Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1266-1274, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621974

RESUMEN

This paper investigates the intervention effect and mechanism of Banxia Xiexin Decoction(BXD) on colitis-associated colorectal cancer(CAC) infected with Fusobacterium nucleatum(Fn). C57BL/6 mice were randomly divided into a control group, Fn group, CAC group [azoxymethane(AOM)/dextran sulfate sodium salt(DSS)](AOM/DSS), model group, and BXD group. Except for the control and AOM/DSS groups, the mice in the other groups were orally administered with Fn suspension twice a week. The AOM/DSS group, model group, and BXD group were also injected with a single dose of 10 mg·kg~(-1) AOM combined with three cycles of 2.5% DSS taken intragastrically. The BXD group received oral administration of BXD starting from the second cycle until the end of the experiment. The general condition and weight changes of the mice were monitored during the experiment, and the disease activity index(DAI) was calculated. At the end of the experiment, the colon length and weight of the mice in each group were compared. Hematoxylin-eosin(HE) staining was used to observe the pathological changes in the colon tissue. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of interleukin(IL)-2, IL-4, and IL-6 inflammatory factors in the serum. Immunohistochemistry(IHC) was used to detect the expression of Ki67, E-cadherin, and ß-catenin in the colon tissue. Western blot was used to detect the protein content of Wnt3a, ß-catenin, E-cadherin, annexin A1, cyclin D1, and glycogen synthase kinase-3ß(GSK-3ß) in the colon tissue. The results showed that compared with the control group, the Fn group had no significant lesions. The mice in the AOM/DSS group and model group had decreased body weight, increased DAI scores, significantly increased colon weight, and significantly shortened colon length, with more significant lesions in the model group. At the same time, the colon histology of the model group showed more severe adenomas, inflammatory infiltration, and cellular dysplasia. The levels of IL-4 and IL-6 in the serum were significantly increased, while the IL-2 content was significantly decreased. The IHC results showed low expression of E-cadherin and high expression of Ki67 and ß-catenin in the model group, with a decreased protein content of E-cadherin and GSK-3ß and an increased protein content of Wnt3a, ß-catenin, annexin A1, and cyclin D1. After intervention with BXD, the body weight of the mice increased; the DAI score decreased; the colon length increased, and the tumor decreased. The histopathology showed reduced tumor proliferation and reduced inflammatory infiltration. The levels of IL-6 and IL-4 in the serum were significantly decreased, while the IL-2 content was increased. Meanwhile, the expression of E-cadherin was upregulated, and that of Ki67 and ß-catenin was downregulated. The protein content of E-cadherin and GSK-3ß increased, while that of Wnt3a, ß-catenin, annexin A1, and cyclin D1 decreased. In conclusion, BXD can inhibit CAC infected with Fn, and its potential mechanism may be related to the inhibition of Fn binding to E-cadherin, the decrease in annexin A1 protein level, and the regulation of the Wnt/ß-catenin pathway.


Asunto(s)
Anexina A1 , Neoplasias Asociadas a Colitis , Colitis , Medicamentos Herbarios Chinos , Ratones , Animales , Colitis/complicaciones , Colitis/tratamiento farmacológico , Colitis/genética , beta Catenina/genética , beta Catenina/metabolismo , Ciclina D1/metabolismo , Fusobacterium nucleatum/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Antígeno Ki-67/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Ratones Endogámicos C57BL , Cadherinas/metabolismo , Peso Corporal , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Azoximetano
2.
J Ethnopharmacol ; 328: 117932, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38382652

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Colitis is an important risk factor for the occurrence of colorectal cancer (CRC), and the colonization of Fusobacterium nucleatum (Fn) in the intestines accelerates this transformation process. Banxia Xiexin Decoction (BXD), originating from Shanghanlun, is a classic prescription for treating gastrointestinal diseases. Current researches indicate that BXD can effectively delay the colitis-to-cancer transition, but it is still unclear whether it can inhibit Fn colonization to achieve this delaying effect. AIM OF STUDY: This study explored the effect and mechanism of BXD in inhibiting Fn intestinal colonization to delay colitis-to-cancer transition. MATERIALS AND METHODS: We constructed a mouse model of colitis-to-cancer transition by regularly gavaging Fn combined with azoxymethane (AOM)/dextran sodium sulfate (DSS), and administered BXD by gavage. We monitored the body weight of mice, measured the length and weight of their colons, and calculated the disease activity index (DAI) score. The growth status of colon tumors was observed by hematoxylin and eosin (H&E) staining, and the changes in gut microbiota in each group of mice were detected by 16S rDNA analysis. Immunohistochemistry was used to detect the expression of E-cadherin and ß-catenin in colon tissues, and immunofluorescence was used to observe the infiltration of M2 macrophages in colon tissues. In cell experiments, we established a co-culture model of Fn and colon cancer cells and intervened with BXD-containing serum. Malignant behaviors such as cell proliferation, invasion, and migration were detected, as well as changes in their cell cycle. We examined the protein levels of E-cadherin, ß-catenin, Axin2, and Cyclin D1 in each group were detected by Western blot. We used US1 strain (fadA-) as a control and observed the effects of BXD-containing serum on Fn attachment and invasion of colon cancer cells through attachment and invasion experiments. RESULTS: BXD can inhibit the colitis-to-cancer transition in mice infected with Fn, reduce crypt structure damage, improve gut microbiota dysbiosis, upregulate E-cadherin and decrease ß-catenin expression, and reduce infiltration of M2 macrophages, thus inhibiting the process of colitis-to-cancer transition. Cell experiments revealed that BXD-containing serum can inhibit the proliferation, migration, and invasion of colon cancer cells infected with Fn and regulate their cell cycle. More importantly, we found that BXD-containing serum can inhibit the binding of Fn's FadA adhesin to E-cadherin, reduce Fn's attachment and invasion of colon cancer cells, thereby downregulating the E-cadherin/ß-catenin signaling pathway. CONCLUSIONS: These findings show that BXD can inhibit Fn colonization by interfering with the binding of FadA to E-cadherin, reducing the activation of the E-cadherin/ß-catenin signaling pathway, and ultimately delaying colitis-to-cancer transition.


Asunto(s)
Colitis , Neoplasias del Colon , Medicamentos Herbarios Chinos , Animales , Ratones , beta Catenina/metabolismo , Fusobacterium nucleatum/metabolismo , Transducción de Señal , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon
3.
Photochem Photobiol ; 97(2): 443-447, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32916756

RESUMEN

Previously, we have shown that sublethal exposure of blue light caused increased cell membrane permeability in Fusobacterium nucleatum. The aim of the present study was to test the effect of this exposure on the activity of Lavender, Sage, Echinacea and Mastic gum extracts against volatile sulfide compound (VSC) production by Fusobacterium nucleatum. Bacterial suspensions were pre-exposed to blue light (400-500 nm) bellow minimal inhibitory dosage (sub-MID). Exposed and nonexposed samples were inoculated into test tubes containing growth medium, filtered saliva with or without herbal extracts. Following incubation, test tubes were tested for malodor production (odor judge scores), VSC levels (OralChroma), salivary protein degradation (SDS-PAGE) and bacterial cell membrane damage (fluorescence microscopy). Results showed that sub-MID blue light exposure significantly increased the ability of Lavender and Echinacea to reduce VSC production by Fusobacterium nucleatum by more than 30%. These results suggest that sublethal blue light exposure may be useful to increase the efficacy of antimalodor agents.


Asunto(s)
Fusobacterium nucleatum/metabolismo , Medicina de Hierbas , Luz , Sulfuros/química , Bacterias/efectos de los fármacos , Biopelículas/efectos de los fármacos , Extractos Vegetales/farmacología , Volatilización
4.
Clin Exp Dent Res ; 6(2): 197-206, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32250572

RESUMEN

OBJECTIVES: The aim of this study was to investigate the effect of an oral care tablet containing kiwifruit powder on oral bacteria in tongue coating compared with tongue brushing. MATERIAL AND METHODS: Thirty-two healthy, young adults were enrolled, and a crossover clinical trial was conducted. The volatile sulfur compound (VSC) concentration, Winkel tongue-coating index (WTCI), and the number of total bacteria in addition to Fusobacterium nucleatum in tongue coating were measured. We instructed subjects to remove tongue coating by tongue brush for Intervention I, to keep the oral care tablet containing kiwifruit powder on the tongue dorsum and to let it dissolve naturally for Intervention II, and three oral care tablets 1 day before the measurement for Intervention III. RESULTS: There were significant differences in terms of the level of H2 S, VSC, and WTCI at Intervention I and all evaluation values at Intervention II. There were significant differences in terms of the level of H2 S, VSC, WTCI, the number of total bacteria, and F. nucleatum at Intervention III. The value of WTCI, the number of bacteria, and F. nucleatum decreased significantly after taking the oral care tablets than after tongue brushing. When compared with Interventions I and III, Intervention III showed the effective results; there were significant differences in the number of total bacteria and F. nucleatum between tongue brushing and taking tablets. CONCLUSIONS: These results suggested that the oral care tablet containing kiwifruit powder could be effective in reducing total bacteria and F. nucleatum in tongue coating when compared with tongue brushing.


Asunto(s)
Actinidia/química , Halitosis/prevención & control , Higiene Bucal/métodos , Extractos Vegetales/administración & dosificación , Lengua/microbiología , Administración Oral , Administración Tópica , Carga Bacteriana/efectos de los fármacos , Estudios Cruzados , Femenino , Frutas/química , Fusobacterium nucleatum/efectos de los fármacos , Fusobacterium nucleatum/aislamiento & purificación , Fusobacterium nucleatum/metabolismo , Halitosis/diagnóstico , Halitosis/microbiología , Voluntarios Sanos , Humanos , Masculino , Microbiota/efectos de los fármacos , Microbiota/fisiología , Polvos , Saliva/microbiología , Compuestos de Azufre/análisis , Compuestos de Azufre/metabolismo , Comprimidos , Resultado del Tratamiento , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Adulto Joven
5.
Int Endod J ; 51(10): 1118-1129, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29505121

RESUMEN

AIM: To investigate the influence of auxiliary chemical substances (ACSs) and calcium hydroxide [Ca(OH)2 ] dressings on lipopolysaccharides (LPS)/lipid A detection and its functional ability in activating Toll-like receptor 4 (TLR4). METHODOLOGY: Fusobacterium nucleatum pellets were exposed to antimicrobial agents as following: (i) ACS: 5.25%, 2.5% and 1% sodium hypochlorite solutions (NaOCl), 2% chlorhexidine (CHX) (gel and solution) and 17% ethylenediaminetetraacetic acid (EDTA); (ii) intracanal medicament: Ca(OH)2 paste for various periods (1 h, 24 h, 7 days, 14 days and 30 days); (iii) combination of substances: (a) 2.5% NaOCl (1 h), followed by 17% EDTA (3 min) and Ca(OH)2 (7 days); (b) 2% CHX (1 h), afterwards, 17% EDTA (3 min) followed by Ca(OH)2 (7 days). Saline solution was the control. Samples were submitted to LPS isolation and lipid A purification. Lipid A peaks were assessed by matrix-assisted laser desorption ionization time-of-flight mass spectrom (MALDI-TOF MS) whilst LPS bands by SDS-PAGE separation and silver staining. TLR4 activation determined LPS function activities. Statistical comparisons were carried out using one-way anova with Tukey-Kramer post-hoc tests at the 5% significance level. RESULTS: Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of control lipid A demonstrated the ion cluster at mass/charge (m/z) 1882 and an intense band in SDS-PAGE followed by silver staining of control LPS. In parallel, LPS control induced a robust TLR4 activation when compared to ACS (P ≤ .001). 5.25% NaOCl treatment led to the absence of lipid A peaks and LPS bands, whilst no changes occurred to lipid A/LPS after treatment with others ACS. Concomitantly, 5.25% NaOCl-treated LPS did not activate TLR4 (P < .0001). As for Ca(OH)2 , lipid A was not detected by MALDI-TOF nor by gel electrophoresis within 24 h. LPS treated with Ca(OH)2 was a weak TLR4 activator (P < .0001). From 24 h onwards, no significant differences were found amongst the time periods tested (P > 0.05). The addition of Ca(OH)2 for 7 days to cells treated either with 2.5% NaOCl or 2% CHX led to the absence of lipid A peaks and LPS bands, leading to a lower activation of TLR4. CONCLUSION: 5.25% NaOCl and Ca(OH)2 dressings from 24 h onwards were able to induce both, loss of lipid A peaks and no detection of LPS bands, rendering a diminished immunostimulatory activity through TLR4.


Asunto(s)
Hidróxido de Calcio/farmacología , Fusobacterium nucleatum/efectos de los fármacos , Lípido A/metabolismo , Lipopolisacáridos/metabolismo , Irrigantes del Conducto Radicular/farmacología , Receptor Toll-Like 4/metabolismo , Análisis de Varianza , Clorhexidina/farmacología , Ácido Edético/farmacología , Fusobacterium nucleatum/química , Fusobacterium nucleatum/metabolismo , Lípido A/química , Lípido A/aislamiento & purificación , Lipopolisacáridos/química , Lipopolisacáridos/aislamiento & purificación , Tratamiento del Conducto Radicular , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Sci Rep ; 6: 34520, 2016 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-27694921

RESUMEN

Fusobacterium nucleatum has been associated with both periodontal disease and inflammatory bowel disease. This Gram-negative bacterium possesses a high inflammatory potential that may contribute to the disease process. We hypothesized that green and black tea polyphenols attenuate the inflammatory response of monocytes/macrophages mediated by F. nucleatum. We first showed that the tea extracts, EGCG and theaflavins reduce the NF-κB activation induced by F. nucleatum in monocytes. Since NF-κB is a key regulator of genes coding for inflammatory mediators, we tested the effects of tea polyphenols on secretion of IL-1ß, IL-6, TNF-α, and CXCL8 by macrophages. A pre-treatment of macrophages with the tea extracts, EGCG, or theaflavins prior to a stimulation with F. nucleatum significantly inhibited the secretion of all four cytokines and reduced the secretion of MMP-3 and MMP-9, two tissue destructive enzymes. TREM-1 expressed by macrophages is a cell-surface receptor involved in the propagation of the inflammatory response to bacterial challenges. Interestingly, tea polyphenols inhibited the secretion/shedding of soluble TREM-1 induced by a stimulation of macrophages with F. nucleatum. The anti-inflammatory properties of tea polyphenols identified in the present study suggested that they may be promising agents for the prevention and/or treatment of periodontal disease and inflammatory bowel disease.


Asunto(s)
Colagenasas/metabolismo , Citocinas/metabolismo , Infecciones por Fusobacterium/tratamiento farmacológico , Fusobacterium nucleatum/metabolismo , Macrófagos/metabolismo , Polifenoles/farmacología , Té/química , Infecciones por Fusobacterium/metabolismo , Infecciones por Fusobacterium/patología , Humanos , Macrófagos/microbiología , Macrófagos/patología , Polifenoles/química , Células U937
7.
J Agric Food Chem ; 59(17): 9457-65, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21854077

RESUMEN

The L-cysteine derivatives (R)-2-amino-3-(methyldisulfanyl)propanoic acid (S-methylthio-L-cysteine), (R)-2-amino-3-(propyldisulfanyl)propanoic acid (S-propylthio-L-cysteine), (R)-2-amino-3-(1-propenyldisulfanyl)propanoic acid (S-(1-propenylthio)-L-cysteine), and (R)-2-amino-3-(2-propenyldisulfanyl)propanoic acid (S-allylthio-L-cysteine) were prepared from 3-[(methoxycarbonyl)dithio]-L-alanine, obtained from the reaction of L-cysteine with methoxycarbonylsulfenyl chloride. The occurrence of these S-(+)-alk(en)ylthio-L-cysteine derivatives in onion (Allium cepa L.) was proven by using UPLC-MS-ESI(+) in SRM mode. Their concentrations in fresh onion were estimated to be 0.19 mg/kg S-methylthio-L-cysteine, 0.01 mg/kg S-propylthio-L-cysteine, and 0.56 mg/kg (S-(1-propenyllthio)-L-cysteine, concentrations that are about 3000 times lower than that of isoalliin (S-(1-propenyl-S-oxo-L-cysteine). These compounds were treated with Fusobacterium nucleatum, a microorganism responsible for the formation of mouth malodor. These L-cysteine disulfides were demonstrated to predominantly produce tri- and tetrasulfides. Isoalliin is almost entirely consumed by the plant enzyme alliin lyase (EC 4.4.1.4 S-alk(en)yl-S-oxo-L-cysteine lyase) in a few seconds, but it is not transformed by F. nucleatum. This example of flavor modulation shows that the plant produces different precursors, leading to the formation of the same types of volatile sulfur compounds. Whereas the plant enzyme efficiently transforms S-alk(en)yl-S-oxo-L-cysteine, mouth bacteria are responsible for the transformation of S-alk(en)ylthio-L-cysteine.


Asunto(s)
Cisteína/análogos & derivados , Cebollas/química , Liasas de Carbono-Azufre/metabolismo , Cromatografía Líquida de Alta Presión , Cisteína/análisis , Cisteína/metabolismo , Disulfuros/metabolismo , Fusobacterium nucleatum/metabolismo , Boca/microbiología , Odorantes , Raíces de Plantas/química , Espectrometría de Masa por Ionización de Electrospray , Compuestos de Azufre/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
8.
Amino Acids ; 17(2): 185-93, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10524276

RESUMEN

The utilization of D- and L-amino acids with acidic, basic or polar side chains was demonstrated by HPLC. Two species of the anaerobe Fusobacterium utilized D-lysine and the L isomers of glutamate, glutamine, histidine, lysine and serine. Only F. varium used L-arginine, D-glutamate and D-serine as substrates, whereas F. nucleatum specifically utilized D-histidine and D-glutamine. D-Glutamate accumulated in F. nucleatum cultures supplemented with D-glutamine, and ornithine was detected when either DL- or L-arginine was included in F. varium cultures. Based on literature precedents, D-glutamate and D-histidine are isomerized to their L isomers prior to degradation, but separate catabolic pathways are possible for each enantiomer of lysine and serine.


Asunto(s)
Aminoácidos/metabolismo , Fusobacterium nucleatum/metabolismo , Fusobacterium/metabolismo , Cromatografía Líquida de Alta Presión , Estereoisomerismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA