts and compounds can relieve psoriasiform inflammation. The ability of flavonoids (maackiain, sophoraflavanone G, leachianone A) and alkaloids (matrine, oxymatrine) isolated from S. flavescens to inhibit production of cytokine/chemokines was examined in keratinocytes and macrophages. Physicochemical properties and skin absorption were determined by in silico molecular modeling and the in vitro permeation test (IVPT) to establish the structure-permeation relationship (SPR). The ethyl acetate extract exhibited higher inhibition of interleukin (IL)-6, IL-8, and CXCL1 production in tumor necrosis factor-α-stimulated keratinocytes compared to the ethanol and water extracts. The flavonoids demonstrated higher cytokine/chemokine inhibition than alkaloids, with the prenylated flavanones (sophoraflavanone G, leachianone A) led to the highest suppression. Flavonoids exerted anti-inflammatory effects via the extracellular signal-regulated kinase, p38, activator protein-1, and nuclear factor-κB signaling pathways. In the IVPT, prenylation of the flavanone skeleton significantly promoted skin absorption from 0.01 to 0.22 nmol/mg (sophoraflavanone G vs. eriodictyol). Further methoxylation of a prenylated flavanone (leachianone A) elevated skin absorption to 2.65 nmol/mg. Topical leachianone A reduced the epidermal thickness in IMQ-treated mice by 47%, and inhibited cutaneous scaling and cytokine/chemokine overexpression at comparable levels to a commercial betamethasone product. Thus, prenylation and methoxylation of S. flavescens flavanones may enable the design of novel antipsoriatic agents.


Asunto(s)
Alcaloides , Flavanonas , Sophora , Ratones , Animales , Flavonoides/química , Sophora flavescens , Sophora/química , Flavanonas/farmacología , Flavanonas/química , Prenilación , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Citocinas , Quimiocinas
7.
Pharmacol Res ; 199: 107032, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061594

RESUMEN

Cancer is a leading cause of death worldwide. The burden of cancer incidence and mortality is increasing rapidly. New approaches to cancer prevention and treatment are urgently needed. Natural products are reliable and powerful sources for anticancer drug discovery. Baicalin and baicalein, two major flavones isolated from Scutellaria baicalensis Georgi, a multi-purpose traditional medicinal plant in China, exhibit anticancer activities against multiple cancers. Of note, these phytochemicals exhibit extremely low toxicity to normal cells. Besides their cytotoxic and cytostatic activities toward diverse tumor cells, recent studies demonstrated that baicalin and baicalein modulate a variety of tumor stromal cells and extracellular matrix (ECM) in the tumor microenvironment (TME), which is essential for tumorigenesis, cancer progression and metastasis. In this review, we summarize the therapeutic potential and the mechanism of action of baicalin and baicalein in the regulation of tumor microenvironmental immune cells, endothelial cells, fibroblasts, and ECM that reshape the TME and cancer signaling, leading to inhibition of tumor angiogenesis, progression, and metastasis. In addition, we discuss the biotransformation pathways of baicalin and baicalein, related therapeutic challenges and the future research directions to improve their bioavailability and clinical anticancer applications. Recent advances of baicalin and baicalein warrant their continued study as important natural ways for cancer interception and therapy.


Asunto(s)
Flavanonas , Neoplasias , Humanos , Microambiente Tumoral , Células Endoteliales/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoides/metabolismo , Flavanonas/farmacología , Flavanonas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología
8.
Bioorg Med Chem Lett ; 96: 129491, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37778427

RESUMEN

Baicalin, a glucuronic flavone, is the major active component in the medicinal plant Scutellaria baicalensis. Herein, baicalin was irradiated by γ-rays to afford four unusual flavanones, baicalinols A (2), B (3), and C (4) and peroxybaicaleinol (5), and two known flavones, oroxylin A (6) and baicalein (7). The structures of the hydroxymethylated products were elucidated using nuclear magnetic resonance spectroscopy and mass spectrometry, and their absolute configuration was established using electronic circular dichroism spectroscopy. Novel hydroxymethylated flavanones 2 and 3 suppressed both nitric oxide (NO) production and the expression of inducible NO synthase and showed significantly higher anti-inflammatory activities in lipopolysaccharide-stimulated macrophages than the parent compound. These newly generated hydroxymethylated flavanones can be potentially used for treating inflammatory diseases.


Asunto(s)
Flavanonas , Plantas Medicinales , Óxido Nítrico , Flavonoides/farmacología , Flavonoides/química , Flavanonas/farmacología , Scutellaria baicalensis/química , Plantas Medicinales/química
9.
Medicine (Baltimore) ; 102(42): e35460, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37861538

RESUMEN

OBJECTIVE: This study aimed to use network pharmacology to investigate the molecular mechanisms and potential targets of naringenin (NR) for nonalcoholic fatty liver disease (NAFLD) treatment to offer new drug development ideas. METHODS: The structure and compound information of NR were obtained from PubChem and the traditional Chinese medicine system pharmacology database and analysis platform. The traditional Chinese medicine system pharmacology database and analysis platform Database, Comparative Toxicogenomics Database and Encyclopedia of Traditional Chinese Medicine Database were then used to predict the related targets of NR. Online mendelian inheritance in man, Disgenet, Gene cards, The therapeutic target database and Drug bank were used to screen NAFLD targets, and the intersection analysis was performed with the targets of NR active components to obtain the targets of NR in the treatment of NAFLD. The protein-protein interaction network of therapeutic targets was constructed by protein-protein interaction networks functional enrichment analysis 11.0, and gene ontology (GO) functional enrichment analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis of therapeutic targets was performed by Metascape platform. RESULTS: In this study, 171 NR targets and 1748 potential targets of NAFLD were screened, and 89 crossover targets and 16 core targets were screened and finally obtained. A total of 176 GO items were obtained by GO enrichment analysis (P < .05), including 389 biological process, 6 cell composition and 30 molecular function. A total of 137 signaling pathways were obtained by Kyoto encyclopedia of genes and genomes pathway enrichment and screening (P < .05). The core targets of NR in the treatment of NAFLD are TP53, CASP3, PRKCA, AKT1, RELA, PPARG, NCOA2, CYP1A1, ESR1, MAPK3, STAT3, JAK1, MAPK1, TNF, PPARA and PRKCB. Enrichment analysis showed that NR mainly involved in biological processes such as cellular response to nitrogen compound, regulation of miRNA transcription and negative regulation of miRNA-mediated gene silencing. It regulates Hepatitis B, Lipid and atherosclerosis, cytomegalovirus infection, Hepatitis C, AGE-RAGE signaling pathway in diabetic patients complications and other ways play a role in the treatment of NAFLD. CONCLUSIONS: The therapeutic effect of NR on NAFLD has the characteristics of multi-targets and multi-pathways, which provides a preliminary theoretical basis for clinical trials and the development of new drugs.


Asunto(s)
Medicamentos Herbarios Chinos , Flavanonas , MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Farmacología en Red , Flavanonas/farmacología , Flavanonas/uso terapéutico , Medicina Tradicional China
10.
Am J Chin Med ; 51(8): 2243-2262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903716

RESUMEN

Radiotherapy plays a crucial role in the multimodal treatment of breast cancer. However, radioresistance poses a significant challenge to its effectiveness, hindering successful cancer therapy. Emerging evidence indicates that Nrf2 and HIF-1[Formula: see text] are critical regulators of cellular anti-oxidant responses and that their overexpression significantly promotes radioresistance. Wogonin (WG), the primary component isolated from Scutellaria baicalensis, exhibits potential antitumor and reversal of multidrug resistance activities. Nevertheless, the role of WG in radioresistance remains unclear. This study aims to explore the effects of WG on the radioresistance of breast cancer. Our results indicate that Nrf2 and HIF-1[Formula: see text] overexpression was observed in breast cancer tissues and was correlated with the histological grading of the disease. Radiation further increased the levels of Nrf2 and HIF-1[Formula: see text] in breast cancer cells. However, WG demonstrated the ability to induce cell apoptosis and reverse radioresistance by inhibiting the Nrf2/HIF-1[Formula: see text] pathway. These effects were also confirmed in xenograft mice models. Mechanistically, WG enhanced the level of the Nrf2 inhibitor Keap1 through reducing CpG methylation in the promoter region of the Keap1 gene. Consequently, the Nrf2/HIF-1[Formula: see text] pathway, along with the Nrf2- and HIF-1[Formula: see text]-dependent protective responses, were suppressed. Taken together, our findings demonstrate that WG can epigenetically regulate the Keap1 gene, inhibit the Nrf2/HIF-1[Formula: see text] pathway, induce apoptosis in breast cancer cells, and diminish acquired radioresistance. This study offers potential strategies to overcome the limitations of current radiotherapy for breast cancer.


Asunto(s)
Neoplasias de la Mama , Flavanonas , Humanos , Ratones , Animales , Femenino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/radioterapia , Flavanonas/farmacología
11.
Biosci Biotechnol Biochem ; 87(12): 1514-1522, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37667527

RESUMEN

Although herbs and spices have been used in traditional medicine for more than a century owing to their health benefits, the associated underlying mechanism is still not clear. Since the G protein-coupled receptor 35 (GPR35) has been linked to exert various antioxidant and anti-inflammatory effects, we screened 19 different herbs and spices for possible GPR35 agonist(s) to understand the GPR35-dependent functions of herbs and spices. Among the screened extracts, the ethyl acetate extract of thyme exhibited a remarkable GPR35 agonistic activity. Activity-guided separations allowed us to identify 2 polyphenolic phytochemicals, eriodictyol and thymonin, acting as GPR35 agonists. Both eriodictyol and thymonin showed a potent and specific agonist activity toward GPR35 with half maximal effective concentration values of 5.48 and 8.41 µm, respectively. These findings indicate that these phytochemicals may have beneficial health effects upon GPR35 activation.


Asunto(s)
Flavanonas , Flavanonas/farmacología , Especias , Antioxidantes , Receptores Acoplados a Proteínas G
12.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446743

RESUMEN

Ovarian cancer (OC) is one of the most common types of cancer in women with a high mortality rate, and the treatment of OC is prone to high recurrence rates and side effects. Scutellaria baicalensis (SB) is a herbal medicine with good anti-cancer activity, and several studies have shown that SB and its flavonoids have some anti-OC properties. This paper elucidated the common pathogenesis of OC, including cell proliferation and cell cycle regulation, cell invasion and metastasis, apoptosis and autophagy, drug resistance and angiogenesis. The mechanisms of SB and its flavonoids, wogonin, baicalein, baicalin, Oroxylin A, and scutellarein, in the treatment of OC, are revealed, such as wogonin inhibits proliferation, induces apoptosis, inhibits invasion and metastasis, and increases the cytotoxicity of the drug. Baicalein also inhibits vascular endothelial growth factor (VEGF) expression etc. Analyzing their advantages and disadvantages in treating OC provides a new perspective on the role of SB and its flavonoids in OC treatment. It serves as a resource for future OC research and development.


Asunto(s)
Flavanonas , Neoplasias Ováricas , Femenino , Humanos , Scutellaria baicalensis , Factor A de Crecimiento Endotelial Vascular , Flavanonas/farmacología , Flavanonas/uso terapéutico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Extractos Vegetales/farmacología , Neoplasias Ováricas/tratamiento farmacológico
13.
Fitoterapia ; 168: 105542, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37172633

RESUMEN

Seven new C-geranylated flavanones, fortunones F - L (1-7), were isolated from the fresh mature fruits of Paulownia fortunei (Seem.) Hemsl. Their structures were determined by extensive spectroscopic data interpretation (UV, IR, HRMS, NMR, and CD). These new isolated compounds were all with a cyclic side chain modified from the geranyl group. Among them, compounds 1-3 all possessed a dicyclic geranyl modification, which was described firstly for Paulownia C-geranylated flavonoids. All the isolated compounds were subjected to the cytotoxic assay on human lung cancer cell A549, mouse prostate cancer cell RM1 and human bladder cancer cell T24, respectively. Results indicated A549 cell line was more sensitive to C-geranylated flavanones than the other two cancer cell lines and compounds 1, 7 and 8 exhibited potential anti-tumor effects (IC50 ˂ 10 µM). Further research revealed the effective C-geranylated flavanones could exert their anti-proliferative activity on A549 cells by inducing apoptosis and blocking cells in G1 phase.


Asunto(s)
Flavanonas , Neoplasias , Animales , Ratones , Humanos , Frutas/química , Estructura Molecular , Flavanonas/farmacología , Flavanonas/química , Flavonoides/química , Línea Celular , Neoplasias/tratamiento farmacológico
14.
Microbiol Spectr ; 11(3): e0470222, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37070985

RESUMEN

As multidrug-resistant pathogens emerge and spread rapidly, novel antibiotics urgently need to be discovered. With a dwindling antibiotic pipeline, antibiotic adjuvants might be used to revitalize existing antibiotics. In recent decades, traditional Chinese medicine has occupied an essential position in adjuvants of antibiotics. This study found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens. Mechanism studies have shown that baicalein causes membrane disruption by attaching to phospholipids on the Gram-negative bacterial cytoplasmic membrane and lipopolysaccharides on the outer membrane. This process facilitates the entry of doxycycline into bacteria. Through collaborative strategies, baicalein can also increase the production of reactive oxygen species and inhibit the activities of multidrug efflux pumps and biofilm formation to potentiate antibiotic efficacy. Additionally, baicalein attenuates the lipopolysaccharide-induced inflammatory response in vitro. Finally, baicalein can significantly improve doxycycline efficacy in mouse lung infection models. The present study showed that baicalein might be considered a lead compound, and it should be further optimized and developed as an adjuvant that helps combat antibiotic resistance. IMPORTANCE Doxycycline is an important broad-spectrum tetracycline antibiotic used for treating multiple human infections, but its resistance rates are recently rising globally. Thus, new agents capable of boosting the effectiveness of doxycycline need to be discovered. In this study, it was found that baicalein potentiates doxycycline against multidrug-resistant Gram-negative pathogens in vitro and in vivo. Due to its low cytotoxicity and resistance, the combination of baicalein and doxycycline provides a valuable clinical reference for selecting more effective therapeutic strategies for treating infections caused by multidrug-resistant Gram-negative clinical isolates.


Asunto(s)
Flavanonas , Infecciones por Bacterias Gramnegativas , Animales , Ratones , Humanos , Doxiciclina/farmacología , Doxiciclina/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Flavanonas/farmacología , Flavanonas/uso terapéutico , Bacterias Gramnegativas , Lipopolisacáridos , Pruebas de Sensibilidad Microbiana , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología
15.
Chem Biodivers ; 20(3): e202201048, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36879412

RESUMEN

A new isopropyl chromone (1) and a new flavanone glucoside (2) together with eleven known compounds (3-13) were isolated from the leaves of Syzygium cerasiforme (Blume) Merr. & L.M.Perry. Their structures were elucidated as 5,7-dihydroxy-2-isopropyl-6,8-dimethyl-4H-chromen-4-one (1), 5,7-dihydroxyflavanone 7-O-ß-D-(6''-O-galloylglucopyranoside) (2), strobopinin (3), demethoxymatteucinol (4), pinocembrin-7-O-ß-D-glucopyranoside (5), (2S)-hydroxynaringenin-7-O-ß-D-glucopyranoside (6), afzelin (7), quercetin (8), kaplanin (9), endoperoxide G3 (10), grasshopper (11), vomifoliol (12), litseagermacrane (13) by the analysis of HR-ESI-MS, NMR, and CD spectral data. Compounds 1, 2, 5, 6 and 10 inhibited NO production on LPS-activated RAW264.7 cells with IC50 values of 12.28±1.15, 8.52±1.62, 7.68±0.87, 9.67±0.57, and 6.69±0.34 µM, respectively, while the IC50 values of the other compounds ranging from 33.38±0.78 to 86.51±2.98 µM, compared to that of the positive control, NG -monomethyl-L-arginine acetate (L-NMMA) with an IC50 value of 32.50±1.00 µM.


Asunto(s)
Flavanonas , Syzygium , Cromonas/farmacología , Flavanonas/farmacología , Glucósidos/farmacología , Glucósidos/química , Estructura Molecular , Óxido Nítrico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Syzygium/química
16.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902160

RESUMEN

Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).


Asunto(s)
Flavanonas , Scutellaria baicalensis , Humanos , Flavanonas/farmacología , Extractos Vegetales/farmacología , Flavonoides/farmacología , Antioxidantes/farmacología , Raíces de Plantas
17.
Phytother Res ; 37(4): 1293-1308, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36751854

RESUMEN

Citrus peel has long been used in traditional medicine in Asia to treat common cold, dyspepsia, cough, and phlegm. Narirutin-a flavanone-7-O-glycoside-is the major flavonoid in citrus peel, and has anti-oxidative, anti-allergic, and anti-inflammatory activities. However, the anti-inflammatory mechanism of narirutin has not been fully elucidated. This study is aimed to investigate the effects of narirutin on the Nod-like receptor protein 3 (NLRP3)-mediated inflammatory response in vitro and in vivo, and determine the underlying mechanism. THP-1 differentiated macrophages and bone marrow-derived macrophages (BMDMs) were used for in vitro experiments, while dextran sulfate sodium (DSS)-induced colitis and alum-induced peritonitis mouse models were constructed to test inflammation in vivo. Narirutin suppressed secretion of interleukin (IL)-1ß and pyroptosis in lipopolysaccharide (LPS)/ATP-stimulated macrophages. Narirutin decreased the expression of NLRP3 and IL-1ß in the LPS-priming step through inhibition of NF-κB, MAPK and PI3K /AKT signaling pathways. Narirutin inhibited NLRP3-ASC interaction to suppress NLRP3 inflammasome assembly. Furthermore, oral administration of narirutin (300 mg/kg) alleviated inflammation symptoms in mice with peritonitis and colitis. These results suggest that narirutin exerts its anti-inflammatory activity by suppressing NLRP3 inflammasome activation via inhibition of the NLRP3 inflammasome priming processes and NLRP3-ASC interaction in macrophages.


Asunto(s)
Colitis , Flavanonas , Peritonitis , Animales , Ratones , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR/metabolismo , Lipopolisacáridos/farmacología , Macrófagos , Flavanonas/farmacología , Colitis/inducido químicamente , Inflamación/metabolismo , Antiinflamatorios/farmacología , Peritonitis/metabolismo
18.
Sci Rep ; 13(1): 132, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599852

RESUMEN

Naringenin is a citrus flavonoid with various biological functions and a potential therapeutic agent for skin diseases, such as UV radiation and atopic dermatitis. The present study investigates the therapeutic effect and pharmacological mechanism of naringenin on chronic wounds. Using network pharmacology, we identified 163 potential targets and 12 key targets of naringenin. Oxidative stress was confirmed to be the main biological process modulated by naringenin. The transcription factor p65 (RELA), alpha serine/threonine-protein kinase (AKT1), mitogen-activated protein kinase 1 (MAPK1) and mitogen-activated protein kinase 3 (MAPK3) were identified as common targets of multiple pathways involved in treating chronic wounds. Molecular docking verified that these four targets stably bound naringenin. Naringenin promoted wound healing in mice in vivo by inhibiting wound inflammation. Furthermore, in vitro experiments showed that a low naringenin concentration did not significantly affect normal skin cell viability and cell apoptosis; a high naringenin concentration was cytotoxic and reduced cell survival by promoting apoptosis. Meanwhile, comprehensive network pharmacology, molecular docking and in vivo and in vitro experiments revealed that naringenin could treat chronic wounds by alleviating oxidative stress and reducing the inflammatory response. The underlying mechanism of naringenin in chronic wound therapy involved modulating the RELA, AKT1 and MAPK1/3 signalling pathways to inhibit ROS production and inflammatory cytokine expression.


Asunto(s)
Flavanonas , Farmacología en Red , Cicatrización de Heridas , Animales , Ratones , Flavanonas/farmacología , Flavanonas/uso terapéutico , Simulación del Acoplamiento Molecular , Farmacología en Red/métodos , Estrés Oxidativo/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos
19.
Chem Biol Interact ; 371: 110344, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623717

RESUMEN

Angiogenesis is a biological process in which resting endothelial cells start proliferating, migrating and forming new blood vessels. Angiogenesis is particularly important in the repair of bone tissue defects. Naringin (NG) is the main active monomeric component of traditional Chinese medicine, which has various biological activities, such as anti-osteoporosis, anti-inflammatory, blood activation and microcirculation improvement. At present, the mechanism of naringin in the process of angiogenesis is not clear. PIWI protein-interacting RNA (piRNA) is a small noncoding RNA (sncRNA) that has the functions of regulating protein synthesis, regulating the structure of chromatin and the genome, stabilizing mRNA and others. Several studies have demonstrated that piRNAs can mediate the angiogenesis process. Whether naringin can interfere with the process of angiogenesis by regulating piRNAs and related target genes deserves further exploration. Thus, the purpose of this study was to validate the potential angiogenic and bone regeneration properties and related mechanisms of naringin both in vivo and in vitro.


Asunto(s)
Flavanonas , ARN de Interacción con Piwi , ARN Interferente Pequeño/metabolismo , Células Endoteliales/metabolismo , Flavanonas/farmacología
20.
Crit Rev Food Sci Nutr ; 63(27): 8868-8899, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35357240

RESUMEN

Naringenin is flavorless, water insoluble active principle belonging to flavanone subclass. It exhibits a diverse pharmacological profile as well as divine nutraceutical values. Although several researchers have explored this phytoconstituent to evaluate its promising properties, still it has not gained recognition at therapeutic levels and more clinical investigations are still required. Also the neutraceutical potential has limited marketed formulations. This compilation includes the description of reported therapeutic potentials of naringenin in variety of pathological conditions alongwith the underlying mechanisms. Details of various analytical investigations carried on this molecule have been provided along with brief description of chemistry and structural activity relationship. In the end, various patents filed and clinical trial data has been provided. Naringenin has revealed promising pharmacological activities including cardiovascular diseases, neuroprotection, anti-diabetic, anticancer, antimicrobial, antiviral, antioxidant, anti-inflammatory and anti-platelet activity. It has been marketed in the form of nanoformulations, co-crystals, solid dispersions, tablets, capsules and inclusion complexes. It is also available in various herbal formulations as nutraceutical supplement. There are some pharmacokinetic issue with naringenin like poor absorption and low dissolution rate. Although these issues have been sorted out upto certain extent still further research to investigate the bioavailability of naringenin from herbal supplements and its clinical efficacy is essential.


A comprehensive compiled review is presented on source, health benefits, chemistry and analysis, and marketed products of naringenin.Naringenin is a promising phytoconstituent as nutraceutical.Valorization of fruit peels of citrus fruits is a critical step for food and nutraceutical industry.Structure-activity relationship of naringenin derivatives.Nano-formulations incorporating naringenin in themselves can be used for targeted delivery for critical disorders.Naringenin obtained from the peels can be efficiently used in breads, cookies, cakes and other food products.


Asunto(s)
Flavanonas , Flavanonas/farmacología , Suplementos Dietéticos , Antioxidantes/farmacología , Disponibilidad Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA