Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 16(4): e0250791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33930038

RESUMEN

As oil production in the Permian Basin surges, the impact of shale production on groundwater resources has become a growing concern. Most existing studies focus on the impact of shale production on shallow freshwater aquifers. There is little understanding of the shale development's impact on other groundwater resources (e.g., deep carbonate aquifers and deep basin meteoric aquifers). The possible natural hydraulic connections between shallow aquifers and formation water suggest such an impact can be consequential. This study explores the relationship between shale production and groundwater using produced water (PW) samples from active unconventional oil wells. Focusing on the most productive portion of the Permian Basin-the four-county region in Southeast New Mexico between 2007 and 2016, a large produced water dataset allows us to analyze the conditional correlations between shale oil production and PW constituents. The results suggest that (1) expanding from primarily conventional wells to unconventional wells during the recent shale boom has led to dramatic increases of the TDS, chloride, sodium, and calcium levels in groundwater (i.e., producing formation). (2) Nearby oil well density positively correlates with the TDS, chloride, and sodium levels in the PW samples.


Asunto(s)
Agua Subterránea/química , Fracking Hidráulico/métodos , Minerales/análisis , Gas Natural/análisis , Yacimiento de Petróleo y Gas/química , Contaminantes Químicos del Agua/análisis , New Mexico
2.
Toxicol Appl Pharmacol ; 409: 115300, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33141058

RESUMEN

Hydraulic fracturing (fracking) is a process used to recover oil and gas from shale rock formation during unconventional drilling. Pressurized liquids containing water and sand (proppant) are used to fracture the oil- and natural gas-laden rock. The transportation and handling of proppant at well sites generate dust aerosols; thus, there is concern of worker exposure to such fracking sand dusts (FSD) by inhalation. FSD are generally composed of respirable crystalline silica and other minerals native to the geological source of the proppant material. Field investigations by NIOSH suggest that the levels of respirable crystalline silica at well sites can exceed the permissible exposure limits. Thus, from an occupational safety perspective, it is important to evaluate the potential toxicological effects of FSD, including any neurological risks. Here, we report that acute inhalation exposure of rats to one FSD, i.e., FSD 8, elicited neuroinflammation, altered the expression of blood brain barrier-related markers, and caused glial changes in the olfactory bulb, hippocampus and cerebellum. An intriguing observation was the persistent reduction of synaptophysin 1 and synaptotagmin 1 proteins in the cerebellum, indicative of synaptic disruption and/or injury. While our initial hazard identification studies suggest a likely neural risk, more research is necessary to determine if such molecular aberrations will progressively culminate in neuropathology/neurodegeneration leading to behavioral and/or functional deficits.


Asunto(s)
Inflamación/inducido químicamente , Inflamación/metabolismo , Exposición por Inhalación/efectos adversos , Arena/química , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Aerosoles/efectos adversos , Animales , Biomarcadores/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Polvo , Monitoreo del Ambiente/métodos , Fracking Hidráulico/métodos , Masculino , Exposición Profesional/efectos adversos , Ratas , Ratas Sprague-Dawley
3.
Toxicol Appl Pharmacol ; 409: 115282, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33068622

RESUMEN

Hydraulic fracturing ("fracking") is used in unconventional gas drilling to allow for the free flow of natural gas from rock. Sand in fracking fluid is pumped into the well bore under high pressure to enter and stabilize fissures in the rock. In the process of manipulating the sand on site, respirable dust (fracking sand dust, FSD) is generated. Inhalation of FSD is a potential hazard to workers inasmuch as respirable crystalline silica causes silicosis, and levels of FSD at drilling work sites have exceeded occupational exposure limits set by OSHA. In the absence of any information about its potential toxicity, a comprehensive rat animal model was designed to investigate the bioactivities of several FSDs in comparison to MIN-U-SIL® 5, a respirable α-quartz reference dust used in previous animal models of silicosis, in several organ systems (Fedan, J.S., Toxicol Appl Pharmacol. 00, 000-000, 2020). The present report, part of the larger investigation, describes: 1) a comparison of the physico-chemical properties of nine FSDs, collected at drilling sites, and MIN-U-SIL® 5, a reference silica dust, and 2) a comparison of the pulmonary inflammatory responses to intratracheal instillation of the nine FSDs and MIN-U-SIL® 5. Our findings indicate that, in many respects, the physico-chemical characteristics, and the biological effects of the FSDs and MIN-U-SIL® 5 after intratracheal instillation, have distinct differences.


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Arena/química , Silicosis/etiología , Tráquea/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Polvo , Fracking Hidráulico/métodos , Masculino , Exposición Profesional/efectos adversos , Neumonía/inducido químicamente , Cuarzo/efectos adversos , Ratas , Ratas Sprague-Dawley , Dióxido de Silicio/efectos adversos
4.
Molecules ; 25(18)2020 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-32932649

RESUMEN

The desire to improve hydraulic fracture complexity has encouraged the use of thermochemical additives with fracturing fluids. These chemicals generate tremendous heat and pressure pulses upon reaction. This study developed a model of thermochemical fluids' advection-reactive transport in hydraulic fractures to better understand thermochemical fluids' penetration length and heat propagation distance along the fracture and into the surrounding porous media. These results will help optimize the design of this type of treatment. The model consists of an integrated wellbore, fracture, and reservoir mass and heat transfer models. The wellbore model estimated the fracture fluid temperature at the subsurface injection interval. The integrated model showed that in most cases the thermochemical fluids were consumed within a short distance from the wellbore. However, the heat of reaction propagated a much deeper distance along the hydraulic fracture. In most scenarios, the thermochemical fluids were consumed within 15 ft from the fracture inlet. Among other design parameters, the thermochemical fluid concentration is the most significant in controlling the penetration length, temperature, and pressure response. The model showed that a temperature increase from 280 to 600 °F is possible by increasing the thermochemical concentration. Additionally, acid can be used to trigger the reaction but results in a shorter penetration length and higher temperature response.


Asunto(s)
Carbonato de Calcio/química , Gas Natural , Geología , Calor , Fracking Hidráulico/instrumentación , Fracking Hidráulico/métodos , Cinética , Yacimiento de Petróleo y Gas , Petróleo/análisis , Porosidad , Abastecimiento de Agua
5.
Environ Sci Pollut Res Int ; 25(35): 35387-35395, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30343374

RESUMEN

Water reuse is considered one of the most efficient and optimum ways in petroleum industries to address the water scarcity problem. The effluents which are made by the petroleum operations are supposed to be one of the hazardous materials when they are discharged to the environment. The objective of this study is to measure the volume of the required water for the operational performances of the studied oil field. To do this, the necessary water and the volume of provided treated water for the waterflooding, tertiary flooding, and hydraulic fracturing procedures are appropriately measured and by the utilization of photo-Fenton/flotation are administered to remove the oil droplets. According to the observational measurements, it is clarified that hydraulic fracturing has supplied approximately 93% of its required water by the treatment of flowback water and it virtually eliminated the necessity of fresh water from local or domestic water resources. Moreover, the total freshwater that has been saved in this oil field is investigated about 80% of the total required water for their performances. Consequently, the lower need of fresh water from local resources would reduce the unnecessary expenses to provide this volume of water and would save fresh water for about 2750 inhabitants for 1 year to overcome the issue of water scarcity in the world.


Asunto(s)
Fracking Hidráulico/métodos , Yacimiento de Petróleo y Gas , Petróleo/análisis , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Estudios de Factibilidad , Irán , Recursos Hídricos/provisión & distribución
6.
Endocrinology ; 159(3): 1277-1289, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29425295

RESUMEN

Unconventional oil and gas (UOG) operations, which combine hydraulic fracturing (fracking) and directional drilling, involve the use of hundreds of chemicals, including many with endocrine-disrupting properties. Two previous studies examined mice exposed during early development to a 23-chemical mixture of UOG compounds (UOG-MIX) commonly used or produced in the process. Both male and female offspring exposed prenatally to one or more doses of UOG-MIX displayed alterations to endocrine organ function and serum hormone concentrations. We hypothesized that prenatal UOG-MIX exposure would similarly disrupt development of the mouse mammary gland. Female C57Bl/6 mice were exposed to ~3, ~30, ~ 300, or ~3000 µg/kg/d UOG-MIX from gestational day 11 to birth. Although no effects were observed on the mammary glands of these females before puberty, in early adulthood, females exposed to 300 or 3000 µg/kg/d UOG-MIX developed more dense mammary epithelial ducts; females exposed to 3 µg/kg/d UOG-MIX had an altered ratio of apoptosis to proliferation in the mammary epithelium. Furthermore, adult females from all UOG-MIX-treated groups developed intraductal hyperplasia that resembled terminal end buds (i.e., highly proliferative structures typically seen at puberty). These results suggest that the mammary gland is sensitive to mixtures of chemicals used in UOG production at exposure levels that are environmentally relevant. The effect of these findings on the long-term health of the mammary gland, including its lactational capacity and its risk of cancer, should be evaluated in future studies.


Asunto(s)
Disruptores Endocrinos/toxicidad , Fracking Hidráulico/métodos , Glándulas Mamarias Animales/crecimiento & desarrollo , Industria del Petróleo y Gas/métodos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Animales , Apoptosis , Exposición a Riesgos Ambientales , Femenino , Edad Gestacional , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Lactancia , Glándulas Mamarias Animales/patología , Ratones , Ratones Endogámicos C57BL , Embarazo , Maduración Sexual
7.
Annu Rev Chem Biomol Eng ; 7: 415-53, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27070765

RESUMEN

Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.


Asunto(s)
Fracking Hidráulico/métodos , Yacimiento de Petróleo y Gas , Fracking Hidráulico/instrumentación , Modelos Teóricos , Gas Natural/análisis , Compuestos Orgánicos/química , Petróleo/análisis , Polisacáridos/química , Reología , Solventes/química
8.
Environ Sci Technol ; 50(7): 3290-314, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26902161

RESUMEN

Much interest is directed at the chemical structure of hydraulic fracturing (HF) additives in unconventional gas exploitation. To bridge the gap between existing alphabetical disclosures by function/CAS number and emerging scientific contributions on fate and toxicity, we review the structural properties which motivate HF applications, and which determine environmental fate and toxicity. Our quantitative overview relied on voluntary U.S. disclosures evaluated from the FracFocus registry by different sources and on a House of Representatives ("Waxman") list. Out of over 1000 reported substances, classification by chemistry yielded succinct subsets able to illustrate the rationale of their use, and physicochemical properties relevant for environmental fate, toxicity and chemical analysis. While many substances were nontoxic, frequent disclosures also included notorious groundwater contaminants like petroleum hydrocarbons (solvents), precursors of endocrine disruptors like nonylphenols (nonemulsifiers), toxic propargyl alcohol (corrosion inhibitor), tetramethylammonium (clay stabilizer), biocides or strong oxidants. Application of highly oxidizing chemicals, together with occasional disclosures of putative delayed acids and complexing agents (i.e., compounds designed to react in the subsurface) suggests that relevant transformation products may be formed. To adequately investigate such reactions, available information is not sufficient, but instead a full disclosure of HF additives is necessary.


Asunto(s)
Fracking Hidráulico/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Reactivos de Enlaces Cruzados/química , Monitoreo del Ambiente , Agua Subterránea/química , Humanos , Hidrocarburos/química , Petróleo , Polímeros/química , Salud Pública , Encuestas y Cuestionarios , Estados Unidos
9.
Environ Sci Technol ; 49(20): 12594-601, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26406569

RESUMEN

Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment.


Asunto(s)
Reactores Biológicos , Fracking Hidráulico/métodos , Hidrocarburos , Nitratos , Petróleo , Bacterias , Reactores Biológicos/microbiología , Petróleo/microbiología , Tolueno , Agua
10.
Environ Sci Technol ; 49(14): 8347-55, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26147419

RESUMEN

Volumes of natural gas extraction-derived wastewaters have increased sharply over the past decade, but the ultimate fate of those waste streams is poorly characterized. Here, we sought to (a) quantify natural gas residual fluid sources and endpoints to bound the scope of potential waste stream impacts and (b) describe the organic pollutants discharged to surface waters following treatment, a route of likely ecological exposure. Our findings indicate that centralized waste treatment facilities (CWTF) received 9.5% (8.5 × 10(8) L) of natural gas residual fluids in 2013, with some facilities discharging all effluent to surface waters. In dry months, discharged water volumes were on the order of the receiving body flows for some plants, indicating that surface waters can become waste-dominated in summer. As disclosed organic compounds used in high volume hydraulic fracturing (HVHF) vary greatly in physicochemical properties, we deployed a suite of analytical techniques to characterize CWTF effluents, covering 90.5% of disclosed compounds. Results revealed that, of nearly 1000 disclosed organic compounds used in HVHF, only petroleum distillates and alcohol polyethoxylates were present. Few analytes targeted by regulatory agencies (e.g., benzene or toluene) were observed, highlighting the need for expanded and improved monitoring efforts at CWTFs.


Asunto(s)
Fracking Hidráulico/métodos , Gas Natural , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Ambiente , Residuos Industriales , Compuestos Orgánicos/análisis , Pennsylvania , Petróleo , Estaciones del Año , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA