Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 625
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Neurosurg ; 141(3): 684-694, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38626474

RESUMEN

OBJECTIVE: The free-water correction algorithm (Freewater Estimator Using Interpolated Initialization [FERNET]) can be applied to standard diffusion tensor imaging (DTI) tractography to improve visualization of subcortical bundles in the peritumoral area of highly edematous brain tumors. Interest in its use for presurgical planning in purely infiltrative gliomas without peritumoral edema has never been evaluated. Using subcortical maps obtained with direct electrostimulation (DES) in awake surgery as a reference standard, the authors sought to 1) assess the accuracy of preoperative DTI-based tractography with FERNET in a series of nonedematous glioma patients, and 2) determine its potential usefulness in presurgical planning. METHODS: Based on DES-induced functional disturbances and tumor topography, the authors retrospectively reconstructed the putatively stimulated bundles and the peritumoral tracts of interest (various associative and projection pathways) of 12 patients. The tractography data obtained with and without FERNET were compared. RESULTS: The authors identified 21 putative tracts from 24 stimulation sites and reconstituted 49 tracts of interest. The number of streamlines of the putative tracts crossing the DES area was 26.8% higher (96.04 vs 75.75, p = 0.016) and their volume 20.4% higher (13.99 cm3 vs 11.62 cm3, p < 0.0001) with FERNET than with standard DTI. Additionally, the volume of the tracts of interest was 22.1% higher (9.69 cm3 vs 7.93 cm3, p < 0.0001). CONCLUSIONS: Free-water correction significantly increased the anatomical plausibility of the stimulated fascicles and the volume of tracts of interest in the peritumoral area of purely infiltrative nonedematous gliomas. Because of the functional importance of the peritumoral zone, applying FERNET to DTI could have potential implications on surgical planning and the safety of glioma resection.


Asunto(s)
Mapeo Encefálico , Neoplasias Encefálicas , Imagen de Difusión Tensora , Glioma , Humanos , Imagen de Difusión Tensora/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Masculino , Persona de Mediana Edad , Femenino , Adulto , Estudios Retrospectivos , Mapeo Encefálico/métodos , Anciano , Algoritmos , Estimulación Eléctrica/métodos
2.
ACS Nano ; 18(14): 10142-10155, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38526307

RESUMEN

Fully mobilizing the activities of multiple immune cells is crucial to achieve the desired tumor immunotherapeutic efficacy yet still remains challenging. Herein, we report a nanomedicine formulation based on phosphorus dendrimer (termed AK128)/programmed cell death protein 1 antibody (aPD1) nanocomplexes (NCs) that are camouflaged with M1-type macrophage cell membranes (M1m) for enhanced immunotherapy of orthotopic glioma. The constructed AK128-aPD1@M1m NCs with a mean particle size of 160.3 nm possess good stability and cytocompatibility. By virtue of the decorated M1m having α4 and ß1 integrins, the NCs are able to penetrate the blood-brain barrier to codeliver both AK128 with intrinsic immunomodulatory activity and aPD1 to the orthotopic glioma with prolonged blood circulation time. We show that the phosphorus dendrimer AK128 can boost natural killer (NK) cell proliferation in peripheral blood mononuclear cells, while the delivered aPD1 enables immune checkpoint blockade (ICB) to restore the cytotoxic T cells and NK cells, thus promoting tumor cell apoptosis and simultaneously decreasing the tumor distribution of regulatory T cells vastly for improved glioma immunotherapy. The developed nanomedicine formulation with a simple composition achieves multiple modulations of immune cells by utilizing the immunomodulatory activity of nanocarrier and antibody-mediated ICB therapy, providing an effective strategy for cancer immunotherapy.


Asunto(s)
Dendrímeros , Glioma , Humanos , Fósforo , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/patología , Biomimética , Glioma/terapia , Glioma/patología , Inmunoterapia , Células Asesinas Naturales , Anticuerpos/metabolismo , Linfocitos T Citotóxicos , Barrera Hematoencefálica/metabolismo , Microambiente Tumoral
3.
J Vis Exp ; (204)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372384

RESUMEN

In vitro drug sensitivity screens are important tools in the discovery of anti-cancer drug combination therapies. Typically, these in vitro drug screens are performed on cells grown in a monolayer. However, these two-dimensional (2D) models are considered less accurate compared to three-dimensional (3D) spheroid cell models; this is especially true for glioma stem cell lines. Cells grown in spheres activate different signaling pathways and are considered more representative of in vivo models than monolayer cell lines. This protocol describes a method for in vitro drug screening of spheroid lines; mouse and human glioma stem cell lines are used as an example. This protocol describes a 3D spheroid drug sensitivity and synergy assay that can be used to determine if a drug or drug combination induces cell death and if two drugs synergize. Glioma stem cell lines are modified to express RFP. Cells are plated in low attachment round well bottom 96 plates, and spheres are allowed to form overnight. Drugs are added, and the growth is monitored by measuring the RFP signal over time using the Incucyte live imaging system, a fluorescence microscope embedded in the tissue culture incubator. Half maximal inhibitory concentration (IC50), median lethal dose (LD50), and synergy score are subsequently calculated to evaluate sensitivities to drugs alone or in combination. The three-dimensional nature of this assay provides a more accurate reflection of tumor growth, behavior, and drug sensitivities in vivo, thus forming the basis for further preclinical investigation.


Asunto(s)
Glioma , Esferoides Celulares , Humanos , Ratones , Animales , Evaluación Preclínica de Medicamentos/métodos , Línea Celular Tumoral , Esferoides Celulares/patología , Glioma/patología , Células Madre Neoplásicas/patología
4.
Neuroradiol J ; 37(2): 229-233, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37002537

RESUMEN

Following completion of adjuvant radiation and chemotherapy imaging surveillance forms a major role in the management of diffuse gliomas. The primary role of imaging is to detect recurrences earlier than clinical symptomatology. Magnetic resonance imaging (MRI) is considered the gold standard in follow-up protocols owing to better soft tissue delineation and multiparametric nature. True recurrence can often mimic treatment-related changes, it is of paramount importance to differentiate between the two entities as the clinical course is divergent. Addition of functional sequences like perfusion, spectroscopy and metabolic imaging can provide further details into the microenvironment. In equivocal cases, a follow-up short interval imaging might be obtained to settle the diagnostic dilemma. Here, we present a patient with diagnosis of recurrent oligodendroglioma treated with adjuvant chemoradiation, presenting with seizures five years post-completion of chemotherapy for recurrence. On MRI, subtle new onset gyral thickening of the left frontal region with mild increase in perfusion and patchy areas of raised choline. FET-PET (fluoro-ethyltyrosine) showed an increased tumour-to-white matter (T/Wm) ratio favouring tumour recurrence. Based on discussion in a multi-disciplinary joint clinic, short interval follow-up MRI was undertaken at two months showing decrease in gyral thickening and resolution of enhancing areas in left frontal lobe. Repeat imaging one year later demonstrated stable disease status without further new imaging findings. Given the changes resolving completely without any anti-tumoral intervention, we conclude this to be peri-ictal pseudoprogression, being the second such case described in India.


Asunto(s)
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/terapia , Glioma/patología , Imagen por Resonancia Magnética/métodos , Oligodendroglioma/diagnóstico por imagen , Oligodendroglioma/terapia , Tomografía de Emisión de Positrones/métodos , Microambiente Tumoral
5.
Cells ; 12(23)2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067099

RESUMEN

BACKGROUND: Gliomas are the most malignant tumors of the central nervous system. One of the factors in their high drug resistance is avoiding programmed death (PCD) induction. This is related to the overexpression of intracellular survival pathways: PI3K-Akt/PKB-mTOR and Ras-Raf-MEK-ERK. Apoptosis and autophagy are co-existing processes due to the interactions between Bcl-2 and beclin-1 proteins. Their complex may be a molecular "toggle-switch" between PCD types. The aim of this research was to investigate the role of Bcl-2:beclin-1 complex in glioma cell elimination through the combined action of LY294002 and sorafenib. METHODS: Drug cytotoxicity was estimated with an MTT test. The type of cell death was evaluated using variant microscopy techniques (fluorochrome staining, immunocytochemistry, and transmission electron microscopy), as well as the Bcl-2:beclin-1 complex formation and protein localization. Molecular analysis of PCD indicators was conducted through immunoblotting, immunoprecipitation, and ELISA testing. SiRNA was used to block Bcl-2 and beclin-1 expression. RESULTS: The results showed the inhibitors used in simultaneous application resulted in Bcl-2:beclin-1 complex formation and apoptosis becoming dominant. This was accompanied by changes in the location of the tested proteins. CONCLUSIONS: "Switching" between apoptosis and autophagy using PI3K and Raf inhibitors with Bcl-2:beclin-1 complex formation opens new therapeutic perspectives against gliomas.


Asunto(s)
Glioma , Fosfatidilinositol 3-Quinasas , Sorafenib , Humanos , Apoptosis , Autofagia , Beclina-1 , Glioma/tratamiento farmacológico , Glioma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico
6.
Biochem Biophys Res Commun ; 687: 149196, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-37939504

RESUMEN

Brain gliomas are difficult in the field of tumor therapy because of their high recurrence rate, high mortality rate, and low selectivity of therapeutic agents. The efficacy of Traditional Chinese Medicine (TCM) in the treatment for tumours has been widely recognized. Here, three Chinese herb related molecules, namely Catechins, Caudatin and Cucurbitacin-I, were screened by bioinformatic means, and were found to inhibit the proliferation of glioblastoma T98G cells using Colony-forming and CCK-8 assays. Notably, the simultaneous use of all three molecules could more significantly inhibit the proliferation of glioma cells. Consistent with this, temozolomide, each in the combination with three molecules, could synergistically inhibit the proliferation of T98G cells. Results of qPCR assay was also showed that this inhibition was through the activation of the KDELR2-mediated endoplasmic reticulum stress (ER) pathway. Molecular docking experiments further revealed that Catechins, Caudatin and Cucurbitacin-I could activate ER stress might by targeting KDELR2. Taken together, these results suggest that these herbal molecules have the potential to inhibit the growth of glioma cells and could provide a reference for clinical therapeutic drug selection.


Asunto(s)
Antineoplásicos , Catequina , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Catequina/farmacología , Cucurbitacinas/farmacología , Cucurbitacinas/uso terapéutico , Simulación del Acoplamiento Molecular , Glioma/patología , Antineoplásicos/farmacología , Proliferación Celular , Estrés del Retículo Endoplásmico , Línea Celular Tumoral , Apoptosis , Proteínas de Transporte Vesicular/metabolismo
7.
Altern Ther Health Med ; 29(8): 816-821, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37773646

RESUMEN

Objective: To investigate the clinical value of conventional MRI morphological features and signal intensity ratio in the differential diagnosis of intracranial malignant tumors (high-grade glioma (HGG), primary central nervous system Lymphoma (PCNSL) and single brain metastasis (BM). Methods: Retrospective analysis of 92 cases of HGG, 27 cases of PCNSL, and 35 cases of BM. MRI data in The General Hospital of Western Theater Command from August 2014 to December 2021, comparative analysis of morphological characteristics of tumors and lesion/normal brain parenchyma signal ratio (lesiontonormal parenchymaratio, LNR), five indexes were included T1WI signal ratio (LNRT1), T2WI signal intensity ratio (LNRT2), T2WI/T1WI signal ratio (LNRT2/T1), T1WI enhanced signal ratio (LNRT1CE) and contrast enhancement ratio (CER). The differential diagnostic performance was also assessed by subject operating characteristic (ROC) curves. Results: HGG, PCNSL, and BM were all seen more frequently in the supratentorial region, More than 50% of HGG mainly showed irregular morphology, intratumoral necrosis, cystic degeneration, peritumoral severe edema, cyclic uneven enhancement after enhancement, PCNSL significantly enhanced the main uniformity, necrosis cyst became rare, BM group showed uneven enhancement, no obvious specificity, and the differences in tumor morphology, peritumor edema, intratumor hemorrhage, necrotic cystic lesions, and enhancement patterns were statistically significant among the three (P < .05). PCNSL LNRT1 and its LNRT1CE (LNRT1: 0.558 ± 0.050, LNRT1CE: 1.637 ± 0.125) were significantly higher than those of HGG (LNRT1: 0.480 ± 0.077, LNRT1CE: 1.425 ± 0.160) and BM (LNRT1: 0.514 ± 0.120, LNRT1CE: 1.375 ± 0.122), while LNRT2 and LNRT2/T1 (LNRT2: 1.389 ± 0.086, LNRT2/T1: 2.511 ± 0.295) were significantly lower than those of HGG (LNRT2: 1.527 ± 0.191, LNRT2/T1: 3.263 ± 0.657), and BM (LNRT2: 1.504 ± 0.089, LNRT2/T1: 3.103 ± 0.830). There was no significant difference in CER among the three groups (P > .05). ROC curve analysis of LNRT1, LNRT2, LNRT1CE, and LNRT2/T1 could be used to discriminate PCNSL from HGG and BM, with LNRT1CE having the largest area under the curve of 0.873, sensitivity of 0.963 and specificity of 0.669. Conclusion: MRI lesion morphological features and signal intensity ratio are important for discriminating HGG from PCNSL and BM. As a quantitative parameter, tumor signal intensity ratio can provide an important supplement for subjective judgment, to improve the accuracy of tumor qualitative diagnosis and differential diagnosis.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Estudios Retrospectivos , Diagnóstico Diferencial , Neoplasias Encefálicas/diagnóstico por imagen , Imagen por Resonancia Magnética , Glioma/diagnóstico , Glioma/patología , Edema/diagnóstico , Necrosis/diagnóstico
8.
J Pineal Res ; 75(4): e12910, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37705383

RESUMEN

Pineal region tumors (PTs) represent extremely rare pathologies, characterized by highly heterogeneous histological patterns. Most of the available evidence for Gamma Knife radiosurgical (GKSR) treatment of PTs arises from multimodal regimens, including GKSR as an adjuvant modality or as a salvage treatment at recurrence. We aimed to gather existing evidence on the topic and analyze single-patient-level data to address the efficacy and safety of primary GKSR. This is a systematic review of the literature (PubMed, Embase, Cochrane, Science Direct) and pooled analysis of single-patient-level data. A total of 1054 original works were retrieved. After excluding duplicates and irrelevant works, we included 13 papers (n = 64 patients). An additional 12 patients were included from the authors' original series. A total of 76 patients reached the final analysis; 56.5% (n = 43) received a histological diagnosis. Confirmed lesions included pineocytoma WHO grade I (60.5%), pineocytoma WHO grade II (14%), pineoblastoma WHO IV (7%), pineal tumor with intermediate differentiation WHO II/III (4.7%), papillary tumor of pineal region WHO II/III (4.7%), germ cell tumor (2.3%), neurocytoma WHO I (2.3%), astrocytoma WHO II (2.3%) and WHO III (2.3%). Presumptive diagnoses were achieved in the remaining 43.5% (n = 33) of cases and comprised of pineocytoma (9%), germ cell tumor (6%), low-grade glioma (6%), high-grade glioma (3%), meningioma (3%) and undefined in 73%. The mean age at the time of GKSR was 38.7 years and the mean lesional volume was 4.2 ± 4 cc. All patients received GKSR with a mean marginal dose of 14.7 ± 2.1 Gy (50% isodose). At a median 36-month follow-up, local control was achieved in 80.3% of cases. Thirteen patients showed progression after a median time of 14 months. Overall mortality was 13.2%. The median OS was not reached for all included lesions, except high-grade gliomas (8mo). The 3-year OS was 100% for LGG and pineal tumors with intermediate differentiation, 91% for low-grade pineal lesions, 66% for high-grade pineal lesions, 60% for germ cell tumors (GCTs), 50% for HGG, and 82% for undetermined tumors. The 3-year progression-free survival (PFS) was 100% for LGG and pineal intermediate tumors, 86% for low-grade pineal, 66% for high-grade pineal, 33.3% for GCTs, and 0% for HGG. Median PFS was 5 months for HGG and 34 months for GCTs. The radionecrosis rate was 6%, and cystic degeneration was observed in 2%. Ataxia as a presenting symptom strongly predicted mortality (odds ratio [OR] 104, p = .02), while GCTs and HGG histology well predicted PD (OR: 13, p = .04). These results support the efficacy and safety of primary GKSR treatment of PTs. Further studies are needed to validate these results, which highlight the importance of the initial presumptive diagnosis for choosing the best therapeutic strategy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Melatonina , Neoplasias de Células Germinales y Embrionarias , Glándula Pineal , Pinealoma , Radiocirugia , Humanos , Pinealoma/cirugía , Pinealoma/patología , Radiocirugia/métodos , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Glándula Pineal/cirugía , Glándula Pineal/patología , Glioma/patología , Glioma/cirugía , Neoplasias de Células Germinales y Embrionarias/patología , Neoplasias de Células Germinales y Embrionarias/cirugía
9.
J Nucl Med ; 64(10): 1594-1602, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37562802

RESUMEN

Evaluation of metabolic tumor volume (MTV) changes using amino acid PET has become an important tool for response assessment in brain tumor patients. MTV is usually determined by manual or semiautomatic delineation, which is laborious and may be prone to intra- and interobserver variability. The goal of our study was to develop a method for automated MTV segmentation and to evaluate its performance for response assessment in patients with gliomas. Methods: In total, 699 amino acid PET scans using the tracer O-(2-[18F]fluoroethyl)-l-tyrosine (18F-FET) from 555 brain tumor patients at initial diagnosis or during follow-up were retrospectively evaluated (mainly glioma patients, 76%). 18F-FET PET MTVs were segmented semiautomatically by experienced readers. An artificial neural network (no new U-Net) was configured on 476 scans from 399 patients, and the network performance was evaluated on a test dataset including 223 scans from 156 patients. Surface and volumetric Dice similarity coefficients (DSCs) were used to evaluate segmentation quality. Finally, the network was applied to a recently published 18F-FET PET study on response assessment in glioblastoma patients treated with adjuvant temozolomide chemotherapy for a fully automated response assessment in comparison to an experienced physician. Results: In the test dataset, 92% of lesions with increased uptake (n = 189) and 85% of lesions with iso- or hypometabolic uptake (n = 33) were correctly identified (F1 score, 92%). Single lesions with a contiguous uptake had the highest DSC, followed by lesions with heterogeneous, noncontiguous uptake and multifocal lesions (surface DSC: 0.96, 0.93, and 0.81 respectively; volume DSC: 0.83, 0.77, and 0.67, respectively). Change in MTV, as detected by the automated segmentation, was a significant determinant of disease-free and overall survival, in agreement with the physician's assessment. Conclusion: Our deep learning-based 18F-FET PET segmentation allows reliable, robust, and fully automated evaluation of MTV in brain tumor patients and demonstrates clinical value for automated response assessment.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Aminoácidos , Estudios Retrospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Glioma/patología , Radiofármacos/uso terapéutico , Tirosina , Tomografía de Emisión de Positrones/métodos
10.
J Nanobiotechnology ; 21(1): 253, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542285

RESUMEN

Inhibition of tumor growth and normalization of immune responses in the tumor microenvironment (TME) are critical issues for improving cancer therapy. However, in the treatment of glioma, effective nanomedicine has limited access to the brain because of the blood-brain barrier (BBB). Previously, we demonstrated nano-sized ginseng-derived exosome-like nanoparticles (GENs) consisting of phospholipids including various bioactive components, and evaluated anti-tumor immune responses in T cells and Tregs to inhibit tumor progression. It was found that the enhanced targeting ability of GENs to the BBB and glioma induced a significant therapeutic effect and exhibited strong efficacy in recruiting M1 macrophage expression in the TME. GENs were demonstrated to be successful candidates in glioma therapeutics both in vitro and in vivo, suggesting excellent potential for inhibiting glioma progression and regulating tumor-associated macrophages (TAMs).


Asunto(s)
Exosomas , Glioma , Nanopartículas , Panax , Humanos , Barrera Hematoencefálica/metabolismo , Microambiente Tumoral , Exosomas/metabolismo , Glioma/patología , Línea Celular Tumoral
11.
Altern Ther Health Med ; 29(8): 482-488, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37652419

RESUMEN

Objective: To assess the utility of magnetic resonance imaging (MRI) medical technology in the perioperative management of brain gliomas and its impact on anesthesia and prognosis. Methods: An observational, retrospective comparative study was conducted. We selected 60 patients who underwent glioma resection at our hospital from January 2019 to January 2020. Patients were divided into two groups based on admission order: the experimental group (EG) and the control group (CG), with 30 cases each. Patients in the CG underwent conventional intracranial tumor surgery, while those in the EG underwent supratentorial craniotomy for tumor resection with the assistance of MRI medical technology. We compared perioperative parameters, hemodynamic indices, tumor resection outcomes, postoperative complications, and postoperative physical function between the two groups. Results: Compared to the CG, the EG had significantly longer surgery preparation time, anesthesia time, and surgery time (P < .001). However, there were no significant between-group differences in infusion volume and intraoperative blood loss (P > .05). Postoperative hemodynamic indicators were significantly higher in the EG than in the CG (P < .001), and postoperative tumor volume was markedly smaller in the EG (P < .001). The EG also achieved a significantly larger volume of tumor resection and a higher tumor resection rate (P < .001), a significantly lower total incidence of postoperative complications (P < .05), and notably higher Karnofsky Performance Status (KPS) scores (P < .001). Conclusions: Compared to conventional intracranial tumor surgery, the utilization of MRI medical technology in brain glioma surgery, although it prolongs surgery and anesthesia times, enhances the tumor resection rate, and offers significant advantages in improving the prognosis of patients with brain glioma.


Asunto(s)
Anestesia , Neoplasias Encefálicas , Glioma , Humanos , Estudios Retrospectivos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Pronóstico , Complicaciones Posoperatorias , Imagen por Resonancia Magnética/métodos , Encéfalo , Tecnología
12.
Nat Protoc ; 18(7): 2143-2180, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37248391

RESUMEN

Medulloblastoma and high-grade glioma represent the most aggressive and frequent lethal solid tumors affecting individuals during pediatric age. During the past years, several models have been established for studying these types of cancers. Human organoids have recently been shown to be a valid alternative model to study several aspects of brain cancer biology, genetics and test therapies. Notably, brain cancer organoids can be generated using genetically modified cerebral organoids differentiated from human induced pluripotent stem cells (hiPSCs). However, the protocols to generate them and their downstream applications are very rare. Here, we describe the protocols to generate cerebellum and forebrain organoids from hiPSCs, and the workflow to genetically modify them by overexpressing genes found altered in patients to finally produce cancer organoids. We also show detailed protocols to use medulloblastoma and high-grade glioma organoids for orthotopic transplantation and co-culture experiments aimed to study cell biology in vivo and in vitro, for lineage tracing to investigate the cell of origin and for drug screening. The protocol takes 60-65 d for cancer organoids generation and from 1-4 weeks for downstream applications. The protocol requires at least 3-6 months to become proficient in culturing hiPSCs, generating organoids and performing procedures on immunodeficient mice.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioma , Células Madre Pluripotentes Inducidas , Meduloblastoma , Humanos , Niño , Animales , Ratones , Meduloblastoma/genética , Meduloblastoma/patología , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos , Glioma/patología , Organoides , Prosencéfalo , Diferenciación Celular , Neoplasias Cerebelosas/patología
13.
Acta Neurochir (Wien) ; 165(9): 2489-2500, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37199758

RESUMEN

BACKGROUND: Understanding the structural connectivity of white matter tracts (WMT) and their related functions is a prerequisite to implementing an "a la carte" "connectomic approach" to glioma surgery. However, accessible resources facilitating such an approach are lacking. Here we present an educational method that is readily accessible, simple, and reproducible that enables the visualization of WMTs on individual patient images via an atlas-based approach. METHODS: Our method uses the patient's own magnetic resonance imaging (MRI) images and consists of three main steps: data conversion, normalization, and visualization; these are accomplished using accessible software packages and WMT atlases. We implement our method on three common cases encountered in glioma surgery: a right supplementary motor area tumor, a left insular tumor, and a left temporal tumor. RESULTS: Using patient-specific perioperative MRIs with open-sourced and co-registered atlas-derived WMTs, we highlight the critical subnetworks requiring specific surgical monitoring identified intraoperatively using direct electrostimulation mapping with cognitive monitoring. The aim of this didactic method is to provide the neurosurgical oncology community with an accessible and ready-to-use educational tool, enabling neurosurgeons to improve their knowledge of WMTs and to better learn their oncologic cases, especially in glioma surgery using awake mapping. CONCLUSIONS: Taking no more than 3-5 min per patient and irrespective of their resource settings, we believe that this method will enable junior surgeons to develop an intuition, and a robust 3-dimensional imagery of WMT by regularly applying it to their cases both before and after surgery to develop an "a la carte" connectome-based perspective to glioma surgery.


Asunto(s)
Neoplasias Encefálicas , Conectoma , Glioma , Sustancia Blanca , Humanos , Conectoma/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Procedimientos Neuroquirúrgicos/métodos , Glioma/diagnóstico por imagen , Glioma/cirugía , Glioma/patología , Sustancia Blanca/patología , Mapeo Encefálico/métodos , Encéfalo/cirugía
14.
Brain ; 146(7): 3088-3100, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37029961

RESUMEN

The efficiency with which the brain reorganizes following injury not only depends on the extent and the severity of the lesion, but also on its temporal features. It is established that diffuse low-grade gliomas (DLGG), brain tumours with a slow-growth rate, induce a compensatory modulation of the anatomo-functional architecture, making this kind of tumours an ideal lesion model to study the dynamics of neuroplasticity. Direct electrostimulation (DES) mapping is a well-tried procedure used during awake resection surgeries to identify and spare cortical epicentres which are critical for a range of functions. Because DLGG is a chronic disease, it inevitably relapses years after the initial surgery, and thus requires a second surgery to reduce tumour volume again. In this context, contrasting the cortical mappings obtained during two sequential neurosurgeries offers a unique opportunity to both identify and characterize the dynamic (i.e. re-evolving) patterns of cortical re-arrangements. Here, we capitalized on an unprecedented series of 101 DLGG patients who benefited from two DES-guided neurosurgeries usually spaced several years apart, resulting in a large DES dataset of 2082 cortical sites. All sites (either non-functional or associated with language, speech, motor, somatosensory and semantic processing) were recorded in Montreal Neurological Institute (MNI) space. Next, we used a multi-step approach to generate probabilistic neuroplasticity maps that reflected the dynamic rearrangements of cortical mappings from one surgery to another, both at the population and individual level. Voxel-wise neuroplasticity maps revealed regions with a relatively high potential of evolving reorganizations at the population level, including the supplementary motor area (SMA, Pmax = 0.63), the dorsolateral prefrontal cortex (dlPFC, Pmax = 0.61), the anterior ventral premotor cortex (vPMC, Pmax = 0.43) and the middle superior temporal gyrus (STG Pmax = 0.36). Parcel-wise neuroplasticity maps confirmed this potential for the dlPFC (Fisher's exact test, PFDR-corrected = 6.6 × 10-5), the anterior (PFDR-corrected = 0.0039) and the ventral precentral gyrus (PFDR-corrected = 0.0058). A series of clustering analyses revealed a topological migration of clusters, especially within the left dlPFC and STG (language sites); the left vPMC (speech arrest/dysarthria sites) and the right SMA (negative motor response sites). At the individual level, these dynamic changes were confirmed for the dlPFC (bilateral), the left vPMC and the anterior left STG (threshold free cluster enhancement, 5000 permutations, family-wise error-corrected). Taken as a whole, our results provide a critical insight into the dynamic potential of DLGG-induced continuing rearrangements of the cerebral cortex, with considerable implications for re-operations.


Asunto(s)
Neoplasias Encefálicas , Glioma , Corteza Motora , Humanos , Mapeo Encefálico/métodos , Recurrencia Local de Neoplasia , Neoplasias Encefálicas/patología , Glioma/patología
15.
Eur J Pharmacol ; 948: 175697, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-36997048

RESUMEN

BACKGROUND: Platycodin D (PD) is a major bioactive component of Platycodon grandiflorum, a medicinal herb that is widely used in China, and is effective against various human cancers, including glioblastoma multiforme (GBM). S phase kinase-related protein 2 (Skp2) is oncogenic and overexpressed in various human tumors. It is highly expressed in GBM and its expression is correlated with tumor growth, drug resistance and poor prognosis. In this study, we investigated whether inhibition of glioma progression by PD is mediated by decreasing expression of Skp2. METHODS: Cell Counting Kit-8 (CCK-8) and Transwell assays were used to determine the effects of PD on GBM cell proliferation, migration, and invasion in vitro. mRNA and protein expression were determined by real time polymerase chain reaction (RT-PCR) and western blotting, respectively. The U87 xenograft model was used to verify the anti-glioma effect of PD in vivo. Expression levels of Skp2 protein were analyzed by immunofluorescence staining. RESULTS: PD suppressed proliferation and motility of GBM cells in vitro. The expression of Skp2 in U87 and U251 cells was significantly reduced by PD. PD mainly decreased the cytoplasmic expression of Skp2 in glioma cells. Skp2 protein expression was downregulated by PD, resulting in upregulation of its downstream targets, p21and p27. The inhibitory effect of PD was enhanced by Skp2 knockdown in GBM cells and reversed in cells with Skp2 overexpression. CONCLUSION: PD suppresses glioma development by regulation of Skp2 in GBM cells.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Neoplasias Encefálicas/genética , Glioma/patología , Proliferación Celular , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
16.
J Exp Clin Cancer Res ; 42(1): 66, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932446

RESUMEN

BACKGROUND: Altered microRNA profiles have been observed not only in tumour tissues but also in biofluids, where they circulate in a stable form thus representing interesting biomarker candidates. This study aimed to identify a microRNA signature as a non-invasive biomarker and to investigate its impact on glioma biology. METHODS: MicroRNAs were selected using a global expression profile in preoperative serum samples from 37 glioma patients. Comparison between serum samples from age and gender-matched controls was performed by using the droplet digital PCR. The ROC curve and Kaplan-Meier survival analyses were used to evaluate the diagnostic/prognostic values. The functional role of the identified signature was assessed by gain/loss of function strategies in glioma cells. RESULTS: A three-microRNA signature (miR-1-3p/-26a-1-3p/-487b-3p) was differentially expressed in the serum of patients according to the isocitrate dehydrogenase (IDH) genes mutation status and correlated with both patient Overall and Progression Free Survival. The identified signature was also downregulated in the serum of patients compared to controls. Consistent with these results, the signature expression and release in the conditioned medium of glioma cells was lower in IDH-wild type cells compared to the mutated counterpart. Furthermore, in silico analysis of glioma datasets showed a consistent deregulation of the signature according to the IDH mutation status in glioma tumour tissues. Ectopic expression of the signature negatively affects several glioma functions. Notably, it impacts the glioma invasive phenotype by directly targeting the invadopodia-related proteins TKS4, TKS5 and EFHD2. CONCLUSIONS: We identified a three microRNA signature as a promising complementary or even an independent non-invasive diagnostic/prognostic biomarker. The signature displays oncosuppressive functions in glioma cells and impacts on proteins crucial for migration and invasion, providing potential targets for therapeutic intervention.


Asunto(s)
Neoplasias Encefálicas , MicroARN Circulante , Glioma , MicroARNs , Humanos , Neoplasias Encefálicas/patología , Biomarcadores de Tumor/genética , Glioma/patología , MicroARNs/genética , Pronóstico , Isocitrato Deshidrogenasa/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Proteínas de Unión al Calcio
17.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835175

RESUMEN

Glioblastoma is one of the most malignant and lethal forms of primary brain tumors in adults. Linearol, a kaurane diterpene isolated from different medicinal plants, including those of the genus Sideritis, has been found to possess significant anti-oxidant, anti-inflammatory and anti-microbial properties. In this study, we aimed to determine whether linearol could exhibit anti-glioma effects when given alone or in combination with radiotherapy in two human glioma cell lines, U87 and T98. Cell viability was examined with the Trypan Blue Exclusion assay, cell cycle distribution was tested with flow cytometry, and the synergistic effects of the combination treatment were analyzed with CompuSyn software. Linearol significantly suppressed cell proliferation and blocked cell cycle at the S phase. Furthermore, pretreatment of T98 cells with increasing linearol concentrations before exposure to 2 Gy irradiation decreased cell viability to a higher extent than linearol or radiation treatment alone, whereas in the U87 cells, an antagonistic relationship was observed between radiation and linearol. Moreover, linearol inhibited cell migration in both tested cell lines. Our results demonstrate for the first time that linearol is a promising anti-glioma agent and further studies are needed to fully understand the underlying mechanism of this effect.


Asunto(s)
Neoplasias Encefálicas , Diterpenos , Glioblastoma , Glioma , Humanos , Glioblastoma/metabolismo , Glioma/patología , Diterpenos/uso terapéutico , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Neoplasias Encefálicas/metabolismo
18.
Autophagy ; 19(7): 1997-2014, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36647288

RESUMEN

Mutations in the Krebs cycle enzyme IDH1 (isocitrate dehydrogenase (NADP(+)) 1) are associated with better prognosis in gliomas. Though IDH1 mutant (IDH1R132H) tumors are characterized by their antiproliferative signatures maintained through hypermethylation of DNA and chromatin, mechanisms affecting cell death pathways in these tumors are not well elucidated. On investigating the crosstalk between the IDH1 mutant epigenome, ferritinophagy and inflammation, diminished expression of PRMT1 (protein arginine methyltransferase 1) and its associated asymmetric dimethyl epigenetic mark H4R3me2a was observed in IDH1R132H gliomas. Reduced expression of PRMT1 was concurrent with diminished levels of PTX3, a key secretory factor involved in cancer-related inflammation. Lack of PRMT1 H4R3me2a in IDH1 mutant glioma failed to epigenetically activate the expression of PTX3 with a reduction in YY1 (YY1 transcription factor) binding on its promoter. Transcriptional activation and subsequent secretion of PTX3 from cells was required for maintaining macroautophagic/autophagic balance as pharmacological or genetic ablation of PTX3 secretion in wild-type IDH1 significantly increased autophagic flux. Additionally, PTX3-deficient IDH1 mutant gliomas exhibited heightened autophagic signatures. Furthermore, we demonstrate that the PRMT1-PTX3 axis is important in regulating the levels of ferritin genes/iron storage and inhibition of this axis triggered ferritinophagic flux. This study highlights the conserved role of IDH1 mutants in augmenting ferritinophagic flux in gliomas irrespective of genetic landscape through inhibition of the PRMT1-PTX3 axis. This is the first study describing ferritinophagy in IDH1 mutant gliomas with mechanistic details. Of clinical importance, our study suggests that the PRMT1-PTX3 ferritinophagy regulatory circuit could be exploited for therapeutic gains.Abbreviations: 2-HG: D-2-hydroxyglutarate; BafA1: bafilomycin A1; ChIP: chromatin immunoprecipitation; FTH1: ferritin heavy chain 1; FTL: ferritin light chain; GBM: glioblastoma; HMOX1/HO-1: heme oxygenase 1; IHC: immunohistochemistry; IDH1: isocitrate dehydrogenase(NADP(+))1; MDC: monodansylcadaverine; NCOA4: nuclear receptor coactivator 4; NFE2L2/Nrf2: NFE2 like bZIP transcription factor 2; PTX3/TSG-14: pentraxin 3; PRMT: protein arginine methyltransferase; SLC40A1: solute carrier family 40 member 1; Tan IIA: tanshinone IIA; TCA: trichloroacetic acid; TEM: transmission electron microscopy; TNF: tumor necrosis factor.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Isocitrato Deshidrogenasa/uso terapéutico , Proteína-Arginina N-Metiltransferasas/genética , NADP , Autofagia/genética , Glioma/patología , Mutación/genética , Factor de Transcripción YY1 , Neoplasias Encefálicas/patología , Proteínas Represoras/genética
19.
Q J Nucl Med Mol Imaging ; 67(1): 46-56, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33300749

RESUMEN

BACKGROUND: F18-FET PET has an established diagnostic role in adult brain gliomas. In this study we analyzed image derived static and dynamic parameters with available conventional MRI, histological, clinical and follow-up data in assessment of pediatric brain tumor patients at different stages of the disease. METHODS: Forty-four pediatric patients with median age 7 years, diagnosed with brain tumors and underwent forty-seven 18F-FET PET scans either initially (20 scans) or post-therapy (27 scans) were enrolled. Standardized analysis of summed FET PET images early from 10-20 min and late from 30-40 min post-injection were used for static (mean and maximum tumor to brain ratio [TBR] and biological tumor volume [BTV]) parameters evaluation as well as the time activity curve [TAC]. RESULTS: Nineteen out of 20 initially assessed patients had pathologically and/or clinico-radiologically proven neoplastic lesions and one patient had pathologically proven abscess. Receiver operator curve (ROC) marked early TBR max 2.95, early TBR mean 1.76, late TBR max 2.5 and late TBR mean 1.74 as discriminator points with diagnostic accuracy reaching 90% when TBR max was combined with dynamic parameters. Significant association was found between initial FET scans, early and late BTV and event free survival (EFS) (P value=0.042 and 0.005 respectively). In post-therapy assessment, the diagnostic accuracy of conventional MRI was 81.48% when used alone and 96.30% when combined with F18-FET PET scan findings. A cutoff point of 3.2 cm3 for late BTV, in post-therapy scans, was successfully marked as a predictor for therapy response (P value 0.042) and was significantly associated with EFS (P value 0.002). In FET-avid / MRI non-enhancing lesions, early TBR max was able to detect highly malignant processes (high-grade tumors in initial scans and residue/recurrence in post-therapy scans) with 80% sensitivity and 100% specificity when cutoff value of 2.25 was used (P value=0.024). In patients with FET-avid brainstem lesions, whether enhancing or non-enhancing in MRI scans, 81.8% were associated with high risk diagnoses and 68.2% of them were associated with poor therapy outcome. The degree of FET uptake matched tumor-grading, but did not show significant association with OS or EFS (P value>0.05). CONCLUSIONS: F18-FET PET seems to be an evolving pediatric neuro-imaging technique with valuable diagnostic and prognostic information at initial and post-therapy evaluation.


Asunto(s)
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Niño , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/patología , Encéfalo , Tomografía de Emisión de Positrones/métodos , Clasificación del Tumor , Imagen por Resonancia Magnética
20.
Childs Nerv Syst ; 39(5): 1173-1182, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36574012

RESUMEN

PURPOSE: A multimodality approach is generally considered for pediatric low-grade gliomas (LGG); however, the optimal management remains uncertain. The objective of the study was to evaluate treatment outcomes of pediatric LGG, focusing on long-term survival and factors related to outcomes. METHODS: A retrospective review of 77 pediatric LGG cases treated at Ramathibodi Hospital, Thailand between 2000 and 2018 was performed. The inclusion criteria were all pediatric LGG cases aged ≤ 15 years. Diffuse intrinsic pontine gliomas and spinal cord tumors were excluded. RESULTS: The median follow-up time was 8.2 years (range, 0.6-19.7). The median age at diagnosis was 6.2 years (interquartile range, 3.6-11.4). Treatments modality included tumor surgery (93%), chemotherapy (40%), and radiation therapy (14%). The 10-year overall survival (OS) and 10-year progression-free survival were 94% and 59%, respectively, for the entire cohort. The 10-year OS was 100% in three subgroups of patients: pilocytic subtype, WHO grade 1 tumors, and recipient of gross total resection. After multivariable analysis, no tumor surgery had a significantly unfavorable influence on overall survival. CONCLUSIONS: With a multimodality approach, pediatric LGGs had excellent outcome. Gross total resection is the standard primary treatment. Chemotherapy is the alternative standard treatment in incomplete resection cases, unresectable patients, or patients with progressive disease. Radiation therapy should be reserved as a salvage treatment option because of late complications that usually affect patients' quality of life.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Calidad de Vida , Universidades , Glioma/patología , Resultado del Tratamiento , Hospitales , Neoplasias Encefálicas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA