RESUMEN
BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) disorders are a group of neurodegenerative diseases that have in common the accumulation of iron in the basal nuclei of the brain which are essential components of the extrapyramidal system. Frequent symptoms are progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. One of the most prevalent subtypes of NBIA is Pantothenate kinase-associated neurodegeneration (PKAN). It is caused by pathogenic variants in the gene of pantothenate kinase 2 (PANK2) which encodes the enzyme responsible for the first reaction on the coenzyme A (CoA) biosynthesis pathway. Thus, deficient PANK2 activity induces CoA deficiency as well as low expression levels of 4'-phosphopantetheinyl proteins which are essential for mitochondrial metabolism. METHODS: This study is aimed at evaluating the role of alpha-lipoic acid (α-LA) in reversing the pathological alterations in fibroblasts and induced neurons derived from PKAN patients. Iron accumulation, lipid peroxidation, transcript and protein expression levels of PANK2, mitochondrial ACP (mtACP), 4''-phosphopantetheinyl and lipoylated proteins, as well as pyruvate dehydrogenase (PDH) and Complex I activity were examined. RESULTS: Treatment with α-LA was able to correct all pathological alterations in responsive mutant fibroblasts with residual PANK2 enzyme expression. However, α-LA had no effect on mutant fibroblasts with truncated/incomplete protein expression. The positive effect of α-LA in particular pathogenic variants was also confirmed in induced neurons derived from mutant fibroblasts. CONCLUSIONS: Our results suggest that α-LA treatment can increase the expression levels of PANK2 and reverse the mutant phenotype in PANK2 responsive pathogenic variants. The existence of residual enzyme expression in some affected individuals raises the possibility of treatment using high dose of α-LA.
Asunto(s)
Enfermedades Neurodegenerativas , Neurodegeneración Asociada a Pantotenato Quinasa , Ácido Tióctico , Humanos , Suplementos Dietéticos , Hierro/metabolismo , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/genética , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Neurodegeneración Asociada a Pantotenato Quinasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Tióctico/uso terapéutico , Ácido Tióctico/metabolismoRESUMEN
BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain characterized by progressive spasticity, dystonia, muscle rigidity, neuropsychiatric symptoms, and retinal degeneration or optic nerve atrophy. Pantothenate kinase-associated neurodegeneration (PKAN) is one of the most widespread NBIA subtypes. It is caused by mutations in the gene of pantothenate kinase 2 (PANK2) that result in dysfunction in PANK2 enzyme activity, with consequent deficiency of coenzyme A (CoA) biosynthesis, as well as low levels of essential metabolic intermediates such as 4'-phosphopantetheine, a necessary cofactor for essential cytosolic and mitochondrial proteins. METHODS: In this manuscript, we examined the therapeutic effectiveness of pantothenate, panthetine, antioxidants (vitamin E and omega 3) and mitochondrial function boosting supplements (L-carnitine and thiamine) in mutant PANK2 cells with residual expression levels. RESULTS: Commercial supplements, pantothenate, pantethine, vitamin E, omega 3, carnitine and thiamine were able to eliminate iron accumulation, increase PANK2, mtACP, and NFS1 expression levels and improve pathological alterations in mutant cells with residual PANK2 expression levels. CONCLUSION: Our results suggest that several commercial compounds are indeed able to significantly correct the mutant phenotype in cellular models of PKAN. These compounds alone or in combinations are of common use in clinical practice and may be useful for the treatment of PKAN patients with residual enzyme expression levels.
Asunto(s)
Neurodegeneración Asociada a Pantotenato Quinasa , Liasas de Carbono-Azufre/uso terapéutico , Humanos , Hierro/metabolismo , Neurodegeneración Asociada a Pantotenato Quinasa/tratamiento farmacológico , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/uso terapéutico , Tiamina/uso terapéutico , Vitamina ERESUMEN
Cytomegalovirus (CMV) is a major infectious agent causing severe complications in allogeneic hematopoietic cell transplantation (HCT) recipients, thereby warranting the need for aggressive preemptive or targeted antiviral therapy. However, prolonged or repeated use of antiviral agents, such as ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), can result in drug-resistant CMV infection, posing challenges to successful outcomes. Here, we report a case of a patient with acute myeloid leukemia and drug-resistant CMV infection who presented with persistent CMV DNAemia, colitis, pneumonia, and encephalitis. An intra-host diversity of UL97 and UL54 mutations were detected through the genotypic resistance testing conducted on two blood samples (D+199 and D+224) and a cerebrospinal fluid (CSF) specimen (D+260) collected from the patient. UL97 L595W/L595F and L595W mutations were detected in the blood and CSF samples, respectively, that conferred GCV resistance. UL54 F412L mutation detected in all three samples conferred GCV/CDV resistance. However, the V787L mutation of UL54, conferring GCV/FOS resistance, was observed only in the D+224 blood sample. Despite combination therapy with FOS and high dose GCV and adjunctive therapy with leflunomide, the patient died from CMV infection and multiple organ failure on D+279. Further data on resistant mutations and intra-host diversity of CMV should be accumulated to elucidate the antiviral resistance and related outcomes.
Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Células Madre Hematopoyéticas , Antivirales/farmacología , Antivirales/uso terapéutico , Cidofovir/uso terapéutico , Citomegalovirus/genética , Infecciones por Citomegalovirus/tratamiento farmacológico , Farmacorresistencia Viral/genética , Foscarnet/uso terapéutico , Ganciclovir/farmacología , Ganciclovir/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/uso terapéuticoRESUMEN
In the last several years, NAD+ supplementation has emerged as an innovative and safe therapeutic strategy for a wide spectrum of disorders, including diabetes and neuropathy. However, critical questions remain as to how NAD+ and its precursors are taken up by cells, as well as the effects of long-lasting intracellular NAD+ (iNAD+) increases. Here, we investigated the kinetics of iNAD+ levels in different cell types challenged with prolonged exposure to extracellular NAD+ (eNAD+). Surprisingly, we found that after the initial increase, iNAD+ contents decreased back to control levels (iNAD+ resetting). Focusing our attention on HeLa cells, we found that oxygen and ATP consumption occurred with similar temporal kinetics after eNAD+ exposure. Using [3H]NAD+ and [14C]NAD+, we determined that NAD+ resetting was not due to increased dinucleotide extrusion but rather due to reduced uptake of cleaved NAD+ products. Indeed, eNAD+ exposure reduced the expression of the ecto-5'-nucleotidase CD73, the nicotinamide adenine mononucleotide transporter solute carrier family 12 member 8, and the nicotinamide riboside kinase. Interestingly, silencing the NAD+-sensor enzyme sirtuin 1 prevented eNAD+-dependent transcriptional repression of ecto-5'-nucleotidase, solute carrier family 12 member 8, and nicotinamide riboside kinase, as well as iNAD+ resetting. Our findings provide the first evidence for a sirtuin 1-mediated homeostatic response aimed at maintaining physiological iNAD+ levels in conditions of excess eNAD+ availability. These data may be of relevance for therapies designed to support the NAD+ metabolome via extracellular supplementation of the dinucleotide or its precursors.
Asunto(s)
5'-Nucleotidasa/genética , ADP-Ribosil Ciclasa 1/genética , Metabolismo Energético/genética , Glicoproteínas de Membrana/genética , NAD/metabolismo , Sirtuina 1/genética , Adenosina Trifosfato/metabolismo , Transporte Biológico/genética , Células HeLa , Homeostasis/genética , Humanos , Cinética , Oxígeno/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Transducción de Señal/genéticaRESUMEN
BACKGROUND: Klebsiella pneumoniae is a bacterium that can be used as producer for numerous chemicals. Glycerol can be catabolised by K. pneumoniae and dihydroxyacetone is an intermediate of this catabolism pathway. Here dihydroxyacetone and glycerol were produced from glucose by this bacterium based a redirected glycerol catabolism pathway. RESULTS: tpiA, encoding triosephosphate isomerase, was knocked out to block the further catabolism of dihydroxyacetone phosphate in the glycolysis. After overexpression of a Corynebacterium glutamicum dihydroxyacetone phosphate dephosphorylase (hdpA), the engineered strain produced remarkable levels of dihydroxyacetone (7.0 g/L) and glycerol (2.5 g/L) from glucose. Further increase in product formation were obtained by knocking out gapA encoding an iosenzyme of glyceraldehyde 3-phosphate dehydrogenase. There are two dihydroxyacetone kinases in K. pneumoniae. They were both disrupted to prevent an inefficient reaction cycle between dihydroxyacetone phosphate and dihydroxyacetone, and the resulting strains had a distinct improvement in dihydroxyacetone and glycerol production. pH 6.0 and low air supplement were identified as the optimal conditions for dihydroxyacetone and glycerol production by K, pneumoniae ΔtpiA-ΔDHAK-hdpA. In fed batch fermentation 23.9 g/L of dihydroxyacetone and 10.8 g/L of glycerol were produced after 91 h of cultivation, with the total conversion ratio of 0.97 mol/mol glucose. CONCLUSIONS: This study provides a novel and highly efficient way of dihydroxyacetone and glycerol production from glucose.
Asunto(s)
Dihidroxiacetona/metabolismo , Klebsiella pneumoniae/metabolismo , Dihidroxiacetona Fosfato/metabolismo , Ácidos Difosfoglicéricos/metabolismo , Fermentación , Genes Bacterianos , Glucosa/metabolismo , Gliceraldehído 3-Fosfato/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Glicerol/metabolismo , Concentración de Iones de Hidrógeno , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crecimiento & desarrollo , Ingeniería Metabólica , Redes y Vías Metabólicas , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , TermodinámicaRESUMEN
Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron-sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood-stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood-stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.
Asunto(s)
Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Apicoplastos , Ácido Pantoténico/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genéticaRESUMEN
Phytic acid or Myo-inositol hexakisphosphate is an essential compound for the rice plants. It remains in the form of phytate, a mixed salt of different mineral cations, in the seeds. The phytate breaks down during germination and provides the inorganic phosphorus and mineral ions to the seedlings. However, humans do not get the benefit of those essential ions from rice consumption due to the absence of phytase in the gut. We envisaged down-regulating ITPK, the gene behind the phytic acid biosynthesis so that its low amount would facilitate a greater amount of free mineral ions in the endosperm. Since there are six homologues of rice ITPK, we studied their expression in seeds. Additionally, we undertook an in-silico analysis of the homologous proteins. Considering the results, we selected ITPK-2 for its RNAi-mediated embryo-specific down-regulation to obtain the low phytate rice. We obtained a 37% reduction of phytic acid content accompanied by a nearly three-fold enhancement of inorganic phosphorus in the transgenic seeds. Additionally, the iron and zinc content increased in polished rice grains compared to the wild type. The results also showed that reduced phytic acid content did not affect the germination potential and seedling growth of the transgenic rice.
Asunto(s)
Grano Comestible/metabolismo , Oryza/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Fítico/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Grano Comestible/anatomía & histología , Germinación , Hordeum/genética , Inositol/metabolismo , Minerales/metabolismo , Oryza/anatomía & histología , Oryza/genética , Fósforo/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plantas Modificadas Genéticamente/anatomía & histología , Regiones Promotoras Genéticas , Interferencia de ARNRESUMEN
The coenzyme nicotinamide adenine dinucleotide phosphate (NADP+) and its reduced form (NADPH) regulate reductive metabolism in a subcellularly compartmentalized manner. Mitochondrial NADP(H) production depends on the phosphorylation of NAD(H) by NAD kinase 2 (NADK2). Deletion of NADK2 in human cell lines did not alter mitochondrial folate pathway activity, tricarboxylic acid cycle activity, or mitochondrial oxidative stress, but rather led to impaired cell proliferation in minimal medium. This growth defect was rescued by proline supplementation. NADK2-mediated mitochondrial NADP(H) generation was required for the reduction of glutamate and hence proline biosynthesis. Furthermore, mitochondrial NADP(H) availability determined the production of collagen proteins by cells of mesenchymal lineage. Thus, a primary function of the mitochondrial NADP(H) pool is to support proline biosynthesis for use in cytosolic protein synthesis.
Asunto(s)
Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NADP/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Prolina/biosíntesis , Animales , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico , Colágeno/metabolismo , Medios de Cultivo , Citosol/metabolismo , Femenino , Ácido Fólico/metabolismo , Técnicas de Inactivación de Genes , Ácido Glutámico/metabolismo , Glutatión/metabolismo , Humanos , Metaboloma , Ratones , Ratones Desnudos , Proteínas Mitocondriales/genética , Estrés Oxidativo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genéticaRESUMEN
Computational models based on recent maps of the RBC proteome suggest that mature erythrocytes may harbor targets for common drugs. This prediction is relevant to RBC storage in the blood bank, in which the impact of small molecule drugs or other xenometabolites deriving from dietary, iatrogenic, or environmental exposures ("exposome") may alter erythrocyte energy and redox metabolism and, in so doing, affect red cell storage quality and posttransfusion efficacy. To test this prediction, here we provide a comprehensive characterization of the blood donor exposome, including the detection of common prescription and over-the-counter drugs in blood units donated by 250 healthy volunteers in the Recipient Epidemiology and Donor Evaluation Study III Red Blood Cell-Omics (REDS-III RBC-Omics) Study. Based on high-throughput drug screenings of 1366 FDA-approved drugs, we report that approximately 65% of the tested drugs had an impact on erythrocyte metabolism. Machine learning models built using metabolites as predictors were able to accurately predict drugs for several drug classes/targets (bisphosphonates, anticholinergics, calcium channel blockers, adrenergics, proton pump inhibitors, antimetabolites, selective serotonin reuptake inhibitors, and mTOR), suggesting that these drugs have a direct, conserved, and substantial impact on erythrocyte metabolism. As a proof of principle, here we show that the antacid ranitidine - though rarely detected in the blood donor population - has a strong effect on RBC markers of storage quality in vitro. We thus show that supplementation of blood units stored in bags with ranitidine could - through mechanisms involving sphingosine 1-phosphate-dependent modulation of erythrocyte glycolysis and/or direct binding to hemoglobin - improve erythrocyte metabolism and storage quality.
Asunto(s)
Donantes de Sangre , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Exposoma , Medicamentos sin Prescripción/efectos adversos , Medicamentos sin Prescripción/farmacocinética , Medicamentos bajo Prescripción/efectos adversos , Medicamentos bajo Prescripción/farmacocinética , Adolescente , Adulto , Anciano , Animales , Metabolismo Energético/efectos de los fármacos , Transfusión de Eritrocitos , Femenino , Glucólisis/efectos de los fármacos , Voluntarios Sanos , Hemoglobinas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Técnicas In Vitro , Aprendizaje Automático , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ranitidina/farmacología , Adulto JovenRESUMEN
Nicotinamide adenine dinucleotide (NAD)/NAD phosphate (NADPH) is essential for numerous redox reactions and serve as co-factors in multiple metabolic processes in all organisms. NAD kinase (NADK) is an enzyme involved in the synthesis of NADP+ from NAD+ and ATP. Arabidopsis NADK2 (AtNADK2) is a chloroplast-localizing enzyme that provides recipients of reducing power in photosynthetic electron transfer. When Arabidopsis plants were grown on MS medium supplemented with 5 mM MgSO4, an AtNADK2-overexpressing line exhibited higher glutathione and total sulfur accumulation than control plants. Metabolomic analysis of major amino acids and organic acids using capillary electrophoresis-mass spectrometry demonstrated that overexpression of AtNADK2 affected a range of metabolic processes in response to MgSO4 supplementation.
Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo , Sulfato de Magnesio/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genéticaRESUMEN
Background: Sphingosine kinase 1 (SPHK1) and heat shock protein 27 (HSP27) are important for antioxidant and anti-inflammatory effects after red light irradiation in an inflammatory model. Objective: The purpose of the present study was to evaluate whether SPHK1 and HSP27 work independently or are dependent on some other regulator after 625 nm light-emitting diode irradiation in the human keratinocyte (HaCaT) cell line. Methods: Differentially expressed genes (DEGs) were identified between groups with or without 625 nm photobiomodulation (PBM) in the inflammatory model. Potential transcription factors (TFs) of key DEGs were predicted using the iRegulon plugin. The mechanism was investigated by analyzing mRNA and protein expression levels, prostaglandin E2 levels, and intracellular reactive oxygen species (ROS) in phorbol 12-myristate 13-acetate (PMA)-induced HaCaT cells after 625 nm PBM. Results: A total of 6 TFs (e.g., E2F1) and 51 key DEGs (e.g., SPHK1) were identified after 625 nm PBM in PMA-stimulated HaCaT cells. E2F1 worked as a regulator of SPHK1; however, it did not affect HSP27. E2F1 knockdown drastically decreased the SPHK1 expression level and increased the intracellular ROS, as well as the expression levels of inflammation-related proteins in PMA-induced HaCaT cells. In addition, the inhibition of HSP27 decreased the anti-inflammatory effect of 625 nm PBM. Conclusions: E2F1 worked as a TF of SPHK1 and exhibited anti-inflammatory and antioxidative effects through SPHK1 in PMA-induced HaCaT cells after 625 nm PBM. HSP27 is essential for the 625 nm PBM-induced anti-inflammatory function. Therefore, E2F1/SPHK1 and HSP27 could be used as potential biomarkers for anti-inflammatory therapy with 625 nm PBM.
Asunto(s)
Factor de Transcripción E2F1/genética , Proteínas de Choque Térmico/genética , Inflamación/terapia , Chaperonas Moleculares/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Antioxidantes , Expresión Génica , Células HaCaT , Humanos , Inflamación/genética , Terapia por Luz de Baja Intensidad , Especies Reactivas de OxígenoRESUMEN
Background: Capsaicin is an active compound found in plants of the Capsicum genus; it has a range of therapeutic benefits, including anti-tumor effects. Here we aimed to delineate the inhibitory effects of capsaicin on nasopharyngeal carcinoma (NPC). Methods: The anti-cancer effects of capsaicin were confirmed in NPC cell lines and xenograft mouse models, using CCK-8, clonogenic, wound-healing, transwell migration and invasion assays. Co-immunoprecipitation, western blotting and pull-down assays were used to determine the effects of capsaicin on the MKK3-p38 axis. Cell proliferation and EMT marker expression were monitored in MKK3 knockdown (KD) or over-expression NPC cell lines treated with or without capsaicin. Finally, immunohistochemistry was performed on NPC specimens from NPC patients (n = 132) and the clinical relevance was analyzed. Results: Capsaicin inhibited cell proliferation, mobility and promoted apoptosis in NPC cells. Then we found that capsaicin directly targets p38 for dephosphorylation. As such, MKK3-induced p38 activation was inhibited by capsaicin. Furthermore, we found that capsaicin-induced inhibition of cell motility was mediated by fucokinase. Xenograft models demonstrated the inhibitory effects of capsaicin treatment on NPC tumor growth in vivo, and analysis of clinical NPC samples confirmed that MKK3 phosphorylation was associated with NPC tumor growth and lymphoid node metastasis. Conclusions: The MKK3-p38 axis represents a potential therapeutic target for capsaicin. MKK3 phosphorylation might serve as a biomarker to identify NPC patients most likely to benefit from adjunctive capsaicin treatment.
Asunto(s)
Capsaicina/farmacología , MAP Quinasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Animales , Capsaicina/uso terapéutico , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , MAP Quinasa Quinasa 3/genética , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Invasividad Neoplásica/patología , Invasividad Neoplásica/prevención & control , Fosforilación/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
PDXK encodes for a pyridoxal kinase, which converts inactive B6 vitamers to the active cofactor pyridoxal 5'-phosphate (PLP). Recently, biallelic pathogenic variants in PDXK were shown to cause axonal Charcot-Marie-Tooth disease with optic atrophy that responds to PLP supplementation. We present two affected siblings carrying a novel biallelic missense PDXK variant with a similar phenotype with earlier onset. After detection of a novel PDXK variant using Whole Exome Sequencing, we confirmed pathogenicity through in silico protein structure analysis, determination of pyridoxal kinase activity using liquid chromatography-tandem mass spectrometry, and measurement of plasma PLP concentrations using high performance liquid chromatography. Our in silico analysis shows a potential effect on PDXK dimer stability, as well as a putative effect on posttranslational ubiquitination that is predicted to lead to increased protein degradation. We demonstrate that the variant leads to almost complete loss of PDXK enzymatic activity and low PLP levels. Our patients' early diagnosis and prompt PLP replacement restored the PLP plasma levels, enabling long-term monitoring of clinical outcomes. We recommend that patients presenting with similar phenotype should be screened for PDXK mutations, as this is a rare opportunity for treatment.
Asunto(s)
Atrofia Óptica/tratamiento farmacológico , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Polineuropatías/tratamiento farmacológico , Fosfato de Piridoxal/uso terapéutico , Vitamina B 6/metabolismo , Adolescente , Femenino , Humanos , Masculino , Mutación , Piridoxal Quinasa/metabolismoRESUMEN
In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular immune sensors that recognize and eliminate a wide range of invading pathogens. NLR-mediated immunity is known to be modulated by environmental factors. However, how pathogen recognition by NLRs is influenced by environmental factors such as light remains unclear. Here, we show that the agronomically important NLR Rpi-vnt1.1 requires light to confer disease resistance against races of the Irish potato famine pathogen Phytophthora infestans that secrete the effector protein AVRvnt1. The activation of Rpi-vnt1.1 requires a nuclear-encoded chloroplast protein, glycerate 3-kinase (GLYK), implicated in energy production. The pathogen effector AVRvnt1 binds the full-length chloroplast-targeted GLYK isoform leading to activation of Rpi-vnt1.1. In the dark, Rpi-vnt1.1-mediated resistance is compromised because plants produce a shorter GLYK-lacking the intact chloroplast transit peptide-that is not bound by AVRvnt1. The transition between full-length and shorter plant GLYK transcripts is controlled by a light-dependent alternative promoter selection mechanism. In plants that lack Rpi-vnt1.1, the presence of AVRvnt1 reduces GLYK accumulation in chloroplasts counteracting GLYK contribution to basal immunity. Our findings revealed that pathogen manipulation of chloroplast functions has resulted in a light-dependent immune response.
Asunto(s)
Cloroplastos/microbiología , Regulación de la Expresión Génica de las Plantas/inmunología , Luz , Proteínas NLR/metabolismo , Phytophthora infestans/metabolismo , Proteínas de Plantas/metabolismo , Agrobacterium/metabolismo , Animales , Cloroplastos/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Silenciador del Gen , Microscopía Confocal , Proteínas NLR/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Proteínas de Plantas/genética , Plantones , Solanum tuberosum/metabolismo , Solanum tuberosum/microbiología , Nicotiana/metabolismo , Nicotiana/microbiología , Técnicas del Sistema de Dos HíbridosRESUMEN
Pyricularia oryzae is the causal agent of blast disease on staple gramineous crops. Sulphur is an essential element for the biosynthesis of cysteine and methionine in fungi. Here, we targeted the P. oryzae PoMET3 encoding the enzyme ATP sulfurylase, and PoMET14 encoding the APS (adenosine-5'-phosphosulphate) kinase that are involved in sulfate assimilation and sulphur-containing amino acids biosynthesis. In P. oryzae, deletion of PoMET3 or PoMET14 separately results in defects of conidiophore formation, significant impairments in conidiation, methionine and cysteine auxotrophy, limited invasive hypha extension, and remarkably reduced virulence on rice and barley. Furthermore, the defects of the null mutants could be restored by supplementing with exogenous cysteine or methionine. Our study explored the biological functions of sulfur assimilation and sulphur-containing amino acids biosynthesis in P. oryzae.
Asunto(s)
Ascomicetos/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sulfato Adenililtransferasa/metabolismo , Ascomicetos/efectos de los fármacos , Cisteína/metabolismo , Cisteína/farmacología , Eliminación de Gen , Hordeum/microbiología , Hifa/patogenicidad , Hifa/fisiología , Metionina/metabolismo , Metionina/farmacología , Mutación , Oryza/microbiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas , Sulfato Adenililtransferasa/genética , VirulenciaRESUMEN
BACKGROUND: Hexose-6-Phosphate Dehydrogenase (H6PD) is a generator of NADPH in the Endoplasmic/Sarcoplasmic Reticulum (ER/SR). Interaction of H6PD with 11ß-hydroxysteroid dehydrogenase type 1 provides NADPH to support oxo-reduction of inactive to active glucocorticoids, but the wider understanding of H6PD in ER/SR NAD(P)(H) homeostasis is incomplete. Lack of H6PD results in a deteriorating skeletal myopathy, altered glucose homeostasis, ER stress and activation of the unfolded protein response. Here we further assess muscle responses to H6PD deficiency to delineate pathways that may underpin myopathy and link SR redox status to muscle wide metabolic adaptation. METHODS: We analysed skeletal muscle from H6PD knockout (H6PDKO), H6PD and NRK2 double knockout (DKO) and wild-type (WT) mice. H6PDKO mice were supplemented with the NAD+ precursor nicotinamide riboside. Skeletal muscle samples were subjected to biochemical analysis including NAD(H) measurement, LC-MS based metabolomics, Western blotting, and high resolution mitochondrial respirometry. Genetic and supplement models were assessed for degree of myopathy compared to H6PDKO. RESULTS: H6PDKO skeletal muscle showed adaptations in the routes regulating nicotinamide and NAD+ biosynthesis, with significant activation of the Nicotinamide Riboside Kinase 2 (NRK2) pathway. Associated with changes in NAD+ biosynthesis, H6PDKO muscle had impaired mitochondrial respiratory capacity with altered mitochondrial acylcarnitine and acetyl-CoA metabolism. Boosting NAD+ levels through the NRK2 pathway using the precursor nicotinamide riboside elevated NAD+/NADH but had no effect to mitigate ER stress and dysfunctional mitochondrial respiratory capacity or acetyl-CoA metabolism. Similarly, H6PDKO/NRK2 double KO mice did not display an exaggerated timing or severity of myopathy or overt change in mitochondrial metabolism despite depression of NAD+ availability. CONCLUSIONS: These findings suggest a complex metabolic response to changes in muscle SR NADP(H) redox status that result in impaired mitochondrial energy metabolism and activation of cellular NAD+ salvage pathways. It is possible that SR can sense and signal perturbation in NAD(P)(H) that cannot be rectified in the absence of H6PD. Whether NRK2 pathway activation is a direct response to changes in SR NAD(P)(H) availability or adaptation to deficits in metabolic energy availability remains to be resolved.
Asunto(s)
Músculo Esquelético/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Retículo Sarcoplasmático/metabolismo , Acetilcoenzima A/metabolismo , Animales , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Femenino , Masculino , Metaboloma , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/metabolismo , Niacinamida/análogos & derivados , Niacinamida/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Compuestos de Piridinio/metabolismoRESUMEN
Alzheimer's disease (AD) is defined by progressive neurodegeneration, with oligomerization and aggregation of amyloid-ß peptides (Aß) playing a pivotal role in its pathogenesis. In recent years, the yeast Saccharomyces cerevisiae has been successfully used to clarify the roles of different human proteins involved in neurodegeneration. Here, we report a genome-wide synthetic genetic interaction array to identify toxicity modifiers of Aß42, using yeast as the model organism. We find that FMN1, the gene encoding riboflavin kinase, and its metabolic product flavin mononucleotide (FMN) reduce Aß42 toxicity. Classic experimental analyses combined with RNAseq show the effects of FMN supplementation to include reducing misfolded protein load, altering cellular metabolism, increasing NADH/(NADH + NAD+) and NADPH/(NADPH + NADP+) ratios and increasing resistance to oxidative stress. Additionally, FMN supplementation modifies Htt103QP toxicity and α-synuclein toxicity in the humanized yeast. Our findings offer insights for reducing cytotoxicity of Aß42, and potentially other misfolded proteins, via FMN-dependent cellular pathways.
Asunto(s)
Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/toxicidad , Mononucleótido de Flavina/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Genes Sintéticos , Genoma Fúngico , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Genéticos , Mutación , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Pliegue de Proteína , Proteolisis , RNA-Seq , Riboflavina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMEN
BACKGROUND: Zygophyllum is an important medicinal plant, with notable properties such as resistance to salt, alkali, and drought, as well as tolerance of poor soils and shifting sand. However, the response mechanism of Zygophyllum spp. to abiotic stess were rarely studied. RESULTS: Here, we aimed to explore the salt-tolerance genes of Zygophyllum plants by transcriptomic and metabolic approaches. We chose Z. brachypterum, Z. obliquum and Z. fabago to screen for salt tolerant and sensitive species. Cytological observation showed that both the stem and leaf of Z. brachypterum were significantly thicker than those of Z. fabago. Then, we treated these three species with different concentrations of NaCl, and found that Z. brachypterum exhibited the highest salt tolerance (ST), while Z. fabago was the most sensitive to salt (SS). With the increase of salt concentration, the CAT, SOD and POD activity, as well as proline and chlorophyll content in SS decreased significantly more than in ST. After salt treatment, the proportion of open stomata in ST decreased significantly more than in SS, although there was no significant difference in stomatal number between the two species. Transcriptomic analysis identified a total of 11 overlapping differentially expressed genes (DEGs) in the leaves and roots of the ST and SS species after salt stress. Two branched-chain-amino-acid aminotransferase (BCAT) genes among the 11 DEGs, which were significantly enriched in pantothenate and CoA biosynthesis, as well as the valine, leucine and isoleucine biosynthesis pathways, were confirmed to be significantly induced by salt stress through qRT-PCR. Furthermore, overlapping differentially abundant metabolites showed that the pantothenate and CoA biosynthesis pathways were significantly enriched after salt stress, which was consistent with the KEGG pathways enriched according to transcriptomics. CONCLUSIONS: In our study, transcriptomic and metabolomic analysis revealed that BCAT genes may affect the pantothenate and CoA biosynthesis pathway to regulate the salt tolerance of Zygophyllum species, which may constitute a newly identified signaling pathway through which plants respond to salt stress.
Asunto(s)
Coenzima A/metabolismo , Metaboloma/genética , Tolerancia a la Sal/genética , Transcriptoma/genética , Zygophyllum , Coenzima A/genética , Perfilación de la Expresión Génica , Genes de Plantas , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/ultraestructura , Transducción de Señal/genética , Transaminasas/genética , Transaminasas/metabolismo , Zygophyllum/anatomía & histología , Zygophyllum/genética , Zygophyllum/metabolismoRESUMEN
Riboflavin (vitamin B2), Flavin Mononucleotide (FMN), Flavin Adenine Dinucleotide (FAD) are essential biomolecules for carrying out various metabolic activities of oxidoreductases and other enzymes. Riboflavin is mainly used as food and feed supplement while the more expensive FAD has pharmacological importance. Although Ashbya gossypii has been metabolically engineered for industrial production of riboflavin, there are no reports on FAD production. In the present study, a transcriptional analysis of the time course of flavin genes expression, indicated that riboflavin to FMN conversion by riboflavin kinase enzyme encoded by FMN1 gene could be the major rate limiting step in FAD synthesis. Overexpression of FMN1 gene was attempted by placing the ORF of FMN1 under control of the stronger constitutively expressed GPD (Glyceraldehyde-3-phosphate dehydrogenase) promoter replacing its native promoter. A 2.25Kb promoter replacement cassette (PRC) for FMN1 gene was synthesized from cloned pUG6-GPDp vector and used for transformation of Ashbya gossypii. Resultant recombinant strain CSAgFMN1 had 35.67-fold increase in riboflavin kinase enzyme activity. A 14.02-fold increase in FAD production up to 86.56⯱â¯3.88â¯mg L-1 at 120â¯h incubation was obtained compared to wild type. While there was a marginal increase in riboflavin synthesis by the clone, FMN accumulation was not detected and could be attributed to other metabolic fluxes channeling FMN. This is the first report on development of FAD overproducing strain of A. gossypii.
Asunto(s)
Ascomicetos/enzimología , Ascomicetos/genética , Flavina-Adenina Dinucleótido/biosíntesis , Ingeniería Metabólica , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Expresión Génica , Nucleotidiltransferasas/metabolismo , Regiones Promotoras GenéticasRESUMEN
Supplementation with the NAD+ precursor nicotinamide riboside (NR) ameliorates and prevents a broad array of metabolic and aging disorders in mice. However, little is known about the physiological role of endogenous NR metabolism. We have previously shown that NR kinase 1 (NRK1) is rate-limiting and essential for NR-induced NAD+ synthesis in hepatic cells. To understand the relevance of hepatic NR metabolism, we generated whole body and liver-specific NRK1 knockout mice. Here, we show that NRK1 deficiency leads to decreased gluconeogenic potential and impaired mitochondrial function. Upon high-fat feeding, NRK1 deficient mice develop glucose intolerance, insulin resistance and hepatosteatosis. Furthermore, they are more susceptible to diet-induced liver DNA damage, due to compromised PARP1 activity. Our results demonstrate that endogenous NR metabolism is critical to sustain hepatic NAD+ levels and hinder diet-induced metabolic damage, highlighting the relevance of NRK1 as a therapeutic target for metabolic disorders.