Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Eur J Neurosci ; 24(11): 3119-33, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17156373

RESUMEN

Gap junctions play a key role in the operation of neuronal networks by enabling direct electrical and metabolic communication between neurons. Suitable models to investigate their role in network operation and plasticity are invertebrate motor networks, which are built of comparatively few identified neurons, and can be examined throughout development; an excellent example is the lobster stomatogastric nervous system. In invertebrates, gap junctions are formed by proteins that belong to the innexin family. Here, we report the first molecular characterization of two crustacean innexins: the lobster Homarus gammarus innexin 1 (Hg-inx1) and 2 (Hg-inx2). Phylogenetic analysis reveals that innexin gene duplication occurred within the arthropod clade before the separation of insect and crustacean lineages. Using in situ hybridization, we find that each innexin is expressed within the adult and developing lobster stomatogastric nervous system and undergoes a marked down-regulation throughout development within the stomatogastric ganglion (STG). The number of innexin expressing neurons is significantly higher in the embryo than in the adult. By combining in situ hybridization, dye and electrical coupling experiments on identified neurons, we demonstrate that adult neurons that express at least one innexin are dye and electrically coupled with at least one other STG neuron. Finally, two STG neurons display no detectable amount of either innexin mRNAs but may express weak electrical coupling with other STG neurons, suggesting the existence of other forms of innexins. Altogether, we provide evidence that innexins are expressed within small neuronal networks built of dye and electrically coupled neurons and may be developmentally regulated.


Asunto(s)
Conexinas/metabolismo , Ganglios de Invertebrados/metabolismo , Uniones Comunicantes/metabolismo , Nephropidae/metabolismo , Sistema Nervioso/metabolismo , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Comunicación Celular/fisiología , Conexinas/genética , Conexinas/aislamiento & purificación , ADN Complementario/análisis , ADN Complementario/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolución Molecular , Colorantes Fluorescentes , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Potenciales de la Membrana/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Nephropidae/citología , Nephropidae/crecimiento & desarrollo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/crecimiento & desarrollo , Neuronas/citología , Filogenia , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
2.
J Neurosci ; 25(7): 1611-9, 2005 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-15716396

RESUMEN

Which features of network output are well preserved during growth of the nervous system and across different preparations of the same size? To address this issue, we characterized the pyloric rhythms generated by the stomatogastric nervous systems of 99 adult and 12 juvenile lobsters (Homarus americanus). Anatomical studies of single pyloric network neurons and of the whole stomatogastric ganglion (STG) showed that the STG and its neurons grow considerably from juvenile to adult. Despite these changes in size, intracellularly recorded membrane potential waveforms of pyloric network neurons and the phase relationships in the pyloric rhythm were very similar between juvenile and adult preparations. Across adult preparations, the cycle period and number of spikes per burst were not tightly maintained, but the mean phase relationships were independent of the period of the rhythm and relatively tightly maintained across preparations. We interpret this as evidence for homeostatic regulation of network activity.


Asunto(s)
Individualidad , Actividad Motora/fisiología , Nephropidae/fisiología , Animales , Ganglios de Invertebrados/crecimiento & desarrollo , Ganglios de Invertebrados/fisiología , Potenciales de la Membrana , Neuronas Motoras/fisiología , Nephropidae/crecimiento & desarrollo , Red Nerviosa/fisiología , Píloro/crecimiento & desarrollo , Píloro/inervación , Tiempo de Reacción
3.
J Comp Neurol ; 441(1): 23-43, 2001 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-11745633

RESUMEN

The main output pathways from the olfactory lobes (primary olfactory centers) and accessory lobes (higher-order integrative areas) of decapod crustaceans terminate within both of the main neuropil regions of the lateral protocerebrum: the medulla terminalis and the hemiellipsoid body. The present study examines the morphogenesis of the lateral protocerebral neuropils of the lobster, Homarus americanus, and the development of their neuronal connections with the paired olfactory and accessory lobes. The medulla terminalis was found to emerge during the initial stages of embryogenesis and to be the target neuropil of the output pathway from the olfactory lobe. In contrast, the hemiellipsoid body is first apparent during mid-embryonic development and is innervated by the output pathway from the accessory lobe. The dye injections used to elucidate these pathways also resulted in the labeling of a previously undescribed pathway linking the olfactory lobe and the ventral nerve cord. To increase our understanding of the morphology of the olfactory pathways in H. americanus we also examined the connectivity of the lateral protocerebral neuropils of embryonic lobsters. These studies identified several interneuronal populations that may be involved in the higher-order processing of olfactory inputs. In addition, we examined the neuroanatomy of ascending pathways from the antenna II and lateral antenna I neuropils (neuropils involved in the processing of chemosensory and tactile inputs). These studies showed that the ascending pathways from these neuropils innervate the same regions of the medulla terminalis and that these regions are different from those innervated by the olfactory lobe output pathway.


Asunto(s)
Nephropidae/anatomía & histología , Vías Olfatorias/citología , Vías Olfatorias/crecimiento & desarrollo , Animales , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Carbocianinas , Colorantes Fluorescentes , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/crecimiento & desarrollo , Inmunohistoquímica , Microscopía Confocal , Neuronas/química , Neurópilo/citología , Sinapsinas/análisis
4.
J Neurophysiol ; 82(4): 2006-9, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10515991

RESUMEN

The stomatogastric ganglion of the adult lobster, Homarus americanus generates extremely regular pyloric rhythms with a characteristic period of 0.5-1.5 Hz. To study the changes in the pyloric rhythm during embryonic and larval development, we recorded excitatory junctional potentials evoked by lateral pyloric (LP) neuron activity. Early in development the motor discharge of the LP neuron was often irregular, preventing use of conventional analysis methods that rely on extracting burst times to calculate cycle frequency and its variability. Instead, cycle frequency was determined for the LP neuron from the peak of the power spectrum obtained from the occurrence times of excitatory junctional potentials in the p1 muscle. The ratio of the power in the peak to the power from 0 to 3 Hz was used as a relative measure of the regularity of the rhythm. Throughout embryonic and the first larval stage, LP neuron activity is slow, irregular, and only weakly periodic. The regularity of the rhythm increased during midlarval stages, and both the frequency and regularity increased considerably by the postlarval stage LIV.


Asunto(s)
Ganglios de Invertebrados/fisiología , Unión Neuromuscular/fisiología , Neuronas/fisiología , Animales , Sistema Digestivo/inervación , Embrión no Mamífero/fisiología , Potenciales Evocados , Femenino , Ganglios de Invertebrados/embriología , Ganglios de Invertebrados/crecimiento & desarrollo , Técnicas In Vitro , Larva , Fibras Musculares Esqueléticas/fisiología , Músculos/inervación , Nephropidae , Oocitos
5.
J Comp Neurol ; 399(3): 289-305, 1998 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-9733079

RESUMEN

In the adult lobster, Homarus gammarus, the stomatogastric ganglion (STG) contains two well-defined motor pattern generating networks that receive numerous modulatory peptidergic inputs from anterior ganglia. We are studying the appearance of extrinsic peptidergic inputs to these networks during ontogenesis. Neuron counts indicate that as early as 20% of development (E20) the STG neuronal population is quantitatively established. By using immunocytochemical detection of 5-bromo-2'-deoxyuridine incorporation, we found no immunopositive cells in the STG by E70. We concluded that the STG neuronal population remains quantitatively stable from mid-embryonic life until adulthood. We then investigated the ontogeny of FLRFamide- and proctolin-like peptides in the stomatogastric nervous system, from their first appearance until adulthood by using whole mount immunocytochemistry. Numerous FLRFamide-like-immunoreactive STG neuropilar ramifications were observable as early as E45 and remain thereafter. From E50 to the first larval stage, one to three STG somata stained, while somatic staining was not observed in larval stage II and subsequent stages. From E50 and thereafter, the STG neuropilar area was immunopositive for proctolin. One to two proctolinergic somata were detected in the STG of the three larval stages but were not seen in embryos, the post-larval stage or in adults. Thus, peptidergic inputs to the STG are present from mid-embryonic life. Moreover, whereas in the adult, STG neurons only contain glutamate or acetylcholine, some neurons transiently express peptidergic phenotypes during development. Although this system expresses an ontogenetic peptidergic plasticity, the STG neurons produce a single stable embryonic-larval motor output (Casasnovas and Meyrand [1995] J. Neurosci. 15:5703-5718).


Asunto(s)
Nephropidae/fisiología , Neuronas/metabolismo , Neuropéptidos , Oligopéptidos/metabolismo , Animales , Anticuerpos , Antimetabolitos , Bromodesoxiuridina , Recuento de Células , Ganglios de Invertebrados/química , Ganglios de Invertebrados/citología , Ganglios de Invertebrados/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/metabolismo , Sistema Nervioso/citología , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/química , Neuronas/citología , Neurotransmisores/metabolismo , Oligopéptidos/análisis , Oligopéptidos/inmunología
6.
J Neurobiol ; 34(3): 208-26, 1998 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-9485047

RESUMEN

The nitric oxide/cyclic 3',5'-guanosine monophosphate (NO/cGMP) signaling pathway has been implicated in certain forms of developmental and adult neuronal plasticity. Here we use whole-mount immunocytochemistry to identify components of this pathway in the nervous system of postembryonic lobsters as they develop through metamorphosis. We find that the synthetic enzyme for NO (nitric oxide synthase, or NOS) and the receptor for this transmitter (NO-sensitive soluble guanylate cyclase) are broadly distributed in the central nervous system (CNS) at hatching. In the brain, NOS immunoreactivity is intensified during glomerular development in the olfactory and accessory lobes. Whereas only a few neurons express NOS in the CNS, many more neurons synthesize cGMP in the presence of NO. NO-sensitive guanylate cyclase activity is a stable feature of some cells, while in others it is regulated during development. In the stomatogastric nervous system, a subset of neurons become responsive to NO at metamorphosis, a time when larval networks are reorganized into adult motor circuits. cGMP accumulation was occasionally detected in the nucleus of many cells in the CNS, which suggests that cGMP may have a role in transcription. Based on these findings, we conclude that the NO/cGMP signaling pathway may participate in the development of the lobster nervous system. Furthermore, NO may serve as a modulatory neurotransmitter for diverse neurons throughout the CNS.


Asunto(s)
GMP Cíclico/fisiología , Nephropidae/fisiología , Red Nerviosa/crecimiento & desarrollo , Óxido Nítrico/fisiología , 1-Metil-3-Isobutilxantina/farmacología , Animales , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/enzimología , Sistema Nervioso Central/crecimiento & desarrollo , Femenino , Ganglios de Invertebrados/efectos de los fármacos , Ganglios de Invertebrados/enzimología , Ganglios de Invertebrados/crecimiento & desarrollo , Larva , Molsidomina/análogos & derivados , Molsidomina/farmacología , Nephropidae/crecimiento & desarrollo , Proteínas del Tejido Nervioso/análisis , Plasticidad Neuronal , Óxido Nítrico Sintasa/análisis , Nitroprusiato/farmacología , Penicilamina/análogos & derivados , Penicilamina/farmacología , Transducción de Señal/efectos de los fármacos , Olfato/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA