Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Biol Chem ; 295(38): 13250-13266, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32723868

RESUMEN

Adipose tissue is essential for metabolic homeostasis, balancing lipid storage and mobilization based on nutritional status. This is coordinated by insulin, which triggers kinase signaling cascades to modulate numerous metabolic proteins, leading to increased glucose uptake and anabolic processes like lipogenesis. Given recent evidence that glucose is dispensable for adipocyte respiration, we sought to test whether glucose is necessary for insulin-stimulated anabolism. Examining lipogenesis in cultured adipocytes, glucose was essential for insulin to stimulate the synthesis of fatty acids and glyceride-glycerol. Importantly, glucose was dispensable for lipogenesis in the absence of insulin, suggesting that distinct carbon sources are used with or without insulin. Metabolic tracing studies revealed that glucose was required for insulin to stimulate pathways providing carbon substrate, NADPH, and glycerol 3-phosphate for lipid synthesis and storage. Glucose also displaced leucine as a lipogenic substrate and was necessary to suppress fatty acid oxidation. Together, glucose provided substrates and metabolic control for insulin to promote lipogenesis in adipocytes. This contrasted with the suppression of lipolysis by insulin signaling, which occurred independently of glucose. Given previous observations that signal transduction acts primarily before glucose uptake in adipocytes, these data are consistent with a model whereby insulin initially utilizes protein phosphorylation to stimulate lipid anabolism, which is sustained by subsequent glucose metabolism. Consequently, lipid abundance was sensitive to glucose availability, both during adipogenesis and in Drosophila flies in vivo Together, these data highlight the importance of glucose metabolism to support insulin action, providing a complementary regulatory mechanism to signal transduction to stimulate adipose anabolism.


Asunto(s)
Adipocitos/metabolismo , Proteínas de Drosophila/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Lipogénesis , Transducción de Señal , Células 3T3-L1 , Animales , Drosophila melanogaster , Glicerofosfatos/metabolismo , Ratones , NADP/metabolismo
2.
Cancer Res ; 80(11): 2150-2162, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32179514

RESUMEN

Metformin is an oral drug widely used for the treatment of type 2 diabetes mellitus. Numerous studies have demonstrated the value of metformin in cancer treatment. However, for metformin to elicit effects on cancer often requires a high dosage, and any underlying mechanism for how to improve its inhibitory effects remains unknown. Here, we found that low mRNA expression of glycerol-3-phosphate dehydrogenase 1 (GPD1) may predict a poor response to metformin treatment in 15 cancer cell lines. In vitro and in vivo, metformin treatment alone significantly suppressed cancer cell proliferation, a phenotype enhanced by GPD1 overexpression. Total cellular glycerol-3-phosphate concentration was significantly increased by the combination of GPD1 overexpression and metformin treatment, which suppressed cancer growth via inhibition of mitochondrial function. Eventually, increased reactive oxygen species and mitochondrial structural damage was observed in GPD1-overexpressing cell lines treated with metformin, which may contribute to cell death. In summary, this study demonstrates that GPD1 overexpression enhances the anticancer activity of metformin and that patients with increased GPD1 expression in tumor cells may respond better to metformin therapy. SIGNIFICANCE: GPD1 overexpression enhances the anticancer effect of metformin through synergistic inhibition of mitochondrial function, thereby providing new insight into metformin-mediated cancer therapy.


Asunto(s)
Glicerolfosfato Deshidrogenasa/metabolismo , Glicerofosfatos/metabolismo , Metformina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células A549 , Adenosina Trifosfato/biosíntesis , Animales , Antineoplásicos/farmacología , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Respiración de la Célula/fisiología , Sinergismo Farmacológico , Glicerolfosfato Deshidrogenasa/biosíntesis , Glicerolfosfato Deshidrogenasa/genética , Células HCT116 , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/patología , Células PC-3 , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Sci Total Environ ; 692: 219-232, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31349163

RESUMEN

The multi-barrier deep geological repository system is currently considered as one of the safest option for the disposal of high-level radioactive wastes. Indigenous microorganisms of bentonites may affect the structure and stability of these clays through Fe-containing minerals biotransformation and radionuclides mobilization. The present work aimed to investigate the behavior of bentonite and its bacterial community in the case of a uranium leakage from the waste containers. Hence, bentonite microcosms were amended with uranyl nitrate (U) and glycerol-2-phosphate (G2P) and incubated aerobically for 6 months. Next generation 16S rRNA gene sequencing revealed that the bacterial populations of all treated microcosms were dominated by Actinobacteria and Proteobacteria, accounting for >50% of the community. Additionally, G2P and nitrate had a remarkable effect on the bacterial diversity of bentonites by the enrichment of bacteria involved in the nitrogen and carbon biogeochemical cycles (e.g. Azotobacter). A significant presence of sulfate-reducing bacteria such as Desulfonauticus and Desulfomicrobium were detected in the U-treated microcosms. The actinobacteria Amycolatopsis was enriched in G2P­uranium amended bentonites. High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy analyses showed the capacity of Amycolatopsis and a bentonite consortium formed by Bradyrhizobium-Rhizobium and Pseudomonas to precipitate U as U phosphate mineral phases, probably due to the phosphatase activity. The different amendments did not affect the mineralogy of the bentonite pointing to a high structural stability. These results would help to predict the impact of microbial processes on the biogeochemical cycles of elements (N and U) within the bentonite barrier under repository relevant conditions and to determine the changes in the microbial community induced by a uranium release.


Asunto(s)
Bacterias/metabolismo , Bentonita/análisis , Glicerofosfatos/metabolismo , Microbiota/efectos de los fármacos , Residuos Radiactivos/análisis , Uranio/metabolismo , Bacterias/clasificación
4.
Benef Microbes ; 10(1): 5-17, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30574802

RESUMEN

Probiotic Lactobacillus rhamnosus HN001 given in early life has been shown to reduce infant eczema risk, but its effect on gut microbiota development has not been quantitatively and functionally examined. The aim of this study was to investigate the impact of early life probiotic exposure on the composition and functional capacity of infant gut microbiota from birth to 2 years considering the effects of age, delivery mode, antibiotics, pets and eczema. We performed shotgun metagenomic sequencing analysis of 650 infant faecal samples, collected at birth, 3, 12, and 24 months, as part of a randomised, controlled, 3-arm trial assessing the effect of L. rhamnosus HN001, Bifidobacterium animalis subsp. lactis HN019 supplementation on eczema development in 474 infants. There was a 50% reduced eczema risk in the HN001 probiotic group compared to placebo. Both mothers (from 35 weeks gestation until 6 months post-partum if breastfeeding) and infants (from birth to 2 years) received either a placebo or one of two probiotics, L. rhamnosus HN001 (6×109 cfu), or B. animalis subsp. lactis HN019 (9×109 cfu). L. rhamnosus HN001 probiotic supplementation was associated with increased overall glycerol-3 phosphate transport capacity and enrichment of L. rhamnosus. There were no other significant changes in infant gut microbiota composition or diversity. Increased capacity to transport glycerol-3-phosphate was positively correlated with relative abundance of L. rhamnosus. Children who developed eczema had gut microbiota with increased capacity for glycosaminoglycan degradation and flagellum assembly but had no significant differences in microbiota composition or diversity. Early life HN001 probiotic use is associated with both increased L. rhamnosus and increased infant gut microbiota functional capacity to transport glycerol-3 phosphate. The mechanistic relationship of such functional alteration in gut microbiota with reduced eczema risk and long-term health merits further investigation.


Asunto(s)
Dermatitis Atópica/prevención & control , Microbioma Gastrointestinal/fisiología , Lacticaseibacillus rhamnosus/fisiología , Probióticos , Adulto , Factores de Edad , Transporte Biológico , Lactancia Materna , Preescolar , Dermatitis Atópica/microbiología , Suplementos Dietéticos , Heces/microbiología , Femenino , Glicerofosfatos/metabolismo , Humanos , Lactante , Recién Nacido , Metagenómica , Madres , Periodo Posparto
5.
Lipids ; 49(4): 327-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24578031

RESUMEN

The triacylglycerol of Crambe abyssinica seeds consist of 95% very long chain (>18 carbon) fatty acids (86% erucic acid; 22:1∆13) in the sn-1 and sn-3 positions. This would suggest that C. abyssinica triacylglycerols are not formed by the action of the phospholipid:diacylglycerol acyltransferase (PDAT), but are rather the results of acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. However, measurements of PDAT and DGAT activities in microsomal membranes showed that C. abyssinica has significant PDAT activity, corresponding to about 10% of the DGAT activity during periods of rapid seed oil accumulation. The specific activity of DGAT for erucoyl-CoA had doubled at 19 days after flowering compared to earlier developmental stages, and was, at that stage, the preferred acyl donor, whereas the activities for 16:0-CoA and 18:1-CoA remained constant. This indicates that an expression of an isoform of DGAT with high specificity for erucoyl-CoA is induced at the onset of rapid erucic acid and oil accumulation in the C. abyssinica seeds. Analysis of the composition of the acyl-CoA pool during different stages of seed development showed that the percentage of erucoyl groups in acyl-CoA was much higher than in complex lipids at all stages of seed development except in the desiccation phase. These results are in accordance with published results showing that the rate limiting step in erucic acid accumulation in C. abyssinica oil is the utilization of erucoyl-CoA by the acyltransferases in the glycerol-3-phosphate pathway.


Asunto(s)
Aciltransferasas/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Ácidos Erucicos/metabolismo , Triglicéridos/biosíntesis , Crambe (Planta)/enzimología , Flores/enzimología , Glicerofosfatos/metabolismo , Redes y Vías Metabólicas , Microsomas/enzimología , Aceites de Plantas/metabolismo , Semillas/enzimología , Semillas/metabolismo , Triglicéridos/metabolismo
6.
J. appl. oral sci ; 20(6): 628-635, Nov.-Dec. 2012. ilus
Artículo en Inglés | LILACS | ID: lil-660633

RESUMEN

Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. OBJECTIVES: This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and β-glycerophosphate. MATERIAL AND METHODS: Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. Results: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. CONCLUSIONS: We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.


Asunto(s)
Humanos , Tejido Adiposo/citología , /farmacología , Diferenciación Celular/efectos de los fármacos , Glicerofosfatos/farmacología , Osteogénesis , Células Madre/efectos de los fármacos , Análisis de Varianza , Fosfatasa Alcalina/fisiología , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Western Blotting , /metabolismo , /metabolismo , /metabolismo , Células Cultivadas , Glicerofosfatos/metabolismo , Osteoblastos/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo
7.
PLoS One ; 7(4): e35214, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22523576

RESUMEN

BACKGROUND: Monoacylglycerol acyltransferases (MGATs) are predominantly associated with lipid absorption and resynthesis in the animal intestine where they catalyse the first step in the monoacylglycerol (MAG) pathway by acylating MAG to form diacylglycerol (DAG). Typical plant triacylglycerol (TAG) biosynthesis routes such as the Kennedy pathway do not include an MGAT step. Rather, DAG and TAG are synthesised de novo from glycerol-3-phosphate (G-3-P) by a series of three subsequent acylation reactions although a complex interplay with membrane lipids exists. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that heterologous expression of a mouse MGAT acyltransferase in Nicotiana benthamiana significantly increases TAG accumulation in vegetative tissues despite the low levels of endogenous MAG substrate available. In addition, DAG produced by this acyltransferase can serve as a substrate for both native and coexpressed diacylglycerol acyltransferases (DGAT). Finally, we show that the Arabidopsis thaliana GPAT4 acyltransferase can produce MAG in Saccharomyces cerevisiae using oleoyl-CoA as the acyl-donor. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the concept of a new method of increasing oil content in vegetative tissues by using MAG as a substrate for TAG biosynthesis. Based on in vitro yeast assays and expression results in N. benthamiana, we propose that co-expression of a MAG synthesising enzyme such as A. thaliana GPAT4 and a MGAT or bifunctional M/DGAT can result in DAG and TAG synthesis from G-3-P via a route that is independent and complementary to the endogenous Kennedy pathway and other TAG synthesis routes.


Asunto(s)
Aciltransferasas/metabolismo , Triglicéridos/biosíntesis , Animales , Arabidopsis/metabolismo , Diacilglicerol O-Acetiltransferasa/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Glicerofosfatos/metabolismo , Redes y Vías Metabólicas , Ratones , Monoglicéridos/metabolismo , Saccharomyces cerevisiae/enzimología , Nicotiana/enzimología
8.
J Appl Oral Sci ; 20(6): 628-35, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23329244

RESUMEN

UNLABELLED: Bone morphogenetic protein type 2 (BMP-2) is a potent local factor, which promotes bone formation and has been used as an osteogenic supplement for mesenchymal stem cells. OBJECTIVES: This study evaluated the effect of a recombinant BMP-2 as well as the endogenous BMP-4 and BMP-7 in the osteogenic differentiation of adipose-derived stem cells (ASCs) in medium supplemented with ascorbate and ß-glycerophosphate. MATERIAL AND METHODS: Human ASCs were treated with osteogenic medium in the presence (ASCs+OM+BMP-2) or absence (ASCs+OM) of BMP-2. The alkaline phosphatase (ALP) activity was determined and the extracellular matrix mineralization was evaluated by Von Kossa staining and calcium quantification. The expressions of BMP-4, BMP-7, Smad1, Smad4, and phosphorylated Smad1/5/8 were analyzed by western blotting. Relative mRNA expressions of Smad1, BMP receptor type II (BMPR-II), osteonectin, and osteocalcin were evaluated by qPCR. RESULTS: ASCs+OM demonstrated the highest expression of BMP-4 and BMP-7 at days 21 and 7, respectively, the highest levels of BMPR-II mRNA expression at day 28, and the highest levels of Smad1 mRNA at days 14 and 28. ASCs+OM+BMP-2 demonstrated the highest levels of Smad1 mRNA expression at days 1, 7, and 21, the highest expression of Smad1 at day 7, the highest expression of Smad4 at day 14, the highest ALP activity at days 14 and 21, and expression of phosphorylated Smad1/5/8 at day 7. ASCs+OM and ASCs+OM+BMP2 showed similar ALP activity at days 7 and 28, similar osteonectin and osteocalcin mRNA expression at all time periods, and similar calcium depositions at all time periods. CONCLUSIONS: We concluded that human ASCs expressed endogenous BMP-4 and BMP-7. Moreover, the supplementation of ASCs with BMP-2 did not increase the level of osteogenic markers in the initial (ALP activity), intermediate (osteonectin and osteocalcin), or final (calcium deposition) phases, suggesting that the exogenous addition of BMP-2 did not improve the in vitro osteogenesis process of human ASCs.


Asunto(s)
Tejido Adiposo/citología , Proteína Morfogenética Ósea 2/farmacología , Diferenciación Celular/efectos de los fármacos , Glicerofosfatos/farmacología , Osteogénesis , Células Madre/efectos de los fármacos , Fosfatasa Alcalina/fisiología , Análisis de Varianza , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Western Blotting , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 7/metabolismo , Células Cultivadas , Glicerofosfatos/metabolismo , Humanos , Osteoblastos/metabolismo , Reacción en Cadena de la Polimerasa , ARN Mensajero/metabolismo , Células Madre/citología , Células Madre/metabolismo , Factores de Tiempo
9.
Biomaterials ; 33(2): 455-63, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21993232

RESUMEN

The amniotic membrane (AM) has been widely used in the field of tissue engineering because of the favorable biological properties for scaffolding material. However, little is known about the effects of an acellular AM matrix on the osteogenic differentiation of mesenchymal stem cells. In this study, it was found that both basement membrane side and collagenous stroma side of the acellular AM matrix were capable of providing a preferential environment for driving the osteogenic differentiation of human dental apical papilla cells (APCs) with proven stem cell characteristics. Acellular AM matrix potentiated the induction effect of osteogenic supplements (OS) such as ascorbic acid, ß-glycerophosphate, and dexamethasone and enhanced the osteogenic differentiation of APCs, as seen by increased core-binding factor alpha 1 (Cbfa-1) phosphorylation, alkaline phosphatase activity, mRNA expression of osteogenic marker genes, and mineralized matrix deposition. Even in the absence of soluble OS, acellular AM matrix also could exert the substrate-induced effect on initiating APCs' differentiation. Especially, the collagenous stroma side was more effective than the basement membrane side. Moreover, the AM-induced effect was significantly inhibited by U0126, an inhibitor of extracellular signaling-regulated kinase 1/2 (ERK1/2) signaling. Taken together, the osteogenic differentiation promoting effect on APCs is AM-specific, which provides potential applications of acellular AM matrix in bone/tooth tissue engineering.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Papila Dental/citología , Sistema de Señalización de MAP Quinasas , Osteogénesis , Fosfatasa Alcalina/metabolismo , Amnios/metabolismo , Ácido Ascórbico/metabolismo , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Papila Dental/metabolismo , Dexametasona/metabolismo , Regulación de la Expresión Génica , Marcadores Genéticos , Glicerofosfatos/metabolismo , Humanos , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Madre/citología , Células Madre/metabolismo , Ingeniería de Tejidos
10.
Acta Pharmacol Sin ; 32(12): 1491-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22036865

RESUMEN

AIM: To investigate the ability of ox-LDL to induce ossification of endothelial progenitor cells (EPCs) in vitro and explored whether oxidative stress, especially hypoxia inducible factor-1α (HIF-1α) and reactive oxygen species (ROS), participate in the ossific process. METHODS: Rat bone marrow-derived endothelial progenitor cells (BMEPCs) were cultured in endothelial growth medium supplemented with VEGF (40 ng/mL) and bFGF (10 ng/mL). The cells were treated with oxidized low-density lipoprotein (ox-LDL, 5 µg/mL) and/or ß-glycerophosphate (ß-GP, 10 mmol/L). Calcium content and Von Kossa staining were used as the measures of calcium deposition. Ossific gene expression was determined using RT-PCR. The expression of osteocalcin (OCN) was detected with immunofluorescence. Alkaline phosphatase (ALP) activity was analyzed using colorimetric assay. Intercellular reactive oxygen species (ROS) were measured with flow cytometry. RESULTS: BMEPCs exhibited a spindle-like shape. The percentage of cells that expressed the cell markers of EPCs CD34, CD133 and kinase insert domain-containing receptor (KDR) were 46.2%±5.8%, 23.5%±4.0% and 74.3%±8.8%, respectively. Among the total cells, 78.3%±4.2% were stained with endothelial-specific fluorescence. Treatment of BMEPCs with ox-LDL significantly promoted calcium deposition, which was further significantly enhanced by co-treatment with ß-GP. The same treatments significantly increased the gene expression of core-binding factor a-1 (cbfa-1) and OCN, while decreased the gene expression of osteoprotegerin (OPG). The treatments also significantly enhanced the activity of ALP, but did not affect the number of OCN(+) cells. Furthermore, the treatments significantly increased ROS and activated the hypoxia inducible factor-1α (HIF-1α). In all these effects, ox-LDL acted synergistically with ß-GP. CONCLUSION: Ox-LDL and ß-GP synergistically induce ossification of BMEPCs, in which an oxidizing mechanism is involved.


Asunto(s)
Glicerofosfatos/metabolismo , Lipoproteínas LDL/metabolismo , Osteogénesis , Células Madre/citología , Animales , Secuencia de Bases , Cartilla de ADN , Estrés Oxidativo , Reacción en Cadena de la Polimerasa , Ratas , Especies Reactivas de Oxígeno/metabolismo
11.
PLoS One ; 6(8): e22917, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21857965

RESUMEN

BACKGROUND: Cholesterol metabolism is tightly regulated by both cholesterol and its metabolites in the mammalian liver, but the regulatory mechanism of triacylglycerol (TG) synthesis remains to be elucidated. Lipin, which catalyzes the conversion of phosphatidate to diacylglycerol, is a key enzyme involved in de novo TG synthesis in the liver via the glycerol-3-phosphate (G3P) pathway. However, the regulatory mechanisms for the expression of lipin in the liver are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Apolipoprotein E-knock out (apoE-KO) mice were fed a chow supplemented with 1.25% cholesterol (high-Chol diet). Cholesterol and bile acids were highly increased in the liver within a week. However, the amount of TG in very low-density lipoprotein (VLDL), but not in the liver, was reduced by 78%. The epididymal adipose tissue was almost eradicated in the long term. DNA microarray and real-time RT-PCR analyses revealed that the mRNA expression of all the genes in the G3P pathway in the liver was suppressed in the high-Chol diet apoE-KO mice. In particular, the mRNA and protein expression of lipin-1 and lipin-2 was markedly decreased, and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which up-regulates the transcription of lipin-1, was also suppressed. In vitro analysis using HepG2 cells revealed that the protein expression of lipin-2 was suppressed by treatment with taurocholic acid. CONCLUSIONS/SIGNIFICANCE: These data using apoE-KO mice indicate that cholesterol and its metabolites are involved in regulating TG metabolism through a suppression of lipin-1 and lipin-2 in the liver. This research provides evidence for the mechanism of lipin expression in the liver.


Asunto(s)
Apolipoproteínas E/metabolismo , Colesterol en la Dieta/administración & dosificación , Glicerofosfatos/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatasa/metabolismo , Triglicéridos/sangre , Animales , Apolipoproteínas E/genética , Ácidos y Sales Biliares/metabolismo , Western Blotting , Colesterol/metabolismo , Colesterol en la Dieta/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidato Fosfatasa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Ácido Taurocólico/farmacología , Triglicéridos/metabolismo
12.
J Am Soc Mass Spectrom ; 22(2): 329-38, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21472592

RESUMEN

Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed-by means of MALDI-TOF mass spectrometry-imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.


Asunto(s)
Lóbulo Frontal/química , Glicerofosfatos/análisis , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Lóbulo Frontal/metabolismo , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Histocitoquímica , Humanos , Especificidad de Órganos , Análisis de Componente Principal
13.
Prikl Biokhim Mikrobiol ; 47(1): 23-7, 2011.
Artículo en Ruso | MEDLINE | ID: mdl-21442916

RESUMEN

Features of phosphate-mobilizing bacteria Bacillus subtilis IMB B-7023 and its streptomycin-resistant strain were investigated. While cultivated in medium with glucose and glycerophosphate, the growth rate of the antibiotic-marked strain was approximately similar to this parameter for Bacillus subtilis IMB B-7023 but cell sizes were 1.3-fold less. Both strains significantly stimulated the germinating of plant seeds, attached to their roots, and insignificantly differed in antagonistic activity toward phytopathogens and quantitative content of cell fatty acids and phosphatase activity. Streptomycin-resistant strain may be used for monitoring of Bacillus subtilis introduced to agroecosystem.


Asunto(s)
Bacillus subtilis/metabolismo , Farmacorresistencia Microbiana , Interacciones Microbianas , Fósforo/metabolismo , Antibacterianos/biosíntesis , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Beta vulgaris/microbiología , Tamaño de la Célula , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Ecosistema , Ácidos Grasos/análisis , Germinación/efectos de los fármacos , Glucosa/metabolismo , Glicerofosfatos/metabolismo , Mutagénesis , Monoéster Fosfórico Hidrolasas/análisis , Pinus/microbiología , Raíces de Plantas/microbiología , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Estreptomicina/farmacología , Simbiosis , Zea mays/microbiología
14.
Biotechnol Prog ; 26(5): 1290-4, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20945485

RESUMEN

Metalloproteins require soluble metal ions such as zinc to properly fold into their native and active state to maintain stability and biological activity. When protein products are produced during microbial fermentations, metals are made available to the metalloproteins via nutrient supplements. During the production at the manufacturing-scale of a recombinant product that required zinc as a cofactor, an insoluble precipitate formed in the preparation tank after steam sterilization of the nutrient feed containing methionine, glycerophosphate, and zinc sulfate (MGZ). The precipitated nutrient feed was believed to be the cause for not enough zinc delivered to the production fermentor, leading to poor product assembly and stabilization. This article explores several analytical techniques such as capillary zone electrophoresis, inductively coupled plasma and phosphate molybdate assays to identify and quantify the composition of the precipitate. Our results show that the glycerophosphate component of the combined MGZ nutrient feed contains inorganic phosphate, which precipitates zinc from the feed media.


Asunto(s)
Escherichia coli/metabolismo , Fermentación/fisiología , Electroforesis Capilar , Glicerofosfatos/metabolismo , Espectrometría de Masas , Metionina/metabolismo , Sulfato de Zinc/metabolismo
15.
J Biomed Mater Res A ; 95(3): 882-90, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20845489

RESUMEN

In this study, we have investigated the effects of dissolved phosphorus and silicon on osteoblast differentiation in vitro. Neonatal rat calvarial osteoblasts were seeded on silica-calcium phosphate composites (SCPCS), hydroxyapatite (HA-200), and tissue culture polystyrene (TCPS) and incubated over 4 days in media containing 0 {minimal essential medium [MEM] (-)} or 3 mM ß-glycerophosphate [MEM (+)]. Inductively coupled plasma analysis showed that P-content in original MEM (+) was 225% higher than that in MEM (-). Moreover, P-content in MEM (+) significantly increased to 3.4-4.4 mM and 3.6-4.7 mM after 2 and 4 days incubation with SCPC, respectively, owing to material dissolution and exogenous phosphate supplementation. In contrast, P-content in MEM (+) showed no change upon incubation with HA or TCPS. The P-content in MEM (-) incubated with SCPC was considerably lower than that in MEM (+). SCPC exhibited controlled Si-release in cell culture media [MEM (-) or MEM (+)], with Si-rich SCPC showing a significantly greater dissolution than Si-poor SCPC. Moreover, SCPC, unlike HA, demonstrated a cell- and solution-mediated dissolution over 4 days. Quantitative real-time PCR showed that in MEM (-), osteocalcin and osteopontin mRNA expression on Si-rich SCPC was significantly greater than that on HA, suggesting that Si plays an important role in enhancing bone-cell differentiation. However, osteoblast phenotypic expression on SCPC was significantly decreased after 4 days incubation in MEM (+), indicating that sustained exposure to elevated P-levels in the media can downregulate osteoblast function. Our results demonstrate that the controlled dissolution of SCPC provides a natural stimulus for bone-cell differentiation in vitro and could obviate the need of exogenous phosphate supplementation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Cerámica/química , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Fósforo/farmacología , Silicio/farmacología , Animales , Animales Recién Nacidos , Técnicas de Cultivo de Célula , Células Cultivadas , Expresión Génica , Glicerofosfatos/metabolismo , Osteoblastos/citología , Ratas , Andamios del Tejido
16.
Plant Physiol Biochem ; 48(2-3): 73-80, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20044264

RESUMEN

The glycerol 3-phosphate acyltransferase (GPAT, EC 2.3.1.15) from sunflower (Helianthus annuus L.) microsomes has been characterised and partially purified. The in vitro determination of activity was optimized, and the maximum value for GPAT activity identified between 15 and 20 days after flowering. The apparent Michaelis-Menten K(m) for the glycerol 3-phosphate was 354 muM. The preferred substrates were palmitoyl-CoA = linoleoyl-CoA > oleoyl-CoA with the lowest activity using stearoyl-CoA. High solubilisation was achieved using 0.75% Tween80 and the solubilised GPAT was partially purified by ion-exchange chromatography using a Hi-Trap DEAE FF column, followed by gel filtration chromatography using a Superose 12 HR column. The fraction containing the GPAT activity was analysed by SDS-PAGE and contained a major band of 60.1 kDa. Finally, evidence is provided which shows the role of GPAT in the asymmetrical distribution, between positions sn-1 and sn-3, of saturated fatty acids in highly saturated sunflower triacylglycerols. This work provides background information on the sunflower endoplasmic reticulum GPAT which may prove valuable for future modification of oil deposition in this important crop.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Acilcoenzima A/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Helianthus/enzimología , Aceites de Plantas/metabolismo , Semillas/enzimología , Triglicéridos/biosíntesis , 1-Acilglicerofosfocolina O-Aciltransferasa/aislamiento & purificación , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Electroforesis en Gel de Poliacrilamida , Retículo Endoplásmico/enzimología , Ácidos Grasos/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/aislamiento & purificación , Glicerofosfatos/metabolismo , Microsomas/enzimología , Especificidad por Sustrato
17.
Appl Environ Microbiol ; 75(18): 5773-8, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19633115

RESUMEN

Previous studies have demonstrated the potential for removal of U(VI) from solution via precipitation of U(VI)-bearing calcium-phosphate (Ca-P) minerals coupled to microbial hydrolysis of glycerol phosphate compounds. We evaluated this process in circumneutral-pH groundwater from Area 2 of the U.S. Department of Energy Field Research Center at Oak Ridge National Laboratory. Area 2 groundwater contains high concentrations of dissolved calcium (ca. 4 mM), and thus, release of phosphate during glycerol phosphate metabolism has the potential to create conditions favorable for U(VI) sequestration in Ca-P minerals. Microbial enumeration and isolation studies verified the presence of aerobic and nitrate-reducing glycerol 3-phosphate (G3P)-metabolizing microorganisms in Area 2 sediments. Coprecipitation of U(VI) with Ca-P minerals coupled to microbial G3P hydrolysis was demonstrated in artificial groundwater under aerobic and nitrate-reducing conditions. Transmission electron microscopy analysis and mineral-washing experiments demonstrated that U(VI) was incorporated into the structure of the insoluble Ca-P mineral hydroxyapatite [Ca5(PO4)3OH]. Our results support the idea that U(VI) can be effectively removed from solution in contaminated aquifers through stimulation of microbial organophosphate metabolism.


Asunto(s)
Durapatita/metabolismo , Gammaproteobacteria/metabolismo , Glicerofosfatos/metabolismo , Uranio/metabolismo , Microbiología del Agua , Contaminantes Químicos del Agua/metabolismo , Contaminantes Radiactivos del Agua/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Huan Jing Ke Xue ; 30(3): 693-9, 2009 Mar 15.
Artículo en Chino | MEDLINE | ID: mdl-19432314

RESUMEN

The effects NaH2PO4, adenosine disodium triphosphate (ATP), glucose 6-phosphate (G-6-P) and sodium beta-glycerophosphate (G-P) on the growth and phosphatase activity of Skeletonema costatum and Prorocentrum donghaiense were studied. The results showed that both species could utilize both dissolved inorganic phosphate (DIP) and dissolved organic phosphorus (DOP), and DOP had more effects on the growth of two species than DIP. For S. costatum, after 8 days, the cell abundances of the four treatments (NaH2PO4, ATP, G-6-P and G-P) were 48 x 10(4), 73 x 10(4), 63 x 10(4) and 54 x 10(4) cells/mL, respectively; For P. donghaiense, after 10 days, the cell abundances of the four treatments were 8.7 x 10(4), 15.5 x 10(4), 12.4 x 10(4) and 9.5 x 10(4) cells/mL, respectively. On the first 3-4 days, the phosphatase activity of all treatments of the two species showed a decreasing trend, but different changes were observed for the different phosphorus substrate treatments in latter days. For the NaH2PO4 treatment, both the AP and AcP activity of two species increased from the fifth day onwards. For S. costatum, the AP activity of the ATP and G-6-P treatment groups showed no obvious changes and AcP activity had a slight increase from the fifth day to the eighth day, while the activity of G-P treatment had highest phosphatase activity which increased from the fifth day on. At the end of the experiment, the AP activity of the three DOP treatment groups (ATP, G-6-P and G-P) was 0.004 x 10(-5), 0.014 x 10(-5) and 0.029 x 10(-5) U/cell, respectively, and the AcP activity was 0.006 x 10(-5), 0.011 x 10(-5) and 0.018 x 10(-5) U/cell, respectively. For P. donghaiense, both the AP and AcP activity of the three DOP treatments had similar trends, i.e., ATP < G-6-P < G-P. Under the same nutrient conditions, S. costatum had a much higher phosphatase activity and could absorb P from the environment much faster than P. donghaiense.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Diatomeas/crecimiento & desarrollo , Dinoflagelados/crecimiento & desarrollo , Fósforo/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Diatomeas/metabolismo , Dinoflagelados/metabolismo , Agua Dulce/análisis , Glucosa-6-Fosfato/metabolismo , Glucosa-6-Fosfato/farmacología , Glicerofosfatos/metabolismo , Glicerofosfatos/farmacología , Fósforo/farmacología , Ríos , Agua de Mar/análisis
19.
J Med Chem ; 52(10): 3317-27, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19388675

RESUMEN

The incidence of obesity and other diseases associated with an increased triacylglycerol mass is growing rapidly, particularly in the United States. Glycerol 3-phosphate acyltransferase (GPAT) catalyzes the rate-limiting step of glycerolipid biosynthesis, the acylation of glycerol 3-phosphate with saturated long-chain acyl-CoAs. In an effort to produce small molecule inhibitors of this enzyme, a series of benzoic and phosphonic acids was designed and synthesized. In vitro testing of this series has led to the identification of several compounds, in particular 2-(nonylsulfonamido)benzoic acid (15g), possessing moderate GPAT inhibitory activity in an intact mitochondrial assay.


Asunto(s)
Glicerol-3-Fosfato O-Aciltransferasa/antagonistas & inhibidores , Obesidad/tratamiento farmacológico , Organofosfonatos/síntesis química , Sulfonamidas/síntesis química , ortoaminobenzoatos/síntesis química , Acilación , Animales , Diseño de Fármacos , Evaluación Preclínica de Medicamentos , Glicéridos/biosíntesis , Glicerofosfatos/metabolismo , Ratones , Mitocondrias/enzimología , Mitocondrias/metabolismo , Organofosfonatos/farmacología , Relación Estructura-Actividad , Sulfonamidas/farmacología , ortoaminobenzoatos/farmacología
20.
J Anim Sci ; 86(12): 3393-400, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18676724

RESUMEN

Vitamin A (retinoic acid) is known to be an adipogenic factor influencing both in vitro and in vivo cell development. This study aimed to determine its effect on lamb adipose tissue development during the early phase of postnatal development until 100 d of age. Male lambs (n = 24) of the Rasa Aragonesa breed were used. At birth, lambs were assigned to 1 of 2 experimental groups: 1) the control (C) group, which received feed without vitamin A supplementation, and 2) the vitamin A (V) group, which received a supplement of 500,000 IU/animal twice per week from birth to slaughter. The effect of vitamin A supplementation was studied at 16.8 +/- 0.35 kg of BW (58 +/- 0.7 d of age) and at 27.8 +/- 0.78 kg of BW (101 +/- 6.5 d of age). The variables of lamb growth, carcass, LM area, and lipid content were analyzed. To study adipose tissue development, the amount of adipose tissue accumulated, the size and number of adipocytes, and lipogenic enzyme activities (glycerol 3-phosphate dehydrogenase, fatty acid synthase, and glucose 6-phosphate dehydrogenase) of the omental, perirenal, and s.c. depots were quantified. Results showed that vitamin A supplementation had no influence on growth, carcass variables, LM area, and lipid content during lamb growth but that the number of adipocytes in the perirenal depot was 30% greater in lambs of the V group (P < 0.05) and that these lambs had smaller adipocytes in the omental and perirenal depots (P = 0.06) at 28 kg of BW (101 d of age). These results suggest that the intake of this level of vitamin A during the whole period of growth of the lambs influenced the processes of hyperplasia and hypertrophy in the different adipose depots, depending on their degree of maturity.


Asunto(s)
Tejido Adiposo/efectos de los fármacos , Suplementos Dietéticos , Ovinos/crecimiento & desarrollo , Vitamina A/farmacología , Vitaminas/farmacología , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipocitos/enzimología , Tejido Adiposo/enzimología , Tejido Adiposo/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Composición Corporal , Tamaño de la Célula/efectos de los fármacos , Ácido Graso Sintasas/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glicerofosfatos/metabolismo , Masculino , Distribución Aleatoria , Vitamina A/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA