Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 303
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2762, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553447

RESUMEN

The significance of transient neuropeptide expression during postnatal brain development is unknown. Here, we show that galanin expression in the ventrobasal thalamus of infant mice coincides with whisker map development and modulates subcortical circuit wiring. Time-resolved neuroanatomy and single-nucleus RNA-seq identified complementary galanin (Gal) and galanin receptor 1 (Galr1) expression in the ventrobasal thalamus and the principal sensory nucleus of the trigeminal nerve (Pr5), respectively. Somatodendritic galanin release from the ventrobasal thalamus was time-locked to the first postnatal week, when Gal1R+ Pr5 afferents form glutamatergic (Slc17a6+) synapses for the topographical whisker map to emerge. RNAi-mediated silencing of galanin expression disrupted glutamatergic synaptogenesis, which manifested as impaired whisker-dependent exploratory behaviors in infant mice, with behavioral abnormalities enduring into adulthood. Pharmacological probing of receptor selectivity in vivo corroborated that target recognition and synaptogenesis in the thalamus, at least in part, are reliant on agonist-induced Gal1R activation in inbound excitatory axons. Overall, we suggest a neuropeptide-dependent developmental mechanism to contribute to the topographical specification of a fundamental sensory neurocircuit in mice.


Asunto(s)
Galanina , Vibrisas , Animales , Humanos , Ratones , Axones/metabolismo , Encéfalo/metabolismo , Galanina/metabolismo , Tálamo/metabolismo , Vibrisas/fisiología
2.
PLoS Genet ; 19(10): e1010961, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856383

RESUMEN

Imprinted genes are subject to germline epigenetic modification resulting in parental-specific allelic silencing. Although genomic imprinting is thought to be important for maternal behaviour, this idea is based on serendipitous findings from a small number of imprinted genes. Here, we undertook an unbiased systems biology approach, taking advantage of the recent delineation of specific neuronal populations responsible for controlling parental care, to test whether imprinted genes significantly converge to regulate parenting behaviour. Using single-cell RNA sequencing datasets, we identified a specific enrichment of imprinted gene expression in a recognised "parenting hub", the galanin-expressing neurons of the preoptic area. We tested the validity of linking enriched expression in these neurons to function by focusing on MAGE family member L2 (Magel2), an imprinted gene not previously linked to parenting behaviour. We confirmed expression of Magel2 in the preoptic area galanin expressing neurons. We then examined the parenting behaviour of Magel2-null(+/p) mice. Magel2-null mothers, fathers and virgin females demonstrated deficits in pup retrieval, nest building and pup-directed motivation, identifying a central role for this gene in parenting. Finally, we show that Magel2-null mothers and fathers have a significant reduction in POA galanin expressing cells, which in turn contributes to a reduced c-Fos response in the POA upon exposure to pups. Our findings identify a novel imprinted gene that impacts parenting behaviour and, moreover, demonstrates the utility of using single-cell RNA sequencing data to predict gene function from expression and in doing so here, have identified a purposeful role for genomic imprinting in mediating parental behaviour.


Asunto(s)
Galanina , Responsabilidad Parental , Femenino , Animales , Ratones , Galanina/genética , Galanina/metabolismo , Hipotálamo/metabolismo , Impresión Genómica/genética , Fenotipo , Antígenos de Neoplasias/genética , Proteínas/genética
3.
Arch Biochem Biophys ; 744: 109689, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429535

RESUMEN

Defective autophagy-induced intracellular lipid degradation is causally associated with non-alcoholic fatty liver disease (NAFLD) development. Therefore, agents that can restore autophagy may have potential clinical application prospects on this public health issue. Galanin (GAL) is a pleiotropic peptide that regulates autophagy and is a potential drug for the treatment of NAFLD. In this study, we used an MCD-induced NAFLD mouse model in vivo and an FFA-induced HepG2 hepatocyte model in vitro to evaluate the anti-NAFLD effect of GAL. Exogenous GAL supplementation significantly attenuated lipid droplet accumulation and suppressed hepatocyte TG levels in mice and cell models. Mechanistically, Galanin-mediated reduction of lipid accumulation was positively correlated with upregulated p-AMPK, as evidenced by upregulated protein expressions of fatty acid oxidation-related gene markers (PPAR-α and CPT1A), upregulated expressions of the autophagy-related marker (LC3B), and downregulated autophagic substrate p62 levels. In FFA-treated HepG2 cells, activation of fatty acid oxidation and autophagy-related proteins by galanin was reversed by autophagy inhibitors, chloroquine, and the AMPK inhibitor. Galanin ameliorates hepatic fat accumulation by inducing autophagy and fatty acid oxidation via the AMPK/mTOR pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Galanina/farmacología , Galanina/metabolismo , Galanina/uso terapéutico , Serina-Treonina Quinasas TOR/metabolismo , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Metabolismo de los Lípidos , Autofagia , Ácidos Grasos/metabolismo , Lípidos , Ratones Endogámicos C57BL , Dieta Alta en Grasa
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902252

RESUMEN

Spexin2 (SPX2), a paralog of SPX1, is a newly identified gene in non-mammalian vertebrates. Limited studies in fish have evidenced its important role in food intake and energy balance modulation. However, little is known about its biological functions in birds. Using the chicken (c-) as a model, we cloned the full-length cDNA of SPX2 by using RACE-PCR. It is 1189 base pair (bp) in length and predicted to generate a protein of 75 amino acids that contains a 14 amino acids mature peptide. Tissue distribution analysis showed that cSPX2 transcripts were detected in a wide array of tissues, with abundant expression in the pituitary, testis, and adrenal gland. cSPX2 was also observed to be ubiquitously expressed in chicken brain regions, with the highest expression in the hypothalamus. Its expression was significantly upregulated in the hypothalamus after 24 or 36 h of food deprivation, and the feeding behavior of chicks was obviously suppressed after peripheral injection with cSPX2. Mechanistically, further studies evidenced that cSPX2 acts as a satiety factor via upregulating cocaine and amphetamine regulated transcript (CART) and downregulating agouti-related neuropeptide (AGRP) in hypothalamus. Using a pGL4-SRE-luciferase reporter system, cSPX2 was demonstrated to effectively activate a chicken galanin II type receptor (cGALR2), a cGALR2-like receptor (cGALR2L), and a galanin III type receptor (cGALR3), with the highest binding affinity for cGALR2L. Collectively, we firstly identified that cSPX2 serves as a novel appetite monitor in chicken. Our findings will help clarify the physiological functions of SPX2 in birds as well as its functional evolution in vertebrates.


Asunto(s)
Pollos , Hipotálamo , Neuropéptidos , Hormonas Peptídicas , Animales , Masculino , Pollos/genética , Pollos/metabolismo , Galanina/metabolismo , Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Receptores de Galanina/metabolismo , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo
5.
Mol Neurobiol ; 60(1): 171-182, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36251233

RESUMEN

We have previously shown that pituitary adenylate cyclase-activating polypeptide (PACAP) in the ventromedial hypothalamus (VMH) enhances feeding during the dark cycle and after fasting, and inhibits feeding during the light cycle. On the other hand, galanin is highly expressed in the hypothalamus and has been reported to be involved in feeding regulation. In this study, we investigated the involvement of the VMH-PACAP to the dorsomedial hypothalamus (DMH)-galanin signaling in the regulation of feeding. Galanin expression in the hypothalamus was significantly increased with fasting, but this increment was canceled in PACAP-knockout (KO) mice. Furthermore, overexpression of PACAP in the VMH increased the expression of galanin, while knockdown (KD) of PACAP in the VMH decreased the expression of galanin, indicating that the expression of galanin in the hypothalamus might be regulated by PACAP in the VMH. Therefore, we expressed the synaptophysin-EGFP fusion protein (SypEGFP) in PACAP neurons in the VMH and visualized the neural projection to the hypothalamic region where galanin was highly expressed. A strong synaptophysin-EGFP signal was observed in the DMH, indicating that PACAP-expressing cells of the VMH projected to the DMH. Furthermore, galanin immunostaining in the DMH showed that galanin expression was weak in PACAP-KO mice. When galanin in the DMH was knocked down, food intake during the dark cycle and after fasting was decreased, and food intake during the light cycle was increased, as in PACAP-KO mice. These results indicated that galanin in the DMH may regulate the feeding downstream of PACAP in the VMH.


Asunto(s)
Hipotálamo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Animales , Ratones , Regulación del Apetito , Galanina/metabolismo , Hipotálamo/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Sinaptofisina/metabolismo
6.
Indian J Med Microbiol ; 40(3): 459-461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35483998

RESUMEN

We report two cases of culture positive typhoid fever caused by ceftriaxone resistant Salmonella Typhi. Bacterial isolates from both the cases were positive for ESBL by phenotypic methods. Both patients didn't respond to ceftriaxone and were finally treated with meropenem. Screening of family members of one patient isolated a similar strain from a healthy carrier with the same antibiogram pattern. All isolates were subjected to PCR, which confirmed the presence of blaCTX-M15 ESBL gene. These two cases confirm emergence of ESBL-producing Salmonella Typhi causing Enteric Fever in India and also their presence in the gut flora of healthy carriers.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftriaxona/uso terapéutico , Galanina/análogos & derivados , Humanos , Pruebas de Sensibilidad Microbiana , Salmonella , Sustancia P/análogos & derivados , Insuficiencia del Tratamiento , Fiebre Tifoidea/diagnóstico , Fiebre Tifoidea/tratamiento farmacológico , Fiebre Tifoidea/microbiología
7.
Curr Biol ; 32(7): 1497-1510.e5, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35219430

RESUMEN

Animals possess neuronal circuits inducing stress to avoid or cope with threats present in their surroundings, for instance, by promoting behaviors, such as avoidance and escape. However, mechanisms must exist to tightly control responses to stressors, since overactivation of stress circuits is deleterious for the wellbeing of an organism. The underlying neuronal dynamics responsible for controlling behavioral responses to stress have remained unclear. Here, we describe a neuronal circuit in the hypothalamus of zebrafish larvae that inhibits stress-related behaviors and prevents excessive activation of the neuroendocrine pathway hypothalamic-pituitary-interrenal axis. Central components of this circuit are neurons secreting the neuropeptide Galanin, as ablation of these neurons led to abnormally high levels of stress. Surprisingly, we found that Galanin has a self-inhibitory action on Galanin-producing neurons. Our results suggest that hypothalamic Galanin-producing neurons play an important role in fine-tuning stress responses by preventing potentially harmful overactivation of stress-regulating circuits.


Asunto(s)
Galanina , Hormonas Peptídicas , Animales , Galanina/metabolismo , Hipotálamo/metabolismo , Neuronas/fisiología , Hormonas Peptídicas/metabolismo , Pez Cebra/metabolismo
8.
Eat Weight Disord ; 27(4): 1415-1425, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34370270

RESUMEN

PURPOSE: Time-restricted feeding (TRF) reverses obesity and insulin resistance, yet the central mechanisms underlying its beneficial effects are not fully understood. Recent studies suggest a critical role of hypothalamic galanin and its receptors in the regulation of energy balance. It is yet unclear whether TRF could regulate the expression of galanin and its receptors in the hypothalamus of mice fed a high-fat diet. METHODS: To test this effect, we subjected mice to either ad lib or TRF of a high-fat diet for 8 h per day. After 4 weeks, galanin and many neuropeptides associated with the function of metabolism were examined. RESULTS: The present findings showed that mice under TRF consume equivalent calories from a high-fat diet as those with ad lib access, yet are protected against obesity and have improved glucose metabolism. Plasma galanin, orexin A, irisin and adropin levels were significantly reversed by TRF regimen. Besides, TRF regimen reversed the progression of metabolic disorders in mice by increasing GLUT4 and PGC-1α expression in skeletal muscles. Moreover, the levels of galanin and GALR1 expression were severely diminished in the hypothalamus of the TRF mice, whereas GALR2 was highly expressed. CONCLUSIONS: TRF diminished galanin and GALR1 expression, and increased GALR2 expression in the hypothalamus of mice fed a high-fat diet. The current studies provide additional evidence that TRF is effective in improving HFD-induced hyperglycemia and insulin resistance in mice, and this effect could be associated with TRF-induced changes of the galanin systems in the hypothalamus. LEVEL OF EVIDENCE: No level of evidence, animal studies.


Asunto(s)
Galanina/metabolismo , Resistencia a la Insulina , Enfermedades Metabólicas , Receptor de Galanina Tipo 1/metabolismo , Animales , Galanina/farmacología , Humanos , Hipotálamo/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/prevención & control , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo
9.
J Chem Neuroanat ; 117: 102003, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34280488

RESUMEN

Hypothalamic magnocellular nuclei with their large secretory neurons are unique and phylogenetically conserved brain structures involved in the continual regulation of important homeostatic and autonomous functions in vertebrate species. Both canonical and newly identified neuropeptides have a broad spectrum of physiological activity at the hypothalamic neuronal circuit level located within the supraoptic (SON) and paraventricular (PVN) nuclei. Magnocellular neurons express a variety of receptors for neuropeptides and neurotransmitters and therefore receive numerous excitatory and inhibitory inputs from important subcortical neural areas such as limbic and brainstem populations. These unique cells are also densely innervated by axons from other hypothalamic nuclei. The vast majority of neurochemical maps pertain to animal models, mainly the rodent hypothalamus, however accumulating preliminary anatomical structural studies have revealed the presence and distribution of several neuropeptides in the human magnocellular nuclei. This review presents a novel and comprehensive evidence based evaluation of neuropeptide expression in the human SON and PVN. Collectively this review aims to cast a new, medically oriented light on hypothalamic neuroanatomy and contribute to a better understanding of the mechanisms responsible for neuropeptide-related physiology and the nature of possible neuroendocrinal interactions between local regulatory pathways.


Asunto(s)
Núcleo Basal de Meynert/química , Núcleo Basal de Meynert/metabolismo , Hipotálamo/química , Hipotálamo/metabolismo , Neuropéptidos/análisis , Neuropéptidos/metabolismo , Núcleo Basal de Meynert/citología , Galanina/análisis , Galanina/metabolismo , Humanos , Hipotálamo/citología , Oxitocina/análisis , Oxitocina/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-34119636

RESUMEN

Ferulic acid (FA) is a phenolic acid found within the plant cell wall that has physiological benefits as an antioxidant. Although metabolic benefits of FA supplementation are described, lacking are reports of effects on appetite regulation. Thus, our objective was to determine if FA affects food or water intake, using chicks as a model. At 4 days post-hatch, broiler chicks were intraperitoneally injected with 0 (vehicle), 12.5, 25, or 50 mg/kg of FA. Chicks treated with 50 mg/kg of FA consumed 70% less food than controls at 30 min post-injection, and the effect dissipated thereafter. Water intake was not affected at any time. In a behavior analysis, FA-treated chicks defecated fewer times than vehicle-injected chicks, while other behaviors were not affected. There was an increase in c-Fos immunoreactivity within the hypothalamic arcuate nucleus (ARC) of FA-treated chicks, and no differences were detected in other nuclei. mRNA abundance was measured in the whole hypothalamus and the ARC. There was decreased hypothalamic galanin, ghrelin, melanocortin receptor 3, and pro-opiomelanocortin (POMC) mRNA in FA-treated chicks. Within the ARC, there was an increase in c-Fos mRNA and a decrease in POMC mRNA in response to FA. It is likely that the mechanism responsible for mediating FA's transient effects on food intake originates within the ARC, possibly involving POMC. A greater understanding of the short-term, mild appetite-suppressive effects of FA may have applications to treating eating disorders and modulating food intake in animal models of obesity.


Asunto(s)
Pollos/metabolismo , Ácidos Cumáricos/química , Fitoquímicos/química , Animales , Animales Recién Nacidos , Anorexia/inducido químicamente , Apoptosis , Apetito , Regulación del Apetito , Núcleo Arqueado del Hipotálamo/metabolismo , Conducta Animal , Ácidos Cumáricos/farmacología , Modelos Animales de Enfermedad , Ingestión de Líquidos/efectos de los fármacos , Galanina/metabolismo , Ghrelina/metabolismo , Hipotálamo/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor de Melanocortina Tipo 3/metabolismo , Transducción de Señal
11.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33802616

RESUMEN

Obesity/overweight are important health problems due to metabolic complications. Dysregulation of peptides exerting orexigenic/anorexigenic effects must be investigated in-depth to understand the mechanisms involved in feeding behaviour. One of the most important and studied orexigenic peptides is galanin (GAL). The aim of this review is to update the mechanisms of action and physiological roles played by the GAL family of peptides (GAL, GAL-like peptide, GAL message-associated peptide, alarin) in the control of food intake and to review the involvement of these peptides in metabolic diseases and food intake disorders in experimental animal models and humans. The interaction between GAL and NPY in feeding and energy metabolism, the relationships between GAL and other substances involved in food intake mechanisms, the potential pharmacological strategies to treat food intake disorders and obesity and the possible clinical applications will be mentioned and discussed. Some research lines are suggested to be developed in the future, such as studies focused on GAL receptor/neuropeptide Y Y1 receptor interactions in hypothalamic and extra-hypothalamic nuclei and sexual differences regarding the expression of GAL in feeding behaviour. It is also important to study the possible GAL resistance in obese individuals to better understand the molecular mechanisms by which GAL regulates insulin/glucose metabolism. GAL does not exert a pivotal role in weight regulation and food intake, but this role is crucial in fat intake and also exerts an important action by regulating the activity of other key compounds under conditions of stress/altered diet.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Galanina/metabolismo , Neuropéptido Y/metabolismo , Animales , Humanos , Hipotálamo/metabolismo , Obesidad/metabolismo , Obesidad/prevención & control
12.
Mech Ageing Dev ; 194: 111427, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33383074

RESUMEN

Type 2 diabetes mellitus (T2DM) and osteoporosis are two major healthcare problems worldwide. T2DM is considered to be a risk factor for osteoporosis. Interestingly, several epidemiological studies suggest that bone abnormalities associated with diabetes may differ, at least in part, from those associated with senile or post-menopausal osteoporosis. The growing prevalence that patients with T2DM simultaneously suffer from osteoporosis, puts forward the importance to discuss the relationship between both diseases, as well as to investigate correlative agents to treat them. Emerging evidences demonstrate that neuropeptide galanin is involved in the pathogenesis of T2DM and osteoporosis. Galanin via activation of central GALR2 increases insulin sensitivity as well as bone density and mass in animal models. The disorder of galanin function plays major role in development of both diseases. Importantly, galanin signaling is indispensable for ΔFosB, an AP1 antagonist, to play the bone mass-accruing effects in the ventral hypothalamic neurons of diabetic models. This review summarizes our and other recent studies to provide a new insight into the multivariate relationship among galanin, T2DM and osteoporosis, highlighting the beneficial effect of galanin on the comorbid state of both diseases. These may help us better understanding the pathogenesis of osteoporosis and T2DM and provide useful clues for further inquiry if elevated galanin level may be taken as a biomarker for both conjoint diseases, and GALR2 agonist may be taken as a novel therapeutic strategy to treat both diseases concurrently.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Galanina/metabolismo , Hipotálamo/metabolismo , Osteoporosis/etiología , Animales , Biomarcadores/metabolismo , Densidad Ósea , Conservadores de la Densidad Ósea/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Galanina/antagonistas & inhibidores , Humanos , Hipoglucemiantes/uso terapéutico , Hipotálamo/fisiopatología , Resistencia a la Insulina , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/fisiopatología , Receptor de Galanina Tipo 2/antagonistas & inhibidores , Receptor de Galanina Tipo 2/metabolismo , Factores de Riesgo , Regulación hacia Arriba
13.
Neuroscience ; 447: 41-52, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31730796

RESUMEN

Spexin (SPX) is a novel satiety factor that putatively binds the galanin receptors R2 and R3 (GalR2/R3). SPX reduces body weight, and circulating SPX is decreased in obesity. It is unknown how SPX and its receptors are regulated in the hypothalamus, critical for energy homeostasis. We therefore examined the regulation of hypothalamic Spx, GalR2 and GalR3 gene expression in mouse primary and immortalized hypothalamic neurons. We report that Spx, GalR2 and GalR3 mRNA levels were regulated by acute treatments of palmitate, a dietary saturated fatty acid, as well as the nitric oxide (NO) donor sodium nitroprusside (SNP), but through a pathway independent of cyclic GMP and protein kinase G. Additionally, the palmitate- and NO-mediated induction of Spx and galanin receptors was blocked with the PKC inhibitor k252c. Furthermore, palmitate induced mRNA levels of endoplasmic reticulum (ER) stress markers, including Chop, Grp78 and Bax/Bcl2, as well as C/ebp-ß, whereas SNP induced Bax/Bcl2 and C/ebp-ß. Transcriptional changes in Spx, GalR2, GalR3, C/ebp-ß and ER stress marker mRNAs were blocked by pre-treatment with at least one of the chemical chaperones PBA or TUDCA. We also describe the presence of OCT-1 and C/EBP-ß response elements in the 5' regulatory region of Spx and demonstrate that SNP increases binding of C/EBP-ß to this region, but not Oct-1 mRNA nor OCT-1 binding. Our findings suggest an acute modulation of anorexigenic SPX signaling by palmitate and NO. Furthermore, ER stress and C/EBP-ß appear to mediate the changes in Spx, GalR2 and GalR3 in hypothalamic neurons.


Asunto(s)
Neuronas/metabolismo , Óxido Nítrico , Palmitatos , Hormonas Peptídicas/genética , Receptor de Galanina Tipo 2/genética , Receptor de Galanina Tipo 3/genética , Animales , Chaperón BiP del Retículo Endoplásmico , Galanina/metabolismo , Hipotálamo/citología , Ratones
14.
Int J Mol Sci ; 20(13)2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31288386

RESUMEN

In recent years, a significant increase in the consumption of products containing large amounts of acrylamide (e.g., chips, fries, coffee), especially among young people has been noted. The present study was created to establish the impact of acrylamide supplementation, in tolerable daily intake (TDI) dose and a dose ten times higher than TDI, on the population of galanin-like immunoreactive (GAL-LI) stomach neurons in pigs. Additionally, in the present study, the possible functional co-operation of GAL with other neuroactive substances and their role in acrylamide intoxication was investigated. Using double-labelling immunohistochemistry, alterations in the expression of GAL were examined in the porcine stomach enteric neurons after low and high doses of acrylamide supplementation. Generally, upregulation in GAL-LI immunoreactivity in both myenteric and submucous plexuses was noted in all stomach fragments studied. Additionally, the proportion of GAL-expressing cell bodies simultaneously immunoreactive to vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS) and cocaine- and amphetamine- regulated transcript peptide (CART) also increased. The results suggest neurotrophic or/and neuroprotective properties of GAL and possible co-operation of GAL with VIP, nNOS, CART in the recovery processes in the stomach enteric nervous system (ENS) neurons following acrylamide intoxication.


Asunto(s)
Acrilamida/efectos adversos , Suplementos Dietéticos , Sistema Nervioso Entérico/fisiología , Galanina/metabolismo , Estómago/inervación , Estómago/fisiología , Animales , Biomarcadores , Técnica del Anticuerpo Fluorescente , Plexo Mientérico/metabolismo , Transporte de Proteínas , Porcinos
15.
J Bone Miner Res ; 34(9): 1707-1720, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30998833

RESUMEN

Energy metabolism and bone homeostasis share several regulatory pathways. The AP1 transcription factor ΔFosB and leptin both regulate energy metabolism and bone, yet whether their pathways intersect is not known. Transgenic mice overexpressing ΔFosB under the control of the Enolase 2 (ENO2) promoter exhibit high bone mass, high energy expenditure, low fat mass, and low circulating leptin levels. Because leptin is a regulator of bone and ΔFosB acts on leptin-responsive ventral hypothalamic (VHT) neurons to induce bone anabolism, we hypothesized that regulation of leptin may contribute to the central actions of ΔFosB in the VHT. To address this question, we used adeno-associated virus (AAV) expression of ΔFosB in the VHT of leptin-deficient ob/ob mice and genetic crossing of ENO2-ΔFosB with ob/ob mice. In both models, leptin deficiency prevented ΔFosB-triggered reduction in body weight, increase in energy expenditure, increase in glucose utilization, and reduction in pancreatic islet size. In contrast, leptin deficiency failed to prevent ΔFosB-triggered increase in bone mass. Unlike leptin deficiency, galanin deficiency blocked both the metabolic and the bone ΔFosB-induced effects. Overall, our data demonstrate that, while the catabolic energy metabolism effects of ΔFosB require intact leptin and galanin signaling, the bone mass-accruing effects of ΔFosB require galanin but are independent of leptin. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Huesos/anatomía & histología , Metabolismo Energético , Galanina/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Animales , Peso Corporal , Eliminación de Gen , Glucosa/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos , Fosfopiruvato Hidratasa/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
16.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1341-1350, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30742994

RESUMEN

Overweight and obesity may cause several metabolic complications, including type 2 diabetes mellitus and hyperlipidemia. Despite years of progress in medicine, there are no highly effective pharmacological treatments for obesity. The natural compound celastrol, a pentacyclic triterpene extracted from the roots of Tripterygium Wilfordi (thunder god vine) plant, exerts various bioactivities including anti-diabetic and anti-obese effects. Although celastrol could decrease food intake and obesity, the detailed mechanism for celastrol is still unclear as yet. Herein, we intended to determine the effect of celastrol on obesity and the underlying mechanisms. In the present study, diet-induced obese mice were treated with 100 µg/kg/d celastrol for the last 21 days, and 3T3-L1 cells were treated with celastrol for 6 h. The present findings showed that celastrol suppresses fat intake, and leads to weight loss by inhibiting galanin and its receptor expression in the hypothalamus of mice fed a high-fat diet. More importantly, in addition to these direct anti-obesity activities, celastrol augmented the PGC-1α and GLUT4 expression in adipocytes and skeletal muscles to increase glucose uptake through AKT and P38 MAPK activation. Celastrol also inhibited gluconeogenic activity through a CREB/PGC-1α pathway. In conclusion, the weight-lowering effects of celastrol are driven by decreased galanin-induced food consumption. Thus, this study contributes to our understanding of the anti-obese role of celastrol, and provides a possibility of using celastrol to treat obesity in clinic.


Asunto(s)
Transportador de Glucosa de Tipo 4/genética , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Obesidad/prevención & control , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Triterpenos/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipocitos/patología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dieta Alta en Grasa/efectos adversos , Ingestión de Alimentos/efectos de los fármacos , Galanina/antagonistas & inhibidores , Galanina/genética , Galanina/metabolismo , Regulación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 4/agonistas , Transportador de Glucosa de Tipo 4/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Hipotálamo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/genética , Obesidad/patología , Triterpenos Pentacíclicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/agonistas , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Galanina/antagonistas & inhibidores , Receptores de Galanina/genética , Receptores de Galanina/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Trends Neurosci ; 41(6): 334-336, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29685403

RESUMEN

Parental care is a key evolutionary innovation that influences the fitness of parents and offspring. How the brain coordinates such a complex behavior remains poorly understood. Kohl and colleagues recently uncovered the organizational principles of hypothalamic galanin neurons and their connections in mice. Their findings revealed a striking picture in which discrete neuronal pools control distinct aspects of parental behavior.


Asunto(s)
Galanina , Neuronas , Animales , Encéfalo , Hipotálamo , Ratones
18.
J Sex Med ; 15(4): 480-491, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29550465

RESUMEN

BACKGROUND: Previously, we found that the neuropeptide galanin was strongly upregulated soon after bilateral cavernous nerve injury (BCNI) and that galanin and its receptors were expressed in nitrergic erectile innervation. Galanin has been observed to exert neuroregenerative effects in dorsal root ganglion neurons, but evidence for these effects in the major pelvic ganglion (MPG) after BCNI is lacking. AIM: To evaluate the neurotropic effects of galanin receptor agonists and antagonists in vitro in nitrergic neurons and MPG and in vivo in rats after BCNI. METHODS: Male Sprague-Dawley rats underwent BCNI and sham surgery. Organ culture and single-cell neuron culture of the MPG were performed. Osmotic pump treatment with the galanin agonist in vivo and measurement of erectile response to electrostimulation after BCNI, immunohistochemical localization of galanin and receptors in the human neurovascular bundle, and myographic analysis of rat corpus cavernosum smooth muscle relaxation to galanin receptor agonists were investigated. OUTCOMES: Neurite outgrowth in vitro and erectile response to electrostimulation after BCNI in vivo, immunohistochemical localization of galanin and receptors, and penile muscle relaxation in vitro. RESULTS: Galanin showed neurotrophic action in vitro and inhibition of endogenous galanin significantly impaired neurite outgrowth in nitrergic but not in sympathetic MPG neurons. In vivo administration of a selective galanin receptor-2 agonist, M1145, resulted in partial recovery of erectile function (EF) after BCNI. Galanin did not act as a direct vasodilator on corpus cavernosum muscle strips. CLINICAL TRANSLATION: Endogenous neurotrophins such as galanin could be used as a strategy to improve EF for patients after BCNI from radical prostatectomy. STRENGTHS AND LIMITATIONS: We evaluated the effect of galanin on nerve regeneration and EF recovery in vivo and in vitro. Limitations include the lack of washout period for the in vivo experiment and absence of differences in the expression of neuronal markers between treatment groups. CONCLUSIONS: We identified galanin as a potential endogenous mechanism for nerve regeneration after BCNI, which could play a physiologic role in EF recovery after radical prostatectomy. In vivo treatment with exogenous galanin was beneficial in enhancing EF recovery after BCNI, but further research is necessary to understand the underlying mechanisms. Weyne E, Hannan JL, Gevaert T, et al. Galanin Administration Partially Restores Erectile Function After Cavernous Nerve Injury and Mediates Endogenous Nitrergic Nerve Outgrowth In Vitro. J Sex Med 2018;15:480-491.


Asunto(s)
Disfunción Eréctil/etiología , Galanina/farmacología , Factores de Crecimiento Nervioso/farmacología , Neuronas Nitrérgicas/efectos de los fármacos , Pene/inervación , Traumatismos de los Nervios Periféricos/complicaciones , Animales , Modelos Animales de Enfermedad , Disfunción Eréctil/terapia , Galanina/administración & dosificación , Masculino , Factores de Crecimiento Nervioso/administración & dosificación , Regeneración Nerviosa/efectos de los fármacos , Erección Peniana/efectos de los fármacos , Prostatectomía/efectos adversos , Ratas , Ratas Sprague-Dawley , Receptores de Galanina/agonistas , Recuperación de la Función
19.
Mol Metab ; 10: 100-108, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29428595

RESUMEN

OBJECTIVE: Decreasing duodenal contraction is now considered as a major focus for the treatment of type 2 diabetes. Therefore, identifying bioactive molecules able to target the enteric nervous system, which controls the motility of intestinal smooth muscle cells, represents a new therapeutic avenue. For this reason, we chose to study the impact of oral galanin on this system in diabetic mice. METHODS: Enteric neurotransmission, duodenal contraction, glucose absorption, modification of gut-brain axis, and glucose metabolism (glucose tolerance, insulinemia, glucose entry in tissue, hepatic glucose metabolism) were assessed. RESULTS: We show that galanin, a neuropeptide expressed in the small intestine, decreases duodenal contraction by stimulating nitric oxide release from enteric neurons. This is associated with modification of hypothalamic nitric oxide release that favors glucose uptake in metabolic tissues such as skeletal muscle, liver, and adipose tissue. Oral chronic gavage with galanin in diabetic mice increases insulin sensitivity, which is associated with an improvement of several metabolic parameters such as glucose tolerance, fasting blood glucose, and insulin. CONCLUSION: Here, we demonstrate that oral galanin administration improves glucose homeostasis via the enteric nervous system and could be considered a therapeutic potential for the treatment of T2D.


Asunto(s)
Glucemia/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Galanina/farmacología , Hipoglucemiantes/farmacología , Neuronas/efectos de los fármacos , Administración Oral , Animales , Sistema Nervioso Entérico/metabolismo , Galanina/administración & dosificación , Hipoglucemiantes/administración & dosificación , Hipotálamo/metabolismo , Insulina/sangre , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo
20.
Neuron ; 95(1): 153-168.e6, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28648499

RESUMEN

Light affects sleep and wake behaviors by providing an indirect cue that entrains circadian rhythms and also by inducing a direct and rapid regulation of behavior. While circadian entrainment by light is well characterized at the molecular level, mechanisms that underlie the direct effect of light on behavior are largely unknown. In zebrafish, a diurnal vertebrate, we found that both overexpression and mutation of the neuropeptide prokineticin 2 (Prok2) affect sleep and wake behaviors in a light-dependent but circadian-independent manner. In light, Prok2 overexpression increases sleep and induces expression of galanin (galn), a hypothalamic sleep-inducing peptide. We also found that light-dependent, Prok2-induced sedation requires prokineticin receptor 2 (prokr2) and is strongly suppressed in galn mutants. These results suggest that Prok2 antagonizes the direct wake-promoting effect of light in zebrafish, in part through the induction of galn expression in the hypothalamus.


Asunto(s)
Ritmo Circadiano/genética , Luz , Neuropéptidos/genética , Sueño/genética , Vigilia/genética , Proteínas de Pez Cebra/genética , Animales , Galanina/genética , Galanina/metabolismo , Hipotálamo/metabolismo , Mutación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Pez Cebra , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA