Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(5): e0241522, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36190401

RESUMEN

The life-threatening disease tularemia is caused by Francisella tularensis, an intracellular Gram-negative bacterial pathogen. Due to the high mortality rates of the disease, as well as the low respiratory infectious dose, F. tularensis is categorized as a Tier 1 bioterror agent. The identification and isolation from clinical blood cultures of F. tularensis are complicated by its slow growth. Iron was shown to be one of the limiting nutrients required for F. tularensis metabolism and growth. Bacterial growth was shown to be restricted or enhanced in the absence or addition of iron. In this study, we tested the beneficial effect of enhanced iron concentrations on expediting F. tularensis blood culture diagnostics. Accordingly, bacterial growth rates in blood cultures with or without Fe2+ supplementation were evaluated. Growth quantification by direct CFU counts demonstrated significant improvement of growth rates of up to 6 orders of magnitude in Fe2+-supplemented media compared to the corresponding nonmodified cultures. Fe2+ supplementation significantly shortened incubation periods for successful diagnosis and isolation of F. tularensis by up to 92 h. This was achieved in a variety of blood culture types in spite of a low initial bacterial inoculum representative of low levels of bacteremia. These improvements were demonstrated with culture of either Francisella tularensis subsp. tularensis or subsp. holarctica in all examined commercial blood culture types routinely used in a clinical setup. Finally, essential downstream identification assays, such as matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS), immunofluorescence, or antibiotic susceptibility tests, were not affected in the presence of Fe2+. To conclude, supplementing blood cultures with Fe2+ enables a significant shortening of incubation times for F. tularensis diagnosis, without affecting subsequent identification or isolation assays. IMPORTANCE In this study, we evaluated bacterial growth rates of Francisella tularensis strains in iron (Fe)-enriched blood cultures as a means of improving and accelerating bacterial growth. The shortening of the culturing time should facilitate rapid pathogen detection and isolation, positively impacting clinical diagnosis and enabling prompt onset of efficient therapy.


Asunto(s)
Francisella tularensis , Tularemia , Humanos , Francisella tularensis/metabolismo , Cultivo de Sangre , Tularemia/diagnóstico , Tularemia/metabolismo , Tularemia/microbiología , Hierro/metabolismo , Antibacterianos/farmacología
2.
ACS Chem Biol ; 14(8): 1760-1766, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31260252

RESUMEN

The Gram-negative bacterium Francisella tularensis secretes the siderophore rhizoferrin to scavenge necessary iron from the environment. Rhizoferrin, also produced by a variety of fungi and bacteria, comprises two citrate molecules linked by amide bonds to a central putrescine (diaminobutane) moiety. Genetic analysis has determined that rhizoferrin production in F. tularensis requires two enzymes: FslA, a siderophore synthetase of the nonribosomal peptide synthetase-independent siderophore synthetase (NIS) family, and FslC, a pyridoxal-phosphate-dependent decarboxylase. To discern the steps in the biosynthetic pathway, we tested F. tularensis strain LVS and its ΔfslA and ΔfslC mutants for the ability to incorporate potential precursors into rhizoferrin. Unlike putrescine supplementation, supplementation with ornithine greatly enhanced siderophore production by LVS. Radioactivity from L-[U-14C] ornithine, but not from L-[1-14C] ornithine, was efficiently incorporated into rhizoferrin by LVS. Although neither the ΔfslA nor the ΔfslC mutant produced rhizoferrin, a putative siderophore intermediate labeled by both [U-14C] ornithine and [1-14C] ornithine was secreted by the ΔfslC mutant. Rhizoferrin was identified by liquid chromatography and mass spectrometry in LVS culture supernatants, while citryl-ornithine was detected as the siderophore intermediate in the culture supernatant of the ΔfslC mutant. Our findings support a three-step pathway for rhizoferrin production in Francisella; unlike the fungus Rhizopus delemar, where putrescine functions as a primary precursor for rhizoferrin, biosynthesis in Francisella preferentially starts with ornithine as the substrate for FslA-mediated condensation with citrate. Decarboxylation of this citryl ornithine intermediate by FslC is necessary for a second condensation reaction with citrate to produce rhizoferrin.


Asunto(s)
Citratos/metabolismo , Compuestos Férricos/metabolismo , Francisella tularensis/metabolismo , Ornitina/análogos & derivados , Ornitina/metabolismo , Sideróforos/biosíntesis , Proteínas Bacterianas/metabolismo , Radioisótopos de Carbono , Ligasas de Carbono-Nitrógeno/metabolismo , Carboxiliasas/metabolismo , Francisella tularensis/enzimología
3.
Methods Mol Biol ; 1700: 293-318, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29177837

RESUMEN

The resistance nodulation cell division (RND) family of proteins are inner membrane transporters that associate with periplasmic adaptor proteins and outer membrane porins to affect substrate transport from the cytosol and periplasm in Gram-negative bacteria. Various structurally diverse compounds are substrates of RND transporters. Along with their notable role in antibiotic resistance, these transporters are essential for niche colonization, quorum sensing, and virulence as well as for the removal of fatty acids and bile salts. As such, RNDs are an attractive target for antimicrobial development. However, while enhancing the utility of antibiotics with an RND inhibitor is an appealing concept, only a small core of chemotypes has been identified as efflux pump inhibitors (EPIs). Thus, our key objective is the development and validation of an efflux profiling and discovery strategy for RND model systems. Here we describe a flow cytometric dye accumulation assay that uses fluorescein diacetate (FDA) to interrogate the model Gram-negative pathogens Escherichia coli, Franscisella tularensis, and Burkholderia pseudomallei. Fluorochrome retention is increased in the presence of known efflux inhibitors and in RND deletion strains. The assay can be used in a high-throughput format to evaluate efflux of dye-substrate candidates and to screen chemical libraries for novel EPIs. Triaged compounds that inhibit efflux in pathogenic strains are tested for growth inhibition and antibiotic potentiation using microdilution culture plates in a select agent Biosafety Level-3 (BSL3) environment. This combined approach demonstrates the utility of flow cytometric analysis for efflux activity and provides a useful platform in which to characterize efflux in pathogenic Gram-negative bacteria. Screening small molecule libraries for novel EPI candidates offers the potential for the discovery of new classes of antibacterial compounds.


Asunto(s)
Antibacterianos/farmacología , Fluoresceínas/metabolismo , Bacterias Gramnegativas/crecimiento & desarrollo , Proteínas de Transporte de Membrana/aislamiento & purificación , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/metabolismo , Evaluación Preclínica de Medicamentos , Farmacorresistencia Bacteriana Múltiple , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Citometría de Flujo , Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Especificidad por Sustrato
4.
Cell Microbiol ; 16(3): 434-49, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24134488

RESUMEN

In order to develop a successful infectious cycle, intracellular bacterial pathogens must be able to adapt their metabolism to optimally utilize the nutrients available in the cellular compartments and tissues where they reside. Francisella tularensis, the agent of the zoonotic disease tularaemia, is a highly infectious bacterium for a large number of animal species. This bacterium replicates in its mammalian hosts mainly in the cytosol of infected macrophages. We report here the identification of a novel amino acid transporter of the major facilitator superfamily of secondary transporters that is required for bacterial intracellular multiplication and systemic dissemination. We show that inactivation of this transporter does not affect phagosomal escape but prevents multiplication in the cytosol of all cell types tested. Remarkably, the intracellular growth defect of the mutant was fully and specifically reversed by addition of asparagine or asparagine-containing dipeptides as well as by simultaneous addition of aspartic acid and ammonium. Importantly, bacterial virulence was also restored in vivo, in the mouse model, by asparagine supplementation. This work unravels thus, for the first time, the importance of asparagine for cytosolicmultiplication of Francisella. Amino acid transporters are likely to constitute underappreciated players in bacterial intracellular parasitism.


Asunto(s)
Sistemas de Transporte de Aminoácidos/genética , Asparagina/metabolismo , Proteínas Bacterianas/genética , Francisella tularensis/crecimiento & desarrollo , Compuestos de Amonio/farmacología , Animales , Asparagina/farmacología , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Proteínas Bacterianas/farmacocinética , Línea Celular Tumoral , Francisella tularensis/metabolismo , Francisella tularensis/patogenicidad , Células Hep G2 , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Fagosomas/microbiología , Tularemia/microbiología
5.
PLoS One ; 8(5): e63369, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23704901

RESUMEN

In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of active versus tested compounds over an elapsed time period of 32 weeks, from pathogen strain identification to selection and validation of novel antimicrobial compounds.


Asunto(s)
Antibacterianos/farmacología , Descubrimiento de Drogas , Francisella tularensis/efectos de los fármacos , Francisella tularensis/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacocinética , Proteínas Bacterianas/química , Simulación por Computador , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos
6.
J AOAC Int ; 90(2): 465-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17474518

RESUMEN

Rapid capillary gas chromatography (GC) with flame-ionization detection was used to determine the cellular fatty acid profiles of Francisella tularensis. Two subspecies of F. tularensis, the live vaccine strain (LVS) derived from holarctica and a novicida strain Utah 112 (U112), were used to compare the extracted fatty acid methyl esters (FAMEs). A data set for the 2 subspecies was prepared using fatty acid profiles of bacteria grown on 2 types of media, Mueller-Hinton and cysteine heart agar supplemented with 5% rabbit blood (CHAB), and harvested at various time intervals (Day 1 through Day 4) with replicates prepared on different days. A total of 204 samples were analyzed. The results showed that these fatty acid quantitative profiles were unique for each of the subspecies and could be used as a fingerprint for the organism. It was determined by this rapid method that approximately 88% of the fatty acids in both the LVS and U112 strains included 6 saturated fatty acids: 10:0, 12:0, 14:0, 16:0, 18:0, and 20:0; and 4 hydroxy fatty acids 10:0 2OH, 16:0 3OH, 17:0 3OH, and 18:0 3OH. Data analysis and determination of clustering were performed by principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA). Both PCA and SIMCA showed clear separation of the LVS and U112 strain and would be useful for prediction of unknowns. It was determined that the incubation time can be reduced from 48 to 24 h, and results are highly predictive for the identification of F. tularensis. In summary, analysis of FAMEs from F. tularensis subspecies LVS and U112 grown on CHAB or Mueller-Hinton media, and using a rapid GC method can provide a sensitive procedure for identification of these organisms.


Asunto(s)
Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Francisella tularensis/metabolismo , Agar/química , Animales , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Técnicas de Química Analítica , Análisis por Conglomerados , Cisteína/química , Ésteres/química , Microscopía Electrónica , Análisis de Componente Principal , Conejos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA