Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558193

RESUMEN

The neuroprotective properties of ginsenosides have been found to reverse the neurological damage caused by oxidation in many neurodegenerative diseases. However, the distribution of ginsenosides in different tissues of the main root, which was regarded as the primary medicinal portion in clinical practice was different, the specific parts and specific components against neural oxidative damage were not clear. The present study aims to screen and determine the potential compounds in different parts of the main root in ginseng. Comparison of the protective effects in the main root, phloem and xylem of ginseng on hydrogen peroxide-induced cell death of SH-SY5Y neurons was investigated. UPLC-Q-Exactive-MS/MS was used to quickly and comprehensively characterize the chemical compositions of the active parts. Network pharmacology combined with a molecular docking approach was employed to virtually screen for disease-related targets and potential active compounds. By comparing the changes before and after Content-Effect weighting, the compounds with stronger anti-nerve oxidative damage activity were screened out more accurately. Finally, the activity of the selected monomer components was verified. The results suggested that the phloem of ginseng was the most effective part. There were 19 effective compounds and 14 core targets, and enriched signaling pathway and biological functions were predicted. After Content-Effect weighting, compounds Ginsenosides F1, Ginsenosides Rf, Ginsenosides Rg1 and Ginsenosides Rd were screened out as potential active compounds against neural oxidative damage. The activity verification study indicated that all four predicted ginsenosides were effective in protecting SH-SY5Y cells from oxidative injury. The four compounds can be further investigated as potential lead compounds for neurodegenerative diseases. This also provides a combined virtual and practical method for the simple and rapid screening of active ingredients in natural products.


Asunto(s)
Ginsenósidos , Neuroblastoma , Panax , Humanos , Espectrometría de Masas en Tándem/métodos , Ginsenósidos/química , Panax/química , Simulación del Acoplamiento Molecular , Floema/metabolismo , Estrés Oxidativo , Cromatografía Líquida de Alta Presión/métodos
2.
PLoS Pathog ; 18(12): e1011062, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36574436

RESUMEN

Tobacco mosaic virus movement protein (TMV MP) is essential for virus spread between cells. To accomplish its task, TMV MP binds viral RNA, interacts with components of the cytoskeleton, and increases the size exclusion limit (SEL) of plasmodesmata. Plasmodesmata are gated intercellular channels that allow passage of small molecules and macromolecules, including RNA and protein, between plant cells. Moreover, plasmodesmata are diverse and those connecting different cell types appear to have unique mechanisms to regulate macromolecular trafficking, which likely contributes to the establishment of distinct cell boundaries. Consequently, TMV MP might be competent to mediate RNA transport through some but not all plasmodesmal gates. Due to a lack of viral mutants defective for movement between specific cell types, the ability of TMV MP in this regard is incompletely understood. In contrast, a number of trafficking impaired Potato spindle tuber viroid (PSTVd) mutants have been identified. PSTVd is a systemically infectious non-coding RNA that nevertheless can perform all functions required for replication as well as cell-to-cell and systemic spread. Previous studies have shown that PSTVd employs different structure and sequence elements to move between diverse cell types in host plants, and mutants defective for transport between specific cell types have been identified. Therefore, PSTVd may serve as a tool to analyze the functions of MPs of viral and cellular origin. To probe the RNA transport activity of TMV MP, transgenic plants expressing the protein were inoculated with PSTVd mutants. Remarkably, TMV MP complemented a PSTVd mutant defective for mesophyll entry but could not support two mutants impaired for phloem entry, suggesting it fails to productively interface with plasmodesmata at the phloem boundary and that additional viral and host factors may be required. Consistent with this idea, TMV co-infection, but not the combination of MP and coat protein (CP) expression, was able to complement one of the phloem entry mutants. These observations suggest that phloem loading is a critical impediment to establishing systemic infection that could involve the entire ensemble of TMV proteins. They also demonstrate a novel strategy for analysis of MPs.


Asunto(s)
Solanum tuberosum , Virus del Mosaico del Tabaco , Viroides , Virus del Mosaico del Tabaco/metabolismo , Viroides/genética , Solanum tuberosum/metabolismo , Floema/genética , Floema/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Movimiento Viral en Plantas/genética , Proteínas de Movimiento Viral en Plantas/metabolismo , Nicotiana
3.
J Plant Physiol ; 275: 153729, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35728501

RESUMEN

The aims of this study were: i) to investigate mature plant resistance (MPR) against four strains of Potato virus Y (PVYO, PVYN, PVYNTN and PVYN-Wi) in potato cultivars that differ in maturity (e.g. early or maincrop) at different developmental stages, and ii) to determine whether phloem translocation of photoassimilates at different stages including the source-sink transition influences MPR. The data showed that MPR was functional by the flowering stage in all cultivars, and that the host-pathogen interaction is highly complex, with all three variables (potato cultivar, virus strain and developmental stage of infection) having a significant effect on the outcome. However, virus strain was the most important factor, and MPR was less effective in protecting tubers from recombinant virus strains (PVYNTN and PVYN-Wi). Development of MPR was unrelated to foliar phloem connectivity, which was observed at all developmental stages, but a switch from symplastic to apoplastic phloem unloading early in tuber development may be involved in the prevention of tuber infections with PVYO. Recombinant virus strains were more infectious than parental strains and PVYNTN has a more effective silencing suppressor than PVYO, another factor that may contribute to the efficiency of MPR. The resistance conferred by MPR against PVYO or PVYN may be associated with or enhanced by the presence of the corresponding strain-specific HR resistance gene in the cultivar.


Asunto(s)
Potyvirus , Solanum tuberosum , Interacciones Huésped-Patógeno , Floema , Enfermedades de las Plantas , Potyvirus/genética , Solanum tuberosum/genética
4.
Plant Cell Environ ; 45(6): 1749-1764, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35348214

RESUMEN

Phosphorus (P) is an essential macronutrient for plant growth. In deciduous trees, P is remobilized from senescing leaves and stored in perennial tissues during winter for further growth. Annual internal recycling and accumulation of P are considered an important strategy to support the vigorous growth of trees. However, the pathways of seasonal re-translocation of P and the molecular mechanisms of this transport have not been clarified. Here we show the seasonal P re-translocation route visualized using real-time radioisotope imaging and the macro- and micro-autoradiography. We analysed the seasonal re-translocation P in poplar (Populus alba. L) cultivated under 'a shortened annual cycle system', which mimicked seasonal phenology in a laboratory. From growing to senescing season, sink tissues of 32 P and/or 33 P shifted from young leaves and the apex to the lower stem and roots. The radioisotope P re-translocated from a leaf was stored in phloem and xylem parenchyma cells and redistributed to new shoots after dormancy. Seasonal expression profile of phosphate transporters (PHT1, PHT5 and PHO1 family) was obtained in the same system. Our results reveal the seasonal P re-translocation routes at the organ and tissue levels and provide a foothold for elucidating its molecular mechanisms.


Asunto(s)
Populus , Floema/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Populus/metabolismo , Árboles/metabolismo , Xilema/metabolismo
5.
Nat Commun ; 13(1): 561, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091578

RESUMEN

Plants use nitrate and ammonium as major nitrogen (N) sources, each affecting root development through different mechanisms. However, the exact signaling pathways involved in root development are poorly understood. Here, we show that, in Arabidopsis thaliana, either disruption of the cell wall-localized ferroxidase LPR2 or a decrease in iron supplementation efficiently alleviates the growth inhibition of primary roots in response to NH4+ as the N source. Further study revealed that, compared with nitrate, ammonium led to excess iron accumulation in the apoplast of phloem in an LPR2-dependent manner. Such an aberrant iron accumulation subsequently causes massive callose deposition in the phloem from a resulting burst of reactive oxygen species, which impairs the function of the phloem. Therefore, ammonium attenuates primary root development by insufficiently allocating sucrose to the growth zone. Our results link phloem iron to root morphology in response to environmental cues.


Asunto(s)
Compuestos de Amonio/metabolismo , Arabidopsis/metabolismo , Hierro/metabolismo , Nitrógeno/metabolismo , Floema/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Mutación , Nitratos/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
6.
J Plant Physiol ; 265: 153488, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34416599

RESUMEN

Along with the increase in size required for optimal colonization of terrestrial niches, channels for bidirectional bulk transport of materials in land plants evolved during a period of about 100 million years. These transport systems are essentially still in operation - though perfected over the following 400 million years - and make use of hydrostatic differentials. Substances are accumulated or released at the loading and unloading ends, respectively, of the transport channels. The intermediate stretch between the channel termini is bifunctional and executes orchestrated release and retrieval of solutes. Analyses of anatomical and physiological data demonstrate that the release/retrieval zone extends deeper into sources and sinks than is commonly thought and covers usually much more than 99% of the translocation stretch. This review sketches the significance of events in the intermediate stretch for distribution of organic materials over the plant body. Net leakage from the channels does not only serve maintenance and growth of tissues along the pathway, but also diurnal, short-term or seasonal storage of reserve materials, and balanced distribution of organic C- and N-compounds over axial and terminal sinks. Release and retrieval are controlled by plasma-membrane transporters at the vessel/parenchyma interface in the contact pits along xylem vessels and by plasma-membrane transporters at the interface between companion cells and phloem parenchyma along sieve tubes. The xylem-to-phloem pathway vice versa is a bifacial, radially oriented system comprising a symplasmic pathway, of which entrance and exit are controlled at specific membrane checkpoints, and a parallel apoplasmic pathway. A broad range of specific sucrose and amino-acid transporters are deployed at the checkpoint plasma membranes. SUCs, SUTs, STPs, SWEETs, and AAPs, LTHs, CATs are localized to the plasma membranes in question, both in monocots and eudicots. Presence of Umamits in monocots is uncertain. There is some evidence for endo- and exocytosis at the vessel/parenchyma interface supplementary to the transporter-mediated uptake and release. Actions of transporters at the checkpoints are equally decisive for storage and distribution of amino acids and sucrose in monocots and eudicots, but storage and distribution patterns may differ between both taxa. While the majority of reserves is sequestered in vascular parenchyma cells in dicots, lack of space in monocot vasculature urges "outsourcing" of storage in ground parenchyma around the translocation path. In perennial dicots, specialized radial pathways (rays) include the sites for seasonal alternation of storage and mobilization. In dicots, apoplasmic phloem loading and a correlated low rate of release along the path would favour supply with photoassimilates of terminal sinks, while symplasmic phloem loading and a correlated higher rate of release along the path favours supply of axial sinks and transfer to the xylem. The balance between the resource acquisition by terminal and axial sinks is an important determinant of relative growth rate and, hence, for the fitness of plants in various habitats. Body enlargement as the evolutionary drive for emergence of vascular systems and mass transport propelled by hydrostatic differentials.


Asunto(s)
Aminoácidos/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Floema/metabolismo , Sacarosa/metabolismo , Xilema/metabolismo , Transporte Biológico
7.
J Environ Manage ; 296: 113180, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34225049

RESUMEN

To evaluate the impact of the phloem flux on the pesticide uptake process in potatoes, this study developed a phloem-adjusted model based on the classic model that focuses mainly on the diffusion process. To achieve high-throughput simulations, we introduced an approximate method to convert the phloem flux transport process into a simple specific uptake rate of pesticides. In comparison to the classic model (non-phloem model), the phloem-adjusted model generated higher pesticide concentrations and bioconcentration factors (BCFs) in potatoes, owing to the additional pesticide uptake route introduced to the adjusted model. However, the simulation, which was conducted for 740 pesticides, indicated that for most pesticides, the phloem flux route did not contribute a significant portion of the pesticide uptake to potato tubers compared with the soil diffusion route. This was further characterized, using the differential factor (DF), to evaluate the difference in the simulated results between the proposed model and classic models. The largest DF (~0.11) was obtained for pesticides with moderate lipophilicity (i.e., log KOW of 3.0), indicating that only a difference of 10% was generated between the two models. The 10% increase in pesticide concentration (or BCFs) in potatoes, simulated by the phloem-adjusted model, was within the acceptable uncertainty interval of the classic model, thus confirming the validity of using the classic model to predict the pesticide uptake process in potato tubers. However, we found that the negligibility of the phloem flux route was not merely due to hydrophobicity (i.e., hypothesis of the classic model), but was related to the i) plant physiology of potatoes, ii) lipophilicity of a pesticide, and iii) the diffusivity of a pesticide in water. Although future studies on pesticide concentrations in phloem sap and the dynamic growth of potatoes need to be undertaken, the model developed in this study reveals a more comprehensive pesticide uptake process in potatoes, which can promote the understanding of the pesticide uptake mechanism in potatoes.


Asunto(s)
Plaguicidas , Solanum tuberosum , Plaguicidas/análisis , Floema/química , Suelo , Agua
8.
PLoS One ; 16(5): e0252085, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34015019

RESUMEN

Neck shrivel is a quality disorder of European plum (Prunus × domestica L.). It has been suggested that backflow in the xylem (from fruit to tree) could contribute to the incidence of neck shrivel in plum. The objective was to quantify rates of xylem, phloem and of transpiration flow in developing plum fruit. Using linear variable displacement transducers, changes in fruit volume were recorded 1) in un-treated control fruit, 2) in fruit that had their pedicels steam-girdled (phloem interrupted, xylem still functional) and 3) in detached fruit, left in the canopy (xylem and phloem interrupted). Xylem flow rates were occasionally negative in the early hours after sunrise, indicating xylem sap backflow from fruit to tree. Later in the day, xylem flows were positive and generally higher in daytime and lower at night. Significant phloem flow occurred in daytime, but ceased after sunset. During stage II (but not during stage III), the rates of xylem flow and transpiration were variable and closely related to atmospheric vapor pressure deficit. The relative contribution of xylem inflow to total sap inflow averaged 79% during stage II, decreasing to 25% during stage III. In contrast, phloem sap inflow averaged 21% of total sap inflow during stage II, increasing to 75% in stage III. Our results indicate that xylem backflow occurs early in the day. However, xylem backflow rates are considered too low to significantly contribute to the incidence of neck shrivel.


Asunto(s)
Floema/fisiología , Prunus domestica/fisiología , Xilema/fisiología , Transporte Biológico/fisiología , Frutas/fisiología , Transpiración de Plantas/fisiología
9.
Annu Rev Plant Biol ; 72: 551-580, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33788583

RESUMEN

Root and tuber crops have been an important part of human nutrition since the early days of humanity, providing us with essential carbohydrates, proteins, and vitamins. Today, they are especially important in tropical and subtropical regions of the world, where they help to feed an ever-growing population. Early induction and storage organ size are important agricultural traits, as they determine yield over time. During potato tuberization, environmental and metabolic status are sensed, ensuring proper timing of tuberization mediated by phloem-mobile signals. Coordinated cellular restructuring and expansion growth, as well as controlled storage metabolism in the tuber, are executed. This review summarizes our current understanding of potato tuber development and highlights similarities and differences to important tuberous root crop species like sweetpotato and cassava. Finally, we point out knowledge gaps that need to be filled before a complete picture of storage organ development can emerge.


Asunto(s)
Tubérculos de la Planta , Solanum tuberosum , Productos Agrícolas , Organogénesis de las Plantas , Floema
10.
PLoS One ; 16(2): e0245380, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33539358

RESUMEN

Aphid feeding behavior and performance on a given host plant are influenced by the plants' physical and chemical traits, including structural characters such as trichomes and nutritional composition. In this study, we determined the feeding behavior and performance of soybean aphids (Aphis glycines) on the stem, the adaxial (upper), and the abaxial (lower) leaf surfaces during early vegetative growth of soybean plants. Using the electrical penetration graph technique, we found that aphids feeding on the stem took the longest time to begin probing. Once aphids began probing, the sieve elements were more conducive to feeding, as evidenced by less salivation on the stem than either leaf surface. In whole-plant assays, stems harbored higher aphid populations, and aphids had shorter development time on stems than the adaxial and the abaxial leaf surfaces. We compared trichome density and length on the stem, the adaxial, and the abaxial leaf surfaces to investigate whether plant trichomes affected aphid feeding and performance. There were higher density and longer trichomes on stems, which likely resulted in aphids taking a longer time to probe. Still a negative impact on aphid population growth was not observed. Analysis of phloem sap composition revealed that vascular sap-enriched exudates from stems had higher sugars and amino acids than exudates from leaves. In artificial diet feeding assays, the population of aphids reared on a diet supplemented with stem exudates was higher than on a diet supplemented with leaf petiole exudates which is in agreement with results of the whole-plant assays. In summary, our findings suggest that the performance of soybean aphids on a specific plant location is primarily driven by accessibility and the quality of phloem composition rather than structural traits.


Asunto(s)
Áfidos/crecimiento & desarrollo , Conducta Alimentaria/fisiología , Glycine max/metabolismo , Nutrientes , Floema/metabolismo , Hojas de la Planta/metabolismo , Tallos de la Planta/metabolismo , Tricomas/metabolismo , Aminoácidos/metabolismo , Animales , Floema/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Glycine max/crecimiento & desarrollo , Azúcares/metabolismo , Tricomas/crecimiento & desarrollo
11.
Int J Mol Sci ; 22(3)2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33535646

RESUMEN

In potato plants, the phloem-mobile miR172 is involved in the sugar-dependent transmission of flower and tuber inducing signal transduction pathways and a clear link between solute transport and the induction of flowering and tuberization was demonstrated. The sucrose transporter StSUT4 seems to play an important role in the photoperiod-dependent triggering of both developmental processes, flowering and tuberization, and the phenotype of StSUT4-inhibited potato plants is reminiscent to miR172 overexpressing plants. The first aim of this study was the determination of the level of miR172 in sink and source leaves of StSUT4-silenced as well as StSUT4-overexpressing plants in comparison to Solanum tuberosum ssp. Andigena wild type plants. The second aim was to investigate the effect of sugars on the level of miRNA172 in whole cut leaves, as well as in whole in vitro plantlets that were supplemented with exogenous sugars. Experiments clearly show a sucrose-dependent induction of the level of mature miR172 in short time as well as long time experiments. A sucrose-dependent accumulation of miR172 was also measured in mature leaves of StSUT4-silenced plants where sucrose export is delayed and sucrose accumulates at the end of the light period.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , MicroARNs/genética , Solanum tuberosum/genética , Sacarosa/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Genes de Plantas , Proteínas de Transporte de Membrana/genética , Fenotipo , Floema/metabolismo , Fotoperiodo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Tubérculos de la Planta/genética , Plantas Modificadas Genéticamente , Transducción de Señal
12.
J Plant Res ; 134(1): 127-139, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33403567

RESUMEN

The Swartzia species are commonly known as bloodwood due to the red exudate released from the stem after injury. This exudate has aroused great interest, and an integrative study is essential to describe it in detail. Thus, this work aimed to identify the red exudate's secreting-site in S. flaemingii and S. langsdorffii, and determine if it is a latex or a resin. Samples of the stem bark and the secondary xylem were prepared for histological analysis. Fresh exudates were dissolved in deuterated methanol and analyzed by 1H-NMR; other samples were resuspended in MeOH:H2O (9:1), partitioned with organic solvents and analyzed by direct infusion mass spectrometry. Total phenolic and total flavonoid contents were determined spectrophotometrically, and antioxidant capacity was determined using ferric reducing antioxidant power assay. The results showed that the exudate is a red latex produced by articulated laticifers located among the phloem cells. The latex is composed of sucrose, catechin glucosides, chlorophyll derivatives, and hederagenin-type saponins. Both samples of S. flaemingii and S. langsdorffii presented high amounts of phenolics and flavonoids, as well as a strong antioxidant capacity. The anatomical study showed that the secreting-site of the Swartzia red exudates were laticifers. This finding allows us to exclude other substances such as resin or oleoresin, generally produced by secretory cavities or ducts. Furthermore, since laticifers are rare in Fabaceae, this finding is significant, and represents an essential taxonomic feature. The showy red color is due to the large amounts of flavonoids. This latex probably has a protective role against microorganisms and photodamage. The bioactive potential of this exudate inspires further studies, which may boost the economic importance of Swartzia.


Asunto(s)
Fabaceae , Antioxidantes , Exudados y Transudados , Flavonoides , Látex , Floema , Extractos Vegetales
13.
Plant Cell Environ ; 44(3): 792-806, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33314152

RESUMEN

Yield of harvestable plant organs depends on photosynthetic assimilate production in source leaves, long-distance sucrose transport and sink-strength. While photosynthesis optimization has received considerable interest for optimizing plant yield, the potential for improving long-distance sucrose transport has received far less attention. Interestingly, a recent potato study demonstrates that the tuberigen StSP6A binds to and reduces activity of the StSWEET11 sucrose exporter. While the study suggested that reducing phloem sucrose efflux may enhance tuber yield, the precise mechanism and physiological relevance of this effect remained an open question. Here, we develop the first mechanistic model for sucrose transport, parameterized for potato plants. The model incorporates SWEET-mediated sucrose export, SUT-mediated sucrose retrieval from the apoplast and StSP6A-StSWEET11 interactions. Using this model, we were able to substantiate the physiological relevance of the StSP6A-StSWEET11 interaction in the long-distance phloem for potato tuber yield, as well as to show the non-linear nature of this effect.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Floema/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Sacarosa/metabolismo , Proteínas de Transporte de Membrana/fisiología , Modelos Biológicos , Floema/fisiología , Proteínas de Plantas/fisiología , Solanum tuberosum/fisiología
14.
Plant Sci ; 301: 110638, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33218618

RESUMEN

Allocation of more resources to growth but less to defense causing growth vigor of invasive alien plant populations contributes to successful invasion. However, few studies has addressed to relationship between vascular development variation and this mechanism. In this study, a common garden experimentwas established to compare the growth and vascular bundle development between native and introduced populations of Solidago canadensis, which is a wide-distributed invasive species in China. Our results suggested that the rapid growth of introduced populations could be explained by the well-developed and highly lignified xylem; while native populations present more developed and highly lignified phloem, which contributed more resistance to the infection of Sclerotiun rofsii compared with introduced populations. This difference was resulted from tissue-specific tradeoff distribution of lignification related gene expression between xylem and phloem, which is regulated by upstream MYB transcription factors. Our study gives a novel insight of mechanism that explain invasion success: lignin-related gene transcription-mediated tissue-specific lignification of vascular bundle contributes tradeoffs in resource allocation between growth and defence capacity during successful invasion of S. canadensis.


Asunto(s)
Lignina/metabolismo , Solidago/crecimiento & desarrollo , China , Especies Introducidas , Especificidad de Órganos , Floema/crecimiento & desarrollo , Floema/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Haz Vascular de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/fisiología , Solidago/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Xilema/crecimiento & desarrollo , Xilema/fisiología
15.
Int J Biol Macromol ; 165(Pt B): 2303-2313, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33091474

RESUMEN

The present study aims to identify a potential substitute for the harmful synthetic fibers in the field of polymer composites. With this objective, a comprehensive characterization of Derris scandens stem fibers (DSSFs) was carried out. The presence of high strength gelatinous fibers with a traditional hierarchical cell structure was found in the anatomical study. The chemical compositional analysis estimated the cellulose, hemicellulose, and lignin contents of 63.3 wt%, 11.6 wt%, and 15.3 wt%, respectively. Further analysis with XRD confirmed the presence of crystalline cellulose having a size of 11.92 nm with a crystallinity index of 58.15%. SEM and AFM studies show that these fibers are porous, and the average roughness is 105.95 nm. Single fiber tensile tests revealed that the DSSFs exhibited the mean Young's modulus and tensile strength of 13.54 GPa and 633.87 MPa respectively. Furthermore, the extracted fibers were found to be thermally stable up to 230 °C, as confirmed by thermogravimetric analysis. The fibers extracted from the stem of medicinal plant Derris scandens have the properties comparable to that of existing natural fibers, thus, suggesting it to use as a highly promising reinforcing agent alternative to synthetic fibers in polymer matrix composites.


Asunto(s)
Celulosa/aislamiento & purificación , Derris/química , Tallos de la Planta/química , Celulosa/química , Celulosa/ultraestructura , Cristalización , Derris/anatomía & histología , Microscopía de Fuerza Atómica , Floema/anatomía & histología , Espectroscopía de Fotoelectrones , Probabilidad , Espectroscopía Infrarroja por Transformada de Fourier , Estrés Mecánico , Temperatura , Resistencia a la Tracción , Difracción de Rayos X , Xilema/anatomía & histología
16.
J Chem Ecol ; 46(11-12): 1117-1130, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33037529

RESUMEN

White fringetree is a host for the invasive emerald ash borer (EAB) but is of lower quality than the related and highly susceptible black ash. Field observations suggest that host trees grown in full sun are more resistant to EAB than those in shade, however the impact of light limitation on chemical defenses has not been assessed. We quantified constitutive and jasmonate-induced phloem defenses and growth patterns of white fringetree and black ash under differential light conditions and related them to EAB larval performance. White fringetree had significantly lower constitutive and induced activities of peroxidase, polyphenol oxidase, ß-glucosidase, chitinase and lignin content, but significantly higher gallic acid equivalent soluble phenolic, soluble sugar, and oleuropein concentrations compared to black ash. Multivariate analyses based on tissue chemical attributes displayed clear separation of species and induced defense responses. Further, EAB performed significantly worse on white fringetree than black ash, consistent with previous studies. Light limitation did not impact measured defenses or EAB larval performance, but it did decrease current year growth and increase photosynthetic efficiency. Overall our results suggest that phenolic profiles, metabolite abundance, and growth traits are important in mediating white fringetree resistance to EAB, and that short-term light limitation does not influence phloem chemistry or larval success.


Asunto(s)
Escarabajos/fisiología , Ciclopentanos/metabolismo , Fraxinus/química , Oleaceae/química , Oxilipinas/metabolismo , Extractos Vegetales/química , Animales , Conducta Animal , Catecol Oxidasa/metabolismo , Quitinasas/metabolismo , Fraxinus/metabolismo , Ácido Gálico/metabolismo , Glucósidos Iridoides/metabolismo , Larva , Luz , Lignina/metabolismo , Oleaceae/metabolismo , Fenoles/metabolismo , Floema/metabolismo , Fotosíntesis , Azúcares/metabolismo , beta-Glucosidasa/metabolismo
17.
Plant Cell ; 32(10): 3206-3223, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32769131

RESUMEN

During their first year of growth, overwintering biennial plants transport Suc through the phloem from photosynthetic source tissues to storage tissues. In their second year, they mobilize carbon from these storage tissues to fuel new growth and reproduction. However, both the mechanisms driving this shift and the link to reproductive growth remain unclear. During vegetative growth, biennial sugar beet (Beta vulgaris) maintains a steep Suc concentration gradient between the shoot (source) and the taproot (sink). To shift from vegetative to generative growth, they require a chilling phase known as vernalization. We studied sugar beet sink-source dynamics upon vernalization and showed that before flowering, the taproot underwent a reversal from a sink to a source of carbohydrates. This transition was induced by transcriptomic and functional reprogramming of sugar beet tissue, resulting in a reversal of flux direction in the phloem. In this transition, the vacuolar Suc importers and exporters TONOPLAST SUGAR TRANSPORTER2;1 and SUCROSE TRANSPORTER4 were oppositely regulated, leading to the mobilization of sugars from taproot storage vacuoles. Concomitant changes in the expression of floral regulator genes suggest that these processes are a prerequisite for bolting. Our data will help both to dissect the metabolic and developmental triggers for bolting and to identify potential targets for genome editing and breeding.


Asunto(s)
Beta vulgaris/fisiología , Floema/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Metabolismo de los Hidratos de Carbono , Dióxido de Carbono/metabolismo , Frío , Esculina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Floema/genética , Fotosíntesis/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Sacarosa/metabolismo , Azúcares/metabolismo , Vacuolas/genética , Vacuolas/metabolismo
18.
Virology ; 548: 192-199, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32758716

RESUMEN

Plum pox virus (PPV) is a worldwide threat to stone fruit production. Its woody perennial hosts provide a dynamic environment for virus evolution over multiple growing seasons. To investigate the impact seasonal host development plays in PPV population structure, next generation sequencing of ribosome associated viral genomes, termed translatome, was used to assess PPV variants derived from phloem or whole leaf tissues over a range of plum leaf and bud developmental stages. Results show that translatome PPV variants occur at proportionately higher levels in bud and newly developing leaf tissues that have low infection levels while more mature tissues with high infection levels display proportionately lower numbers of viral variants. Additional variant analysis identified distinct groups based on population frequency as well as sets of phloem and whole tissue specific variants. Combined, these results indicate PPV population dynamics are impacted by the tissue type and developmental stage of their host.


Asunto(s)
Enfermedades de las Plantas/virología , Virus Eruptivo de la Ciruela/fisiología , Prunus domestica/virología , Frutas/virología , Genoma Viral , Floema/virología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/virología , Virus Eruptivo de la Ciruela/genética , Virus Eruptivo de la Ciruela/crecimiento & desarrollo , Prunus domestica/crecimiento & desarrollo
19.
Methods Mol Biol ; 2166: 181-194, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710409

RESUMEN

Mobility assays coupled with RNA profiling have revealed the presence of hundreds of full-length non-cell-autonomous messenger RNAs that move through the whole plant via the phloem cell system. Monitoring the movement of these RNA signals can be difficult and time consuming. Here we describe a simple, virus-based system for surveying RNA movement by replacing specific sequences within the viral RNA genome of potato virus X (PVX) that are critical for movement with other sequences that facilitate movement. PVX is a RNA virus dependent on three small proteins that facilitate cell-to-cell transport and a coat protein (CP) required for long-distance spread of PVX. Deletion of the CP blocks movement, whereas replacing the CP with phloem-mobile RNA sequences reinstates mobility. Two experimental models validating this assay system are discussed. One involves the movement of the flowering locus T RNA that regulates floral induction and the second involves movement of StBEL5, a long-distance RNA signal that regulates tuber formation in potato.


Asunto(s)
Clonación Molecular/métodos , Floema/genética , Potexvirus/genética , ARN Mensajero/genética , ARN de Planta/genética , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transporte Biológico/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Vectores Genéticos , Técnicas In Vitro , Floema/metabolismo , Virus ARN/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Transcripción Viral/genética
20.
Molecules ; 25(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604938

RESUMEN

To understand the positional and temporal defense mechanisms of coniferous tree bark at the tissue and cellular levels, the phloem topochemistry and structural properties were examined after artificially induced bark defense reactions. Wounding and fungal inoculation with Endoconidiophora polonica of spruce bark were carried out, and phloem tissues were frequently collected to follow the temporal and spatial progress of chemical and structural responses. The changes in (+)-catechin, (-)-epicatechin, stilbene glucoside, and resin acid distribution, and accumulation patterns within the phloem, were mapped using time-of-flight secondary ion mass spectrometry (cryo-ToF-SIMS), alongside detailed structural (LM, TEM, SEM) and quantitative chemical microanalyses of the tissues. Our results show that axial phloem parenchyma cells of Norway spruce contain (+)-catechins, the amount of which locally increases in response to fungal inoculation. The preformed, constitutive distribution and accumulation patterns of (+)-catechins closely follow those of stilbene glucosides. Phloem phenolics are not translocated but form a layered defense barrier with oleoresin compounds in response to pathogen attack. Our results suggest that axial phloem parenchyma cells are the primary location for (+)-catechin storage and synthesis in Norway spruce phloem. Chemical mapping of bark defensive metabolites by cryo-ToF-SIMS, in addition to structural and chemical microanalyses of the defense reactions, can provide novel information on the local amplitudes and localizations of chemical and structural defense mechanisms and pathogen-host interactions of trees.


Asunto(s)
Ascomicetos/patogenicidad , Catequina/análisis , Picea/microbiología , Cromatografía de Gases y Espectrometría de Masas , Glucósidos/análisis , Microscopía Electrónica de Transmisión , Floema/química , Picea/química , Corteza de la Planta/química , Enfermedades de las Plantas/microbiología , Extractos Vegetales/metabolismo , Espectrometría de Masa de Ion Secundario , Estilbenos/análisis , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA