Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.017
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34639198

RESUMEN

Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil.


Asunto(s)
Brassicaceae/metabolismo , Evolución Molecular , Ácido Graso Desaturasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Semillas/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/crecimiento & desarrollo , Simulación por Computador , Ácido Graso Desaturasas/química , Ácido Graso Desaturasas/genética , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Fracciones Subcelulares
2.
Int J Biol Macromol ; 190: 19-32, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478792

RESUMEN

Resveratrol (RES), a plant antitoxin, has antioxidant, anti-inflammatory, anti-cancer and cardiovascular protection effects. It has been reported that RES can be stably detected in a Chinese herbal medicinal plant Tetrastigma hemsleyanum. At present, the research of T. hemsleyanum mainly focused on the discovery of new compounds and pharmacology. However, there were few studies on the molecular mechanism of the synthesis of secondary metabolites in T. hemsleyanum. In this experiment, four key enzymes (ThPAL/ThC4H/Th4CL/ThRS) involved in the RES biosynthesis pathway were cloned and obtained. They contained an open reading frame (ORF) of 2139 bp, 1518 bp, 1716 bp and 1035 bp, encoding 712, 505, 571 and 344 amino acids, separately. Various bioinformatics tools were used to analyze these deduced protein domains, secondary structures, three-dimensional (3D) structures and phylogenetic trees. Subsequently, quantitative primers were designed to conduct the tissue-specific expression. Quantitative results displayed that the four genes were expressed in all tested tissues, and their expression in root tubers was more stable. Moreover, the subcellular localization of the four genes was studied by constructed recombinant green fluorescent expression vectors. Herein, by digging out the key enzyme genes in the biosynthesis of RES in T. hemsleyanum, this experiment tried to reveal the expression patterns of these key enzyme genes. It also provided the basis for the research on the molecular level, which will help people further illuminate and clarify the biosynthesis and regulation mechanism of secondary metabolites in T. hemsleyanum.


Asunto(s)
Enzimas/química , Enzimas/genética , Resveratrol/metabolismo , Vitaceae/enzimología , Vitaceae/genética , Vías Biosintéticas , Clonación Molecular , ADN Complementario/genética , Enzimas/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Especificidad de Órganos , Filogenia , Plásmidos/genética , Estructura Secundaria de Proteína , Fracciones Subcelulares/metabolismo
3.
Nat Commun ; 12(1): 1392, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654102

RESUMEN

Rice grains typically contain high levels of toxic arsenic but low levels of the essential micronutrient selenium. Anthropogenic arsenic contamination of paddy soils exacerbates arsenic toxicity in rice crops resulting in substantial yield losses. Here, we report the identification of the gain-of-function arsenite tolerant 1 (astol1) mutant of rice that benefits from enhanced sulfur and selenium assimilation, arsenic tolerance, and decreased arsenic accumulation in grains. The astol1 mutation promotes the physical interaction of the chloroplast-localized O-acetylserine (thiol) lyase protein with its interaction partner serine-acetyltransferase in the cysteine synthase complex. Activation of the serine-acetyltransferase in this complex promotes the uptake of sulfate and selenium and enhances the production of cysteine, glutathione, and phytochelatins, resulting in increased tolerance and decreased translocation of arsenic to grains. Our findings uncover the pivotal sensing-function of the cysteine synthase complex in plastids for optimizing stress resilience and grain quality by regulating a fundamental macronutrient assimilation pathway.


Asunto(s)
Arsénico/metabolismo , Oryza/metabolismo , Semillas/metabolismo , Selenio/metabolismo , Azufre/metabolismo , Alelos , Cloroplastos/metabolismo , Cisteína Sintasa/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Mutación/genética , Fenotipo , Fitoquelatinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Serina/metabolismo , Fracciones Subcelulares/metabolismo
4.
Genes (Basel) ; 13(1)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-35052349

RESUMEN

The heat shock protein 70 (HSP70) gene family perform a fundamental role in protecting plants against biotic and abiotic stresses. Aquilaria sinensis is a classic stress-induced medicinal plant, producing a valuable dark resin in a wood matrix, known as agarwood, in response to environmental stresses. The HSP70 gene family has been systematic identified in many plants, but there is no comprehensive analysis at the genomic level in A. sinensis. In this study, 15 putative HSP70 genes were identified in A. sinensis through genome-wide bioinformatics analysis. Based on their phylogenetic relationships, the 15 AsHSP70 were grouped into six sub-families that with the conserved motifs and gene structures, and the genes were mapped onto six separate linkage groups. A qRT-PCR analysis showed that the relative expression levels of all the AsHSP70 genes were up-regulated by heat stress. Subcellular localization of all HSP70s was predicted, and three were verified by transiently expressed in Arabidopsis protoplasts. Based on the expression profiles in different tissues and different layers treated with Agar-Wit, we predict AsHSP70 genes are involved in different stages of agarwood formation. The systematic identification and expression analysis of HSP70s gene family imply some of them may play important roles in the formation of agarwood. Our findings not only provide a foundation for further study their biological function in the later research in A. sinensis, but also provides a reference for the analysis of HSPs in other species.


Asunto(s)
Genes de Plantas , Proteínas HSP70 de Choque Térmico/genética , Thymelaeaceae/genética , Perfilación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/clasificación , Respuesta al Choque Térmico , Filogenia , Fracciones Subcelulares/metabolismo
5.
Methods Mol Biol ; 2213: 49-58, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33270192

RESUMEN

New biologically active compounds are regularly discovered through screening procedures using microorganisms. This very cheap procedure is followed by drug discovery that is usually seen as a highly focused approach, testing new compounds on animals or cell lines. In vivo assays of candidate drugs in mammals are expensive and sometimes not affordable at the preliminary stages of drug development. Early screening approaches in transgenic plants would allow chemotherapeutic drug candidates further selection before their characterization in expensive biological models. The proposed screening approach is based on cell subcellular architecture observations in transgenic plants within a short time of treatment, which is better than observing the effects of compounds on growth.


Asunto(s)
Arabidopsis/metabolismo , Evaluación Preclínica de Medicamentos , Células Vegetales/metabolismo , Arabidopsis/genética , Microscopía , Plantas Modificadas Genéticamente , Fracciones Subcelulares/metabolismo
6.
BMC Plant Biol ; 20(1): 550, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287728

RESUMEN

BACKGROUND: Cadmium (Cd) accumulation in crops affects the yield and quality of crops and harms human health. The application of selenium (Se) can reduce the absorption and transport of Cd in winter wheat. RESULTS: The results showed that increasing Se supply significantly decreased Cd concentration and accumulation in the shoot and root of winter wheat and the root-to-shoot translocation of Cd. Se application increased the root length, surface area and root volume but decreased the average root diameter. Increasing Se supply significantly decreased Cd concentration in the cell wall, soluble fraction and cell organelles in root and shoot. An increase in Se supply inhibited Cd distribution in the organelles of shoot and root but enhanced Cd distribution in the soluble fraction of shoot and the cell wall of root. The Se supply also decreased the proportion of active Cd (ethanol-extractable (FE) Cd and deionized water-extractable (FW) Cd) in root. In addition, the expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 significantly increased with increasing Cd concentration in root, and the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root was downregulated by increasing Se supply, regardless of Se supply or Cd stress. The expression of TaHMA3-b in root was significantly downregulated by 10 µM Se at both the 5 µM and 25 µM Cd level but upregulated by 5 µM Se at the 25 µM Cd level. The expression of TaNramp5-a, TaNramp5-b, TaHMA3-a, TaHMA3-b and TaHMA2 in shoot was downregulated by increasing Se supply at 5 µM Cd level, and 5 µM Se upregulated the expression of those genes in shoot at 25 µM Cd level. CONCLUSIONS: The results confirm that Se application limits Cd accumulation in wheat by regulating the subcellular distribution and chemical forms of Cd in winter wheat tissues, as well as the expression of TaNramp5-a, TaNramp5-b and TaHMA2 in root.


Asunto(s)
Cadmio/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Selenio/metabolismo , Triticum/metabolismo , Transporte Biológico , Cadmio/química , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Plantas/genética , Raíces de Plantas/química , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/química , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantones/química , Plantones/genética , Plantones/metabolismo , Fracciones Subcelulares/química , Triticum/química , Triticum/genética
7.
Int J Mol Sci ; 21(16)2020 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-32784431

RESUMEN

In tea (Camellia sinensis) plants, polyphenols are the representative metabolites and play important roles during their growth. Among tea polyphenols, catechins are extensively studied, while very little attention has been paid to other polyphenols such as gallic acid (GA) that occur in tea leaves with relatively high content. In this study, GA was able to be transformed into methyl gallate (MG), suggesting that GA is not only a precursor of catechins, but also can be transformed into other metabolites in tea plants. GA content in tea leaves was higher than MG content-regardless of the cultivar, plucking month or leaf position. These two metabolites occurred with higher amounts in tender leaves. Using nonaqueous fractionation techniques, it was found that GA and MG were abundantly accumulated in peroxisome. In addition, GA and MG were found to have strong antifungal activity against two main tea plant diseases, Colletotrichum camelliae and Pseudopestalotiopsis camelliae-sinensis. The information will advance our understanding on formation and biologic functions of polyphenols in tea plants and also provide a good reference for studying in vivo occurrence of specialized metabolites in economic plants.


Asunto(s)
Camellia sinensis/química , Ácido Gálico/metabolismo , Especificidad de Órganos , Antifúngicos/farmacología , Camellia sinensis/microbiología , Ácido Gálico/análogos & derivados , Ácido Gálico/química , Hojas de la Planta/química , Fracciones Subcelulares/metabolismo
8.
Chem Biol Interact ; 328: 109192, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32712081

RESUMEN

Many natural products are prodrugs which are biotransformed and activated after oral administration. The investigation of gastrointestinal and hepatic biotransformation can be facilitated by in vitro screening methods. This study compares two widely used in vitro models for hepatic biotransformation: 1) human S9 fractions and 2) human liver microsomes and cytosolic fractions in a two-step sequence, with the purpose of identifying differences in the biotransformation of medicagenic acid, the putative precursor of active metabolites, responsible for the medicinal effects of the herb Herniaria hirsuta. The combination of liquid chromatography coupled to high-resolution mass spectrometry with subsequent suspect and non-target data analysis allowed the identification of thirteen biotransformation products, four of which are reported here for the first time. Eight biotransformation products resulting from oxidative Phase I reactions were identified. Phase II conjugation reactions resulted in the formation of three glucuronidated and two sulfated biotransformation products. No major differences could be observed between incubations with human liver S9 or when utilizing human microsomal and cytosolic fractions. Apart from two metabolites, both methods rendered the same qualitative metabolic profile, with minor quantitative differences. As a result, both protocols applied in this study can be used to study in vitro human liver biotransformation reactions.


Asunto(s)
Microsomas Hepáticos/metabolismo , Triterpenos/metabolismo , Biotransformación , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Masculino , Fracciones Subcelulares/metabolismo , Factores de Tiempo , Triterpenos/química
9.
Plant Cell ; 32(8): 2474-2490, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32527862

RESUMEN

Orosomucoid-like proteins (ORMs) interact with serine palmitoyltransferase (SPT) to negatively regulate sphingolipid biosynthesis, a reversible process critical for balancing the intracellular sphingolipid levels needed for growth and programmed cell death. Here, we show that ORM1 and ORM2 are essential for life cycle completion in Arabidopsis (Arabidopsis thaliana). Seeds from orm1 -/- orm2 -/- mutants, generated by crossing CRISPR/Cas9 knockout mutants for each gene, accumulated high levels of ceramide, indicative of unregulated sphingolipid biosynthesis. orm1 -/- orm2 -/- seeds were nonviable, displayed aberrant embryo development, and had >80% reduced oil content versus wild-type seeds. This phenotype was mimicked in Arabidopsis seeds expressing the SPT subunit LCB1 lacking its first transmembrane domain, which is critical for ORM-mediated regulation of SPT. We identified a mutant for ORM1 lacking one amino acid (Met-51) near its second transmembrane domain that retained its membrane topology. Expressing this allele in the orm2 background yielded plants that did not advance beyond the seedling stage, hyperaccumulated ceramides, and showed altered organellar structures and increased senescence- and pathogenesis-related gene expression. These seedlings also showed upregulated expression of genes for sphingolipid catabolic enzymes, pointing to additional mechanisms for maintaining sphingolipid homeostasis. ORM1 lacking Met-51 had strongly impaired interactions with LCB1 in a yeast (Saccharomyces cerevisiae) model, providing structural clues about regulatory interactions between ORM and SPT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Edición Génica , Proteínas de la Membrana/metabolismo , Mutación/genética , Aceites de Plantas/metabolismo , Semillas/genética , Esfingolípidos/biosíntesis , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de la Membrana/genética , Modelos Biológicos , Fenotipo , Desarrollo de la Planta , Unión Proteica , Plantones/crecimiento & desarrollo , Fracciones Subcelulares/metabolismo , Regulación hacia Arriba/genética
10.
Biochem Biophys Res Commun ; 528(1): 140-145, 2020 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-32451083

RESUMEN

The membraneless messenger ribonucleoprotein (mRNP) granules, including processing bodies (PBs) and stress granules (SGs), are important cytoplasmic structures in eukaryotes that can participate in gene expression through mRNA regulation. It has been verified that mRNP granules are mainly composed of proteins and translation-repressed mRNAs. Here, we reported a stop-codon read-through gene, At3g52980, in plants for the first time. At3g52980 encodes a novel non-tandem CCCH zinc-finger (non-TZF) protein named AtC3H18-Like (AtC3H18L), which contains two putative RNA-binding domains. By using transient expression system, we showed that heat treatment can induce the aggregation of diffuse distributed AtC3H18L to form cytoplasmic foci, which were similar to PBs and SGs in morphology. Further analysis did find that AtC3H18L can co-localize with markers of PB and SG. The aggregation of AtC3H18L was closely related to the cytoskeleton, and AtC3H18L-foci were highly dynamic and can move frequently along cytoskeleton. Moreover, analysis in transgenic plants showed that AtC3H18L was specifically expressed in pollen and can form cytoplasmic foci without heat treatment. It will be fascinating in future studies to discover whether and how AtC3H18L affects pollen development by participating in the assembly of mRNP granules as a protein component, especially under heat stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Codón de Terminación/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Dedos de Zinc , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Inflorescencia/metabolismo , Epidermis de la Planta/citología , Plantas Modificadas Genéticamente , Polen/metabolismo , Dominios Proteicos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Fracciones Subcelulares/metabolismo , Nicotiana/genética
11.
Plant Cell ; 32(5): 1727-1748, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32156687

RESUMEN

The exine of angiosperm pollen grains is usually covered by a complex mix of metabolites including pollen-specific hydroxycinnamic acid amides (HCAAs) and flavonoid glycosides. Although the biosynthetic pathways resulting in the formation of HCAAs and flavonol glycosides have been characterized, it is unclear how these compounds are transported to the pollen surface. In this report we provide several lines of evidence that a member of the nitrate/peptide transporter family is required for the accumulation and transport of pollen-specific flavonol 3-o-sophorosides, characterized by a glycosidic ß-1,2-linkage, to the pollen surface of Arabidopsis (Arabidopsis thaliana). Ectopic, transient expression in Nicotiana benthamiana epidermal leaf cells demonstrated localization of this flavonol sophoroside transporter (FST1) at the plasmalemma when fused to green fluorescent protein (GFP). We also confirmed the tapetum-specific expression of FST1 by GFP reporter lines driven by the FST1 promoter. In vitro characterization of FST1 activity was achieved by microbial uptake assays based on 14C-labeled flavonol glycosides. Finally, rescue of an fst1 insertion mutant by complementation with an FST1 genomic fragment restored the accumulation of flavonol glycosides in pollen grains to wild-type levels, corroborating the requirement of FST1 for transport of flavonol-3-o-sophorosides from the tapetum to the pollen surface.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flavonoles/metabolismo , Glicósidos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Polen/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Germinación , Proteínas de Transporte de Membrana/genética , Modelos Biológicos , Mutación/genética , Filogenia , Epidermis de la Planta/citología , Extractos Vegetales/química , Polen/ultraestructura , Regiones Promotoras Genéticas/genética , Propanoles/química , Propanoles/metabolismo , Fracciones Subcelulares/metabolismo , Supervivencia Tisular , Transcripción Genética , Rayos Ultravioleta
12.
J Biosci Bioeng ; 129(4): 502-507, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31732260

RESUMEN

Industrial scale microalgal cell disruption requires low cost, high efficiency and structural conservation of biomolecules for biorefinery. Many cultivated microalgae have thick walls and these walls are barriers for efficient cell disruption. Until recently, despite the high biodiversity of microalgae, little attention has been paid to thin-wall microalgal species in the natural environment for the production and recovery of valuable biomolecules. Instead of developing high power cell disruption devices, utilization of thin-wall species would be a better approach. The present paper describes a simple device that was assembled to evaluate the viability and effectiveness of biomolecule extraction from both thin- and thick-wall species as a proof of concept. This device was tested with high-pressure gases including N2, CO2 plus N2, and air as the disruption force. The highest nitrogen pressure, 110 bar, was not able to disrupt the thick-wall microalgal cells. On the other hand, the thin-wall species was disrupted to different degrees using different pressures and treatment durations. In the same treatment duration, higher nitrogen pressure gave better cell disruption efficiency than the lower pressure. However, in the same pressure, longer treatment duration did not give better efficiency than the shorter duration. High pressure CO2 treatments resulted in low soluble protein levels in the media. The best conditions to disrupt the thin-wall microalgal cells were 110 bar N2 or air for 1 min among these tests. In these conditions, not only were the disruption efficiencies high, but also the biomolecules were well preserved.


Asunto(s)
Carotenoides/aislamiento & purificación , Fraccionamiento Celular/métodos , Pared Celular/química , Proteínas Fúngicas/aislamiento & purificación , Gases/farmacología , Microalgas/química , Presión , Biomasa , Carotenoides/metabolismo , Proteínas Fúngicas/metabolismo , Humanos , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Estabilidad Proteica , Estrés Mecánico , Fracciones Subcelulares/química , Fracciones Subcelulares/metabolismo , Factores de Tiempo
13.
Plant Physiol ; 181(4): 1600-1614, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31548267

RESUMEN

RETINOBLASTOMA-RELATED (RBR) is an essential gene in plants, but its molecular function outside of its role in cell cycle entry remains poorly understood. We characterized the functions of OsRBR1 and OsRBR2 in plant growth and development in rice using both forward- and reverse-genetics methods. The two genes were coexpressed and performed redundant roles in vegetative organs but exhibited separate functions in flowers. OsRBR1 was highly expressed in the floral meristem and regulated the expression of floral homeotic genes to ensure floral organ formation. Mutation of OsRBR1 caused loss of floral meristem identity, resulting in the replacement of lodicules, stamens, and the pistil with either a panicle-like structure or whorls of lemma-like organs. OsRBR2 was preferentially expressed in stamens and promoted pollen formation. Mutation of OsRBR2 led to deformed anthers without pollen. Similar to the protein interaction between AtRBR and AtMSI1 that is essential for floral development in Arabidopsis, OsMSI1 was identified as an interaction partner of OsRBR1 and OsRBR2. OsMSI1 was ubiquitously expressed and appears to be essential for development in rice (Oryza sativa), as the mutation of OsMSI1 was lethal. These results suggest that OsRBR1 and OsRBR2 function with OsMSI1 in reproductive development in rice. This work characterizes further functions of RBRs and improves current understanding of specific regulatory pathways of floral specification and pollen formation in rice.


Asunto(s)
Genes de Plantas , Morfogénesis/genética , Oryza/genética , Proteínas de Plantas/genética , Polen/genética , Retinoblastoma/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/genética , Oryza/ultraestructura , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/ultraestructura , Unión Proteica , Fracciones Subcelulares/metabolismo
14.
Cold Spring Harb Protoc ; 2019(9)2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31167924

RESUMEN

Every microarray experiment is based on a common format. First, a large number of nucleotide "spots" are arrayed onto a substrate, typically a glass slide, a silicon chip, or microbeads. Second, a complex population of nucleic acids (isolated from cells, selected from in vitro-synthesized libraries, or obtained from another source) is labeled, typically with fluorescent dyes. Third, the labeled nucleic acids are allowed to hybridize to their complementary spot(s) on the microarray. Fourth, the hybridized microarray is washed, allowing the amount of hybridized label to then be quantified. Analysis of the raw data generates a readout of the levels of each species of RNA in the original complex population. This introduction includes several examples of microarray applications and provides a discussion of the basic steps of most microarray experiments.


Asunto(s)
Ácidos Nucleicos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Colorantes Fluorescentes/metabolismo , Regulación de la Expresión Génica , Polimorfismo de Nucleótido Simple/genética , Proteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fracciones Subcelulares/metabolismo , Transcriptoma/genética
15.
Oxid Med Cell Longev ; 2019: 4565238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918579

RESUMEN

A surgical connection between portal and inferior cava veins was performed to generate an experimental model of high circulating ammonium and hepatic hypofunctioning. After 13 weeks of portacaval anastomosis (PCA), hyperammonemia and shrinkage in the liver were observed. Low glycemic levels accompanied by elevated levels of serum alanine aminotransferase were recorded. However, the activity of serum aspartate aminotransferase was reduced, without change in circulating urea. Histological and ultrastructural observations revealed ongoing vascularization and alterations in the hepatocyte nucleus (reduced diameter with indentations), fewer mitochondria, and numerous ribosomes in the endoplasmic reticulum. High activity of hepatic caspase-3 suggested apoptosis. PCA promoted a marked reduction in lipid peroxidation determined by TBARs in liver homogenate but specially in the mitochondrial and microsomal fractions. The reduced lipoperoxidative activity was also detected in assays supplemented with Fe2+. Only discreet changes were observed in conjugated dienes. Fluorescent probes showed significant attenuation in mitochondrial membrane potential, reactive oxygen species (ROS), and calcium content. Rats with PCA also showed reduced food intake and decreased energy expenditure through indirect calorimetry by measuring oxygen consumption with an open-flow respirometric system. We conclude that experimental PCA promotes an angiogenic state in the liver to confront the altered blood flow by reducing the prooxidant reactions associated with lower metabolic rate, along with significant reduction of mitochondrial content, but without a clear hepatic dysfunction.


Asunto(s)
Peroxidación de Lípido , Hígado/metabolismo , Hígado/cirugía , Derivación Portocava Quirúrgica , Anastomosis Quirúrgica , Animales , Membrana Celular/metabolismo , Metabolismo Energético , Conducta Alimentaria , Colorantes Fluorescentes/metabolismo , Hepatocitos/metabolismo , Hepatocitos/ultraestructura , Hígado/patología , Hígado/ultraestructura , Masculino , Mitocondrias/metabolismo , Oxidantes/metabolismo , Ratas Wistar , Fracciones Subcelulares/metabolismo
16.
Int J Mol Sci ; 20(3)2019 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-30678326

RESUMEN

Cell-free protein synthesis is useful for synthesizing difficult targets. The site-specific incorporation of non-natural amino acids into proteins is a powerful protein engineering method. In this study, we optimized the protocol for cell extract preparation from the Escherichia coli strain RFzero-iy, which is engineered to lack release factor 1 (RF-1). The BL21(DE3)-based RFzero-iy strain exhibited quite high cell-free protein productivity, and thus we established the protocols for its cell culture and extract preparation. In the presence of 3-iodo-l-tyrosine (IY), cell-free protein synthesis using the RFzero-iy-based S30 extract translated the UAG codon to IY at various sites with a high translation efficiency of >90%. In the absence of IY, the RFzero-iy-based cell-free system did not translate UAG to any amino acid, leaving UAG unassigned. Actually, UAG was readily reassigned to various non-natural amino acids, by supplementing them with their specific aminoacyl-tRNA synthetase variants (and their specific tRNAs) into the system. The high incorporation rate of our RFzero-iy-based cell-free system enables the incorporation of a variety of non-natural amino acids into multiple sites of proteins. The present strategy to create the RFzero strain is rapid, and thus promising for RF-1 deletions of various E. coli strains genomically engineered for specific requirements.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli/metabolismo , Monoyodotirosina/metabolismo , Factores de Terminación de Péptidos/deficiencia , Codón de Terminación/genética , Codón de Terminación/metabolismo , Monoyodotirosina/genética , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Fracciones Subcelulares/metabolismo
17.
ACS Appl Mater Interfaces ; 10(46): 39544-39556, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30387597

RESUMEN

Hydrogen sulfide (H2S) is a versatile modulator in mitochondria and involved in numerous diseases caused by mitochondrial dysfunction. Therefore, many efforts have been made to develop fluorescent probes for mitochondrial H2S detection. However, these cationic small molecule probes are inapplicable for in vivo imaging because of the shallow tissue penetration and poor biostability. Herein, a ratiometric upconversion luminescence nanoprobe with an acid-activated targeting strategy is developed for detecting and bioimaging of mitochondrial H2S. The merocyanine triphenylamine-merocyanine (TPAMC)-modified upconversion nanophosphors, acting as the targeting and response component, are encapsulated into a pH-sensitive husk, composed of 1,2-distearoyl- sn-glycero-3-phosphoethanolamine- N-[methoxy-(poly(ethylene glycol))-2000] (DSPE-PEG) and poly(l-histidine)- b-PEG, which improved the nanoprobe's stability during transport in vivo. Under lysosomal pH, the PEG shell is interrupted and the targeting sites are exposed to further attach to mitochondria. Taking advantage of the luminescence resonance energy transfer process between TPAMC and upconversion nanophosphors, the ratiometric detection of mitochondrial H2S can be achieved with high selectivity and sensitivity. Cellular testing reveals the precise targeting to mitochondria via a lysosome delivery process. Importantly, the nanoprobe can be used for monitoring mitochondrial H2S levels in living cells and colon cancer mouse models.


Asunto(s)
Colorantes/química , Sulfuro de Hidrógeno/química , Lisosomas/química , Mitocondrias/metabolismo , Animales , Transporte Biológico , Sistemas de Liberación de Medicamentos , Colorantes Fluorescentes/química , Células HCT116 , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Luminiscencia , Células MCF-7 , Espectroscopía de Resonancia Magnética , Ratones , Trasplante de Neoplasias , Fósforo/química , Polietilenglicoles/química , Sensibilidad y Especificidad , Fracciones Subcelulares
18.
Plant Physiol Biochem ; 132: 287-296, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30245342

RESUMEN

The sucrose nonfermenting 1 (SNF1)-related protein kinase 2 (SnRK2) genes play central roles in plant stress signal transduction. In this study, 8 SnRK2 genes were identified from the tea plant genome database and named CsSnRK2.1-8. Phylogenetic analysis showed that the CsSnRK2 genes were classifiable into three groups, similar to those of Arabidopsis thaliana, Oryza sativa and maize. The coding sequences (CDSs) of all CsSnRK2s were separated by eight introns, and their exon-intron organizations exhibited high similarity to those of other plants. The fluorescence of GFP fused with CsSnRK2.3 was detected in only the cytoplasm, while the rest of the proteins showed GFP signal in both the nucleus and the cytoplasm. The results of the expression patterns of the CsSnRK2 genes showed that CsSnRK2s were differentially induced by salt, polyethylene glycol (PEG) and abscisic acid (ABA) stress. Interestingly, The expression of CsSnRK2.3 was inhibited by ABA, suggesting the complicated roles of CsSnRK2s in the ABA signal transduction pathway. Some CsSnRK2 gene pairs showed significant expression change correlations under stresses, indicating that CsSnRK2s might exhibit synergistic effects of signal regulation in response to various stresses. In summary, this comprehensive analysis will facilitate further studies of the SnRK2 family of Camellia sinensis and provide useful information for the functional validation of CsSnRK2s.


Asunto(s)
Camellia sinensis/enzimología , Camellia sinensis/genética , Genoma de Planta , Familia de Multigenes , Proteínas Serina-Treonina Quinasas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia Conservada/genética , Exones/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Intrones/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Estrés Fisiológico/genética , Fracciones Subcelulares/metabolismo
19.
Plant Sci ; 274: 59-69, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30080641

RESUMEN

Metal tolerance proteins (MTPs) belong to the cation diffusion facilitator family (CDF) and have been implicated in metal transport and homeostasis in different plant species. Here we report on the rice gene OsMTP11 that encodes a putative CDF transporter that is homologous to members of the Mn-CDF cluster. The expression of OsMTP11 was found to enhance Mn tolerance in the Mn-sensitive yeast mutant pmr1. Knockdown of OsMTP11 resulted in growth inhibition in the presence of high concentrations of Mn, and also led to increased accumulation of Mn in the shoots and roots. The overexpression of OsMTP11 was found to enhance Mn tolerance in rice, and under supplementation with a toxic level of Mn, decreased Mn concentration was observed in the shoots and roots. Subcellular localization in rice protoplasts and tobacco epidermal cells revealed that OsMTP11 localizes to the trans-Golgi network (TGN), and a significant relocalization to the plasma membrane can be triggered by high extracellular Mn in tobacco epidermal cells. These findings suggest that OsMTP11 is a TGN-localized Mn transporter that is required for Mn homeostasis and contributes towards Mn tolerance in rice.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Aparato de Golgi/metabolismo , Manganeso/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , Fracciones Subcelulares/metabolismo
20.
Molecules ; 23(6)2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29882758

RESUMEN

The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in plants and plays important roles in posttranscriptional regulation. In this study, we combined whole genome sequencing and transcriptomes to systematically investigate PPRs in Salvia miltiorrhiza, which is a well-known material of traditional Chinese medicine and an emerging model system for medicinal plant studies. Among 562 identified SmPPRs, 299 belong to the P subfamily while the others belong to the PLS subfamily. The majority of SmPPRs have only one exon and are localized in the mitochondrion or chloroplast. As many as 546 SmPPRs were expressed in at least one tissue and exhibited differential expression patterns, which indicates they likely play a variety of functions in S. miltiorrhiza. Up to 349 SmPPRs were salicylic acid-responsive and 183 SmPPRs were yeast extract and Ag⁺-responsive, which indicates these genes might be involved in S. miltiorrhiza defense stresses and secondary metabolism. Furthermore, 23 salicylic acid-responsive SmPPRs were co-expressed with phenolic acid biosynthetic enzyme genes only while 16 yeast extract and Ag⁺-responsive SmPPRs were co-expressed with tanshinone biosynthetic enzyme genes only. Two SmPPRs were co-expressed with both phenolic acid and tanshinone biosynthetic enzyme genes. The results provide a useful platform for further investigating the roles of PPRs in S. miltiorrhiza.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Péptidos/genética , Proteínas de Plantas/genética , Salvia miltiorrhiza/genética , Abietanos/biosíntesis , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Hidroxibenzoatos/metabolismo , Mitocondrias/metabolismo , Ácido Salicílico/metabolismo , Plata/farmacología , Fracciones Subcelulares/metabolismo , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA