Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 60, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165474

RESUMEN

The complete chloroplast genome (plastome) of the annual flowering halophyte herb Suaeda monoica Forssk. ex J. F. Gmel. family (Amaranthaceae) that grows in Jeddah, Saudi Arabia, was identified for the first time in this study. Suaeda monoica is a medicinal plant species whose taxonomic classification remains controversial. Further, studying the species is useful for current conservation and management efforts. In the current study, the full chloroplast genome S. monoica was reassembled using whole-genome next-generation sequencing and compared with the previously published chloroplast genomes of Suaeda species. The chloroplast genome size of Suaeda monoica was 151,789 bp, with a single large copy of 83,404 bp, a small single copy of 18,007 bp and two inverted repeats regions of 25,189 bp. GC content in the whole genome was 36.4%. The cp genome included 87 genes that coded for proteins, 37 genes coding for tRNA, 8 genes coding for rRNA and one non-coding pseudogene. Five chloroplast genome features were compared between S. monoica and S. japonica, S. glauca, S. salsa, S. malacosperma and S. physophora. Among Suaeda genus and equal to most angiosperms chloroplast genomes, the RSCU values were conservative. Two pseudogenes (accD and ycf1), rpl16 intron and ndhF-rpl32 intergenic spacer, were highlighted as suitable DNA barcodes for different Suaeda species. Phylogenetic analyses show Suaeda cluster into three main groups; one in which S. monoica was closer to S. salsa. The obtained result provided valuable information on the characteristics of the S. monoica chloroplast genome and the phylogenetic relationships.


Asunto(s)
Chenopodiaceae , Genoma del Cloroplasto , Magnoliopsida , Genoma del Cloroplasto/genética , Plantas Tolerantes a la Sal/genética , Arabia Saudita , Filogenia , Chenopodiaceae/genética
2.
Plant Biol (Stuttg) ; 26(2): 257-269, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38169134

RESUMEN

Artemisia L. is the largest genus in the Asteraceae, and well known for its high medicinal value. The morphological features of Artemisia species are similar, making taxonomic identification and evolutionary research difficult. We sequenced chloroplast genomes of eight Artemisia species, all of which are common adulterants of A. argyi. We used novel genetic data and compared these data to the published A. argyi chloroplast genome in to develop molecular markers for species identification and reconstructing phylogenetic relationships between Artemisia species. The eight chloroplast sequences were highly similar in gene order, content, and structure, encoding a total of 114 genes (82 protein-coding genes, 28 tRNAs, and four rRNAs). All species harboured similar repeat sequences and simple sequence repeats (SSRs), ranging from 47 to 49 and 38 to 40 repeats, respectively. In addition, we identified five hypervariable regions (rpl32-trnL, rps16-trnQ, petN-psbM, trnE-rpoB, and atpA-trnR) and ten variable coding genes (ycf1, psbG, rpl36, psaC, psaI, accD, psbT, ndhD, ndhE, and psbH), which can be used to develop chloroplast molecular markers. Finally, phylogenetic reconstructions based on six datasets produced similar topologies, revealing A. argyi is closely related to species often found as adulterants, as expected. Our research provides valuable new information on the evolution and phylogenetic relationships between Artemisia chloroplast genomes and identifies valuable molecular makers to distinguish it from closely related species.


Asunto(s)
Artemisia , Genoma del Cloroplasto , Filogenia , Artemisia/genética , Genoma del Cloroplasto/genética , Secuencia de Bases
3.
J Plant Res ; 137(1): 37-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917204

RESUMEN

Geum japonicum (Rosaceae) has been widely used in China as a traditional herbal medicine due to its high economic and medicinal value. However, the appearance of Geum species is relatively similar, making identification difficult by conventional phenotypic methods, and the studies of genomics and species evolution are lacking. To better distinguish the medicinal varieties and fill this gap, we carried out relevant research on the chloroplast genome of G. japonicum. Results show a typical quadripartite structure of the chloroplast genome of G. japonicum with a length of 156,042 bp. There are totally 131 unique genes in the genome, including 87 protein-coding genes, 36 tRNA genes, and 8 rRNA genes, and there were also 87 SSRs identified and mostly mononucleotide Adenine-Thymine. We next compared the plastid genomes among four Geum species and obtained 14 hypervariable regions, including ndhF, psbE, trnG-UCC, ccsA, trnQ-UUG, rps16, psbK, trnL-UAA, ycf1, ndhD, atpA, petN, rps14, and trnK-UUU. Phylogenetic analysis revealed that G. japonicum is most closely related to Geum aleppicum, and possibly has some evolutionary relatedness with an ancient relic plant Taihangia rupestris. This research enriched the genome resources and provided fundamental insights for evolutionary studies and the phylogeny of Geum.


Asunto(s)
Genoma del Cloroplasto , Geum , Filogenia , Genoma del Cloroplasto/genética , Geum/genética , Genómica/métodos , Cloroplastos/genética
4.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068952

RESUMEN

Hydrocotyle, belonging to the Hydrocotyloideae of Araliaceae, consists of 95 perennial and 35 annual species. Due to the lack of stable diagnostic morphological characteristics and high-resolution molecular markers, the phylogenetic relationships of Hydrocotyle need to be further investigated. In this study, we newly sequenced and assembled 13 whole plastid genomes of Hydrocotyle and performed comparative plastid genomic analyses with four previously published Hydrocotyle plastomes and phylogenomic analyses within Araliaceae. The plastid genomes of Hydrocotyle exhibited typical quadripartite structures with lengths from 152,659 bp to 153,669 bp, comprising a large single-copy (LSC) region (83,958-84,792 bp), a small single-copy (SSC) region (18,585-18,768 bp), and a pair of inverted repeats (IRs) (25,058-25,145 bp). Each plastome encoded 113 unique genes, containing 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. Comparative analyses showed that the IR boundaries of Hydrocotyle plastomes were highly similar, and the coding and IR regions exhibited more conserved than non-coding and single-copy (SC) regions. A total of 2932 simple sequence repeats and 520 long sequence repeats were identified, with specificity in the number and distribution of repeat sequences. Six hypervariable regions were screened from the SC region, including four intergenic spacers (IGS) (ycf3-trnS, trnS-rps4, petA-psbJ, and ndhF-rpl32) and two coding genes (rpl16 and ycf1). Three protein-coding genes (atpE, rpl16, and ycf2) were subjected to positive selection only in a few species, implying that most protein-coding genes were relatively conserved during the plastid evolutionary process. Plastid phylogenomic analyses supported the treatment of Hydrocotyle from Apiaceae to Araliaceae, and topologies with a high resolution indicated that plastome data can be further used in the comprehensive phylogenetic research of Hydrocotyle. The diagnostic characteristics currently used in Hydrocotyle may not accurately reflect the phylogenetic relationships of this genus, and new taxonomic characteristics may need to be evaluated and selected in combination with more comprehensive molecular phylogenetic results.


Asunto(s)
Araliaceae , Centella , Genoma del Cloroplasto , Genoma de Plastidios , Filogenia , Centella/genética , Plastidios/genética , Genoma del Cloroplasto/genética
5.
BMC Plant Biol ; 23(1): 564, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37964203

RESUMEN

BACKGROUND: Justicia L. is the largest genus in Acanthaceae Juss. and widely distributed in tropical and subtropical regions of the world. Previous phylogenetic studies have proposed a general phylogenetic framework for Justicia based on several molecular markers. However, their studies were mainly focused on resolution of phylogenetic issues of Justicia in Africa, Australia and South America due to limited sampling from Asia. Additionally, although Justicia plants are of high medical and ornamental values, little research on its genetics was reported. Therefore, to improve the understanding of its genomic structure and relationships among Asian Justicia plants, we sequenced complete chloroplast (cp.) genomes of 12 Asian plants and combined with the previously published cp. genome of Justicia leptostachya Hemsl. for further comparative genomics and phylogenetic analyses. RESULTS: All the cp. genomes exhibit a typical quadripartite structure without genomic rearrangement and gene loss. Their sizes range from 148,374 to 151,739 bp, including a large single copy (LSC, 81,434-83,676 bp), a small single copy (SSC, 16,833-17,507 bp) and two inverted repeats (IR, 24,947-25,549 bp). GC contents range from 38.1 to 38.4%. All the plastomes contain 114 genes, including 80 protein-coding genes, 30 tRNAs and 4 rRNAs. IR variation and repetitive sequences analyses both indicated that Justicia grossa C. B. Clarke is different from other Justicia species because its lengths of ndhF and ycf1 in IRs are shorter than others and it is richest in SSRs and dispersed repeats. The ycf1 gene was identified as the candidate DNA barcode for the genus Justicia. Our phylogenetic results showed that Justicia is a polyphyletic group, which is consistent with previous studies. Among them, J. grossa belongs to subtribe Tetramerinae of tribe Justicieae while the other Justicia members belong to subtribe Justiciinae. Therefore, based on morphological and molecular evidence, J. grossa should be undoubtedly recognized as a new genus. Interestingly, the evolutionary history of Justicia was discovered to be congruent with the morphology evolution. CONCLUSION: Our study not only elucidates basic features of Justicia whole plastomes, but also sheds light on interspecific relationships of Asian Justicia plants for the first time.


Asunto(s)
Acanthaceae , Genoma del Cloroplasto , Genoma de Plastidios , Género Justicia , Género Justicia/genética , Acanthaceae/genética , Filogenia , Genoma del Cloroplasto/genética , Genómica
6.
Sci Rep ; 13(1): 7237, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142659

RESUMEN

Polygonatum Miller belongs to the tribe Polygonateae of Asparagaceae. The horizontal creeping fleshy roots of several species in this genus serve as traditional Chinese medicine. Previous studies have mainly reported the size and gene contents of the plastomes, with little information on the comparative analysis of the plastid genomes of this genus. Additionally, there are still some species whose chloroplast genome information has not been reported. In this study, the complete plastomes of six Polygonatum were sequenced and assembled, among them, the chloroplast genome of P. campanulatum was reported for the first time. Comparative and phylogenetic analyses were then conducted with the published plastomes of three related species. Results indicated that the whole plastome length of the Polygonatum species ranged from 154,564 bp (P. multiflorum) to 156,028 bp (P. stenophyllum) having a quadripartite structure of LSC and SSC separated by two IR regions. A total of 113 unique genes were detected in each of the species. Comparative analysis revealed that gene content and total GC content in these species were highly identical. No significant contraction or expansion was observed in the IR boundaries among all the species except P. sibiricum1, in which the rps19 gene was pseudogenized owing to incomplete duplication. Abundant long dispersed repeats and SSRs were detected in each genome. There were five remarkably variable regions and 14 positively selected genes were identified among Polygonatum and Heteropolygonatum. Phylogenetic results based on chloroplast genome strongly supported the placement of P. campanulatum with alternate leaves in sect. Verticillata, a group characterized by whorled leaves. Moreover, P. verticillatum and P. cyrtonema were displayed as paraphyletic. This study revealed that the characters of plastomes in Polygonatum and Heteropolygonatum maintained a high degree of similarity. Five highly variable regions were found to be potential specific DNA barcodes in Polygonatum. Phylogenetic results suggested that leaf arrangement was not suitable as a basis for delimitation of subgeneric groups in Polygonatum and the definitions of P. cyrtonema and P. verticillatum require further study.


Asunto(s)
Asparagaceae , Genoma del Cloroplasto , Genoma de Plastidios , Polygonatum , Filogenia , Genoma del Cloroplasto/genética , Polygonatum/genética , Asparagaceae/genética
7.
BMC Plant Biol ; 23(1): 269, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37210501

RESUMEN

BACKGROUND: The orchid genus Pholidota Lindl. ex Hook. is economically important as some species has long been used in traditional medicine. However, the systematic status of the genus and intergeneric relationships inferred from previous molecular studies are unclear due to insufficient sampling and lack of informative sites. So far, only limited genomic information has been available. The taxonomy of Pholidota remains unresolved and somewhat controversial. In this study, the complete chloroplast (cp.) genomes of thirteen Pholidota species were sequenced and analyzed to gain insight into the phylogeny of Pholidota and mutation patterns in their cp. genomes. RESULTS: All examined thirteen Pholidota cp. genomes exhibited typical quadripartite circular structures, with the size ranging from 158,786 to 159,781 bp. The annotation contained a total of 135 genes in each cp. genome, i.e., 89 protein-coding genes, 38 tRNA genes, and eight rRNA genes. The codon usage analysis indicated the preference of A/U-ending codons. Repeat sequence analysis identified 444 tandem repeats, 322 palindromic repeats and 189 dispersed repeats. A total of 525 SSRs, 13,834 SNPs and 8,630 InDels were detected. Six mutational hotspots were identified as potential molecular markers. These molecular markers and highly variable regions are expected to facilitate future genetic and genomic studies. Our phylogenetic analyses confirmed the polyphyletic status of the genus Pholidota, with species grouped into four main clades: Pholidota s.s. was resolved as the sister to a clade containing species of Coelogyne; the other two clades clustered together with species of Bulleyia and Panisea, respectively; species P. ventricosa was placed at the basal position, deviated from all other species. CONCLUSION: This is the first study to comprehensively examine the genetic variations and systematically analyze the phylogeny and evolution of Pholidota based on plastid genomic data. These findings contribute to a better understanding of plastid genome evolution of Pholidota and provide new insights into the phylogeny of Pholidota and its closely related genera within the subtribe Coelogyninae. Our research has laid the foundation for future studies on the evolutionary mechanisms and classification of this economically and medicinally important genus.


Asunto(s)
Genoma del Cloroplasto , Orchidaceae , Animales , Filogenia , Pangolines/genética , Genoma del Cloroplasto/genética , Orchidaceae/genética , Genómica , Repeticiones de Microsatélite
8.
BMC Genomics ; 24(1): 137, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36944915

RESUMEN

BACKGROUND: Spiraea is a genus of deciduous shrubs that contains 80-120 species, is mainly distributed in the Northern Hemisphere and has diversified in East Asia. Spiraea species are cultivated as ornamental plants and some are used in traditional herbal medicine. Based on morphological characteristics and genetic markers, phylogenetic classification exhibits low discriminatory power. RESULTS: In present study, we assembled and characterized the chloroplast (cp) genomes of ten Spiraea species and comparatively analysed with five reported cp genomes of this genus. The cp genomes of the fifteen Spiraea species, ranging from 155,904 to 158,637 bp in length, were very conserved and no structural rearrangements occurred. A total of 85 protein-coding genes (PCGs), 37 tRNAs and 8 rRNAs were annotated. We also examined 1,010 simple sequence repeat (SSR) loci, most of which had A/T base preference. Comparative analysis of cp genome demonstrated that single copy and non-coding regions were more divergent than the inverted repeats (IRs) and coding regions and six mutational hotspots were detected. Selection pressure analysis showed that all PCGs were under purifying selection. Phylogenetic analysis based on the complete cp genome data showed that Spiraea formed a monophyletic group and was further divided into two major clades. Infrageneric classification in each clade was supported with a high resolution value. Moreover, the phylogenetic trees based on each individual mutational hotspot segment and their combined dataset also consisted of two major clades, but most of the phylogenetic relationships of interspecies were not well supported. CONCLUSIONS: Although the cp genomes of Spiraea species exhibited high conservation in genome structure, gene content and order, a large number of polymorphism sites and several mutation hotspots were identified in whole cp genomes, which might be sufficiently used as molecular markers to distinguish Spiraea species. Phylogenetic analysis based on the complete cp genome indicated that infrageneric classification in two major clades was supported with high resolution values. Therefore, the cp genome data of the genus Spiraea will be effective in resolving the phylogeny in this genus.


Asunto(s)
Genoma del Cloroplasto , Spiraea , Filogenia , Spiraea/genética , Mutación , Marcadores Genéticos , Genoma del Cloroplasto/genética
9.
BMC Plant Biol ; 23(1): 9, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604614

RESUMEN

BACKGROUND: The Ferula genus encompasses 180-185 species and is one of the largest genera in Apiaceae, with many of Ferula species possessing important medical value. The previous studies provided more information for Ferula, but its infrageneric relationships are still confusing. In addition, its genetic basis of its adaptive evolution remains poorly understood. Plastid genomes with more variable sites have the potential to reconstruct robust phylogeny in plants and investigate the adaptive evolution of plants. Although chloroplast genomes have been reported within the Ferula genus, few studies have been conducted using chloroplast genomes, especially for endemic species in China. RESULTS: Comprehensively comparative analyses of 22 newly sequenced and assembled plastomes indicated that these plastomes had highly conserved genome structure, gene number, codon usage, and repeats type and distribution, but varied in plastomes size, GC content, and the SC/IR boundaries. Thirteen mutation hotspot regions were detected and they would serve as the promising DNA barcodes candidates for species identification in Ferula and related genera. Phylogenomic analyses with high supports and resolutions showed that Talassia transiliensis and Soranthus meyeri were nested in the Ferula genus, and thus they should be transferred into the Ferula genus. Our phylogenies also indicated the monophyly of subgenera Sinoferula and subgenera Narthex in Ferula genus. Twelve genes with significant posterior probabilities for codon sites were identified in the positively selective analysis, and their function may relate to the photosystem II, ATP subunit, and NADH dehydrogenase. Most of them might play an important role to help Ferula species adapt to high-temperatures, strong-light, and drought habitats. CONCLUSION: Plastome data is powerful and efficient to improve the support and resolution of the complicated Ferula phylogeny. Twelve genes with significant posterior probabilities for codon sites were helpful for Ferula to adapt to the harsh environment. Overall, our study supplies a new perspective for comprehending the phylogeny and evolution of Ferula.


Asunto(s)
Ferula , Genoma del Cloroplasto , Genoma de Plastidios , Filogenia , Evolución Molecular , Genoma del Cloroplasto/genética , Codón/genética
10.
Funct Plant Biol ; 50(1): 29-45, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36043226

RESUMEN

Plantgenomics is a rapidly developing field in medicinal plant research. This study analysed the relevant information of chloroplasts genome sequences of five medicinal plants from the genus Lepidium . We sequenced the complete chloroplast (cp) genomes of Lepidium apetalum Willd. and Lepidium perfoliatum Linnaeus., and assessed their genetic profiles against the reported profiles of Lepidium sativum Linnaeus., Lepidium meyenii Walp., and Lepidium virginicum Linn. We found that L. apetalum and L. perfoliatum possessed 130 distinct genes that included 85 protein-coding, 37 transfer RNA (tRNA), and eight ribosomal RNA (rRNA) genes. Our repeat analyses revealed that L. apetalum harboured 20 direct repeats, 16 palindrome repeats, 30 tandem repeats, and 87 simple sequence repeats, whereas, L. perfoliatum had 15 direct repeats, 20 palindrome repeats, four reverse repeats, 21 tandem repeats, and 98 simple sequence repeats. Using syntenic analysis, we also revealed a high degree of sequence similarity within the coding regions of Lepidium medicinal plant cp genomes, and a high degree of divergence among the intergenic spacers. Pairwise alignment and single-nucleotide polymorphism (SNP) examinations further revealed certain Lepidium -specific gene fragments. Codon usage analysis showed that codon 14 was the most frequently used codon in the Lepidium coding sequences. Further, correlation investigations suggest that L. apetalum and L. perfoliatum originate from similar genetic backgrounds. Analysis of codon usage bias of Lepidium cp genome was strongly influenced by mutation and natural selection. We showed that L. apetalum and L. perfoliatum will likely enhance breeding, species recognition, phylogenetic evolution, and cp genetic engineering of the Lepidium medicinal plants.


Asunto(s)
Genoma del Cloroplasto , Lepidium , Filogenia , Genoma del Cloroplasto/genética , Lepidium/genética , Evolución Molecular , Fitomejoramiento , Repeticiones de Microsatélite , Codón/genética , ARN de Transferencia
11.
BMC Plant Biol ; 22(1): 339, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35831794

RESUMEN

BACKGROUND: Fagopyrum (Polygonaceae) is a small plant lineage comprised of more than fifteen economically and medicinally important species. However, the phylogenetic relationships of the genus are not well explored, and the characteristics of Fagopyrum chloroplast genomes (plastomes) remain poorly understood so far. It restricts the comprehension of species diversity in Fagopyrum. Therefore, a comparative plastome analysis and comprehensive phylogenomic analyses are required to reveal the taxonomic relationship among species of Fagopyrum. RESULTS: In the current study, 12 plastomes were sequenced and assembled from eight species and two varieties of Fagopyrum. In the comparative analysis and phylogenetic analysis, eight previously published plastomes of Fagopyrum were also included. A total of 49 plastomes of other genera in Polygonaceae were retrieved from GenBank and used for comparative analysis with Fagopyrum. The variation of the Fagopyrum plastomes is mainly reflected in the size and boundaries of inverted repeat/single copy (IR/SC) regions. Fagopyrum is a relatively basal taxon in the phylogenomic framework of Polygonaceae comprising a relatively smaller plastome size (158,768-159,985 bp) than another genus of Polygonaceae (158,851-170,232 bp). A few genera of Polygonaceae have nested distribution of the IR/SC boundary variations. Although most species of Fagopyrum show the same IRb/SC boundary with species of Polygonaceae, only a few species show different IRa/SC boundaries. The phylogenomic analyses of Fagopyrum supported the cymosum and urophyllum groups and resolved the systematic position of subclades within the urophyllum group. Moreover, the repeat sequence types and numbers were found different between groups of Fagopyrum. The plastome sequence identity showed significant differences between intra-group and inter-group. CONCLUSIONS: The deletions of intergenic regions cause a short length of Fagopyrum plastomes, which may be the main reason for plastome size diversity in Polygonaceae species. The phylogenomic reconstruction combined with the characteristics comparison of plastomes supports grouping within Fagopyrum. The outcome of these genome resources may facilitate the taxonomy, germplasm resources identification as well as plant breeding of Fagopyrum.


Asunto(s)
Fagopyrum , Genoma del Cloroplasto , Polygonaceae , Evolución Molecular , Fagopyrum/genética , Genoma del Cloroplasto/genética , Filogenia , Fitomejoramiento , Polygonaceae/genética
12.
Sheng Wu Gong Cheng Xue Bao ; 38(5): 1953-1964, 2022 May 25.
Artículo en Chino | MEDLINE | ID: mdl-35611741

RESUMEN

Reynoutria japonica Houtt., belonging to Polygoneae of Polygonaceae, is a Chinese medicinal herb with the functions of draining dampness and relieving jaundice, clearing heat and detoxifying, dispersing blood stasis and relieving pain, and relieving cough and resolving phlegm. In this study, we carried out high-throughput sequencing for the chloroplast genome sequences of five cultivars of R. japonica and analyzed the genome structure and variations. The chloroplast genomes of the five R. japonica cultivars had two sizes (163 376 bp and 163 371 bp) and a typical circular tetrad structure composed of a large single-copy (LSC) region of 85 784 bp, a small single-copy (SSC) region of 18 616 bp, and a pair of inverted repeat (IR) regions (IRa/IRb) which are spaced apart. A total of 161 genes were obtained by annotation, which consisted of 106 protein-coding genes, 10 rRNA-coding genes, and 45 tRNA-coding genes. The total GC content was 36.7%. Specifically, the GC content in the LSC, SSC, and IR regions were 34.8%, 30.7%, and 42.7%, respectively. Comparison of the whole chloroplast genome among the five cultivars showed that trnk-UUU, rpoC1, petD, rpl16, ndhA, and rpl12 in coding regions had sequence variations. In the phylogenetic tree constructed for the 11 samples of Polygoneae, the five cultivars of R. japonica clustered into one clade near the root and was a sister group of Fallopia multiflora (Thunb.).


Asunto(s)
Genoma del Cloroplasto , Composición de Base , Genoma del Cloroplasto/genética , Sistemas de Lectura Abierta , Filogenia , Reynoutria
13.
BMC Genom Data ; 23(1): 28, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418016

RESUMEN

OBJECTIVES: Mirabilis jalapa L. and Bougainvillea spectabilis are two Mirabilis species known for their ornamental and pharmaceutical values. The organelle genomes are highly conserved with a rapid evolution rate making them suitable for evolutionary studies. Therefore, mitochondrial and chloroplast genomes of B. spectabilis and M. jalapa were sequenced to understand their evolutionary relationship with other angiosperms. DATA DESCRIPTION: Here, we report the complete mitochondrial genomes of B. spectabilis and M. jalapa (343,746 bp and 267,334 bp, respectively) and chloroplast genomes of B. spectabilis (154,520 bp) and M. jalapa (154,532 bp) obtained from Illumina NovaSeq. The mitochondrial genomes of B. spectabilis and M. jalapa consisted of 70 and 72 genes, respectively. Likewise, the chloroplast genomes of B. spectabilis and M. jalapa contained 131 and 132 genes, respectively. The generated genomic data will be useful for molecular characterization and evolutionary studies.


Asunto(s)
Genoma del Cloroplasto , Genoma Mitocondrial , Mirabilis , Nyctaginaceae , Genoma del Cloroplasto/genética , Genoma Mitocondrial/genética , Mirabilis/genética , Mitocondrias/genética , Nyctaginaceae/genética
14.
J Plant Res ; 135(3): 443-452, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35338406

RESUMEN

Abrus pulchellus subsp. cantoniensis, an endemic medicinal plant in southern China, is clinically used to treat jaundice hepatitis, cholecystitis, stomachache and breast carbuncle. Here, we assembled and analyzed the first complete chloroplast (cp) genome of A. pulchellus subsp. cantoniensis. The A. pulchellus subsp. cantoniensis cp genome size is 156,497 bp with 36.5% GC content. The cp genome encodes 130 genes, including 77 protein-coding genes, 30 tRNA genes and four rRNA genes, of which 19 genes are duplicated in the inverted repeats (IR) regions. A total of 30 codons exhibited codon usage bias with A/U-ending. Moreover, 53 putative RNA editing sites were predicted in 20 genes, all of which were cytidine to thymine transitions. Repeat sequence analysis identified 45 repeat structures and 125 simple-sequence repeats (SSRs) in A. pulchellus subsp. cantoniensis cp genome. In addition, 19 mononucleotides (located in atpB, trnV-UAC, ycf3, atpF, rps16, rps18, clpP, rpl16, trnG-UCC and ndhA) and three compound SSRs (located in ndhA, atpB and rpl16) showed species specificity between A. pulchellus subsp. cantoniensis and Abrus precatorius, which might be informative sources for developing molecular markers for species identification. Furthermore, phylogenetic analysis inferred that A. pulchellus subsp. cantoniensis was closely related to A. precatorius, and the genus Abrus formed a subclade with Canavalia in the Millettioid/Phaseoloid clade. These data provide a valuable resource to facilitate the evolutionary relationship and species identification of this species.


Asunto(s)
Abrus , Genoma del Cloroplasto , Plantas Medicinales , Abrus/genética , Composición de Base , Genoma del Cloroplasto/genética , Filogenia , Plantas Medicinales/genética
15.
Mol Biol Rep ; 49(4): 3073-3083, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35059973

RESUMEN

BACKGROUND: Clerodendranthus spicatus (Thunb.) C. Y. Wu ex H. W. Li is one of the most important medicines for the treatment of nephrology in the southeast regions of China. To understand the taxonomic classification of Clerodendranthus species and identify species discrimination markers, we sequenced and characterized its chloroplast genome in the current study. METHODS AND RESULTS: Total genomic DNA were isolated from dried leaves of C. spicatus and sequenced using an Illumina sequencing platform. The data were assembled and annotated by the NOVOPlasty software and CpGAVAS2 web service. The complete chloroplast genome of C. spicatus was 152,155 bp, including a large single-copy region of 83,098 bp, a small single-copy region of 17,665 bp, and a pair of inverted repeat regions of 25,696 bp. The Isoleucine codons are the most abundant, accounting for 4.17% of all codons. The codons of AUG, UUA, and AGA demonstrated a high degree of usage bias. Twenty-eight simple sequence repeats, thirty-six tandem repeats, and forty interspersed repeats were identified. The distribution of the specific rps19, ycf1, rpl2, trnH, psbA genes were analyzed. Analysis of the genetic distance of the intergenic spacer regions shows that ndhG-ndhI, accD-psaI, rps15-ycf1, rpl20-clpP, ccsA-ndhD regions have high K2p values. Phylogenetic analysis showed that C. spicatu is closely related to two Lamiaceae species, Tectona grandis, and Glechoma longituba. CONCLUSIONS: In this study, we sequenced and characterized the chloroplast genome of C. spicatus. Phylogenomic analysis has identified species closely related to C. spicatus, which represent potential candidates for the development of drugs improving renal functions.


Asunto(s)
Genoma del Cloroplasto , Enfermedades Renales , Lamiaceae , Plantas Medicinales , Genoma del Cloroplasto/genética , Enfermedades Renales/genética , Lamiaceae/genética , Filogenia , Plantas Medicinales/genética
16.
F1000Res ; 11: 1358, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37767075

RESUMEN

Gaultheria nummularioides D.Don 1825 (Ericaceae) is a traditional Chinese medicinal plant used to treat rheumatoid arthritis. The complete chloroplast genome of G. nummularioides has been sequenced and assembled. The genome is 176,207 bp in total with one large single copy (LSC: 107,726 bp), one small single copy (SSC: 3,389 bp), and two inverted repeat regions (IRa and IRb; each 32,546 bp). The chloroplast genome encoded a total of 110 unique genes; the GC content of these genes is 36.6%. The results based on phylogenetic analysis of the complete chloroplast genome suggests that G. nummularioides diverged later than G. praticola, the sister relationship between G. nummularioides and the clade comprising G. fragrantissima Wall. 1820 and G. hookeri C.B. Clarke 1882 was strongly supported. This study provides additional information on the genetic diversity of G. nummularioides, its closely related taxa, and further exploration of chloroplast genomes in the Ericaceae family.


Asunto(s)
Artritis Reumatoide , Ericaceae , Gaultheria , Genoma del Cloroplasto , Genoma del Cloroplasto/genética , Filogenia
17.
Chinese Journal of Biotechnology ; (12): 1953-1964, 2022.
Artículo en Chino | WPRIM | ID: wpr-927830

RESUMEN

Reynoutria japonica Houtt., belonging to Polygoneae of Polygonaceae, is a Chinese medicinal herb with the functions of draining dampness and relieving jaundice, clearing heat and detoxifying, dispersing blood stasis and relieving pain, and relieving cough and resolving phlegm. In this study, we carried out high-throughput sequencing for the chloroplast genome sequences of five cultivars of R. japonica and analyzed the genome structure and variations. The chloroplast genomes of the five R. japonica cultivars had two sizes (163 376 bp and 163 371 bp) and a typical circular tetrad structure composed of a large single-copy (LSC) region of 85 784 bp, a small single-copy (SSC) region of 18 616 bp, and a pair of inverted repeat (IR) regions (IRa/IRb) which are spaced apart. A total of 161 genes were obtained by annotation, which consisted of 106 protein-coding genes, 10 rRNA-coding genes, and 45 tRNA-coding genes. The total GC content was 36.7%. Specifically, the GC content in the LSC, SSC, and IR regions were 34.8%, 30.7%, and 42.7%, respectively. Comparison of the whole chloroplast genome among the five cultivars showed that trnk-UUU, rpoC1, petD, rpl16, ndhA, and rpl12 in coding regions had sequence variations. In the phylogenetic tree constructed for the 11 samples of Polygoneae, the five cultivars of R. japonica clustered into one clade near the root and was a sister group of Fallopia multiflora (Thunb.).


Asunto(s)
Composición de Base , Genoma del Cloroplasto/genética , Sistemas de Lectura Abierta , Filogenia , Reynoutria
18.
Genes (Basel) ; 12(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34946920

RESUMEN

Despite the significant progress that has been made in the genome sequencing of Prunus, this area of research has been lacking a systematic description of the mitochondrial genome of this genus for a long time. In this study, we assembled the mitochondrial genome of the Chinese plum (Prunus salicina) using Illumina and Oxford Nanopore sequencing data. The mitochondrial genome size of P. salicina was found to be 508,035 base pair (bp), which is the largest reported in the Rosaceae family to date, and P. salicina was shown to be 63,453 bp longer than sweet cherry (P. avium). The P. salicina mitochondrial genome contained 37 protein-coding genes (PCGs), 3 ribosomal RNA (rRNA) genes, and 16 transfer RNA (tRNA) genes. Two plastid-derived tRNA were identified. We also found two short repeats that captured the nad3 and nad6 genes and resulted in two copies. In addition, nine pairs of repeat sequences were identified as being involved in the mediation of genome recombination. This is crucial for the formation of subgenomic configurations. To characterize RNA editing sites, transcriptome data were used, and we identified 480 RNA editing sites in protein-coding sequences. Among them, the initiation codon of the nad1 gene confirmed that an RNA editing event occurred, and the genomic encoded ACG was edited as AUG in the transcript. Combined with previous reports on the chloroplast genome, our data complemented our understanding of the last part of the organelle genome of plum, which will facilitate our understanding of the evolution of organelle genomes.


Asunto(s)
Genoma Mitocondrial/genética , Prunus domestica/genética , Edición de ARN/genética , Recombinación Genética/genética , Evolución Molecular , Frutas/genética , Tamaño del Genoma/genética , Genoma del Cloroplasto/genética , Genómica/métodos , Filogenia , ARN de Transferencia/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética
19.
Zhongguo Zhong Yao Za Zhi ; 46(20): 5260-5269, 2021 Oct.
Artículo en Chino | MEDLINE | ID: mdl-34738428

RESUMEN

Gentiana is an important but complicated group in Gentianaceae. The genus covers numerous medicinal plants which are difficult to be identified. In the present study, several medicinal species in Gentiana from Yunnan province, including G. rigescens, G.rhodantha, and G. delavayi, were sequenced using the Illumina HiSeq 2500 system. Three complete chloroplast genome sequences were obtained after assembly and annotation. According to several published genome sequences of G. crassicaulis, the DNA super-barcoding of species in Gentiana was preliminarily carried out. The results revealed that chloroplast genomes of the three species were conservative with short lengths(146 944, 148 992, and 148 796 bp, respectively). The genomes encoded 114 genes, including 78 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 2 pseudogenes. Furthermore, these medicinal species in Yunnan province were identified using DNA super-barcoding based on chloroplast genomes. The results showed that the Gentiana species could be gathered into monophyletic branches with a high support value(100%). It indicated that DNA super-barcoding possessed obvious advantages in discriminating species in complicated genera. This study is expected to provide a scientific basis for the identification, utilization, and conservation of Gentiana species.


Asunto(s)
Genoma del Cloroplasto , Gentiana , China , ADN , Genoma del Cloroplasto/genética , Gentiana/genética , Filogenia
20.
BMC Ecol Evol ; 21(1): 71, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33931026

RESUMEN

BACKGROUND: Cultivated tea is one of the most important economic and ecological trees distributed worldwide. Cultivated tea suffer from long-term targeted selection of traits and overexploitation of habitats by human beings, which may have changed its genetic structure. The chloroplast is an organelle with a conserved cyclic genomic structure, and it can help us better understand the evolutionary relationship of Camellia plants. RESULTS: We conducted comparative and evolutionary analyses on cultivated tea and wild tea, and we detected the evolutionary characteristics of cultivated tea. The chloroplast genome sizes of cultivated tea were slightly different, ranging from 157,025 to 157,100 bp. In addition, the cultivated species were more conserved than the wild species, in terms of the genome length, gene number, gene arrangement and GC content. However, comparing Camellia sinensis var. sinensis and Camellia sinensis var. assamica with their cultivars, the IR length variation was approximately 20 bp and 30 bp, respectively. The nucleotide diversity of 14 sequences in cultivated tea was higher than that in wild tea. Detailed analysis on the genomic variation and evolution of Camellia sinensis var. sinensis cultivars revealed 67 single nucleotide polymorphisms (SNPs), 46 insertions/deletions (indels), and 16 protein coding genes with nucleotide substitutions, while Camellia sinensis var. assamica cultivars revealed 4 indels. In cultivated tea, the most variable gene was ycf1. The largest number of nucleotide substitutions, five amino acids exhibited site-specific selection, and a 9 bp sequence insertion were found in the Camellia sinensis var. sinensis cultivars. In addition, phylogenetic relationship in the ycf1 tree suggested that the ycf1 gene has diverged in cultivated tea. Because C. sinensis var. sinensis and its cultivated species were not tightly clustered. CONCLUSIONS: The cultivated species were more conserved than the wild species in terms of architecture and linear sequence order. The variation of the chloroplast genome in cultivated tea was mainly manifested in the nucleotide polymorphisms and sequence insertions. These results provided evidence regarding the influence of human activities on tea.


Asunto(s)
Camellia sinensis , Camellia , Genoma del Cloroplasto , Camellia/genética , Camellia sinensis/genética , Genoma del Cloroplasto/genética , Humanos , Filogenia ,
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA