Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.104
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
J Biol Chem ; 300(4): 107147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460940

RESUMEN

Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness. One adaptive response gene encodes the 2-cysteine peroxiredoxin Tsa1, which is critical to Zn-deficient (ZnD) growth. Depending on its redox state, Tsa1 can function as a peroxidase, a protein chaperone, or a regulatory redox sensor. In a screen for possible Tsa1 regulatory targets, we identified a mutation (cdc19S492A) that partially suppressed the tsa1Δ growth defect. The cdc19S492A mutation reduced activity of its protein product, pyruvate kinase isozyme 1 (Pyk1), implicating Tsa1 in adapting glycolysis to ZnD conditions. Glycolysis requires activity of the Zn-dependent enzyme fructose-bisphosphate aldolase 1, which was substantially decreased in ZnD cells. We hypothesized that in ZnD tsa1Δ cells, the loss of a compensatory Tsa1 regulatory function causes depletion of glycolytic intermediates and restricts dependent amino acid synthesis pathways, and that the decreased activity of Pyk1S492A counteracted this depletion by slowing the irreversible conversion of phosphoenolpyruvate to pyruvate. In support of this model, supplementing ZnD tsa1Δ cells with aromatic amino acids improved their growth. Phosphoenolpyruvate supplementation, in contrast, had a much greater effect on growth rate of WT and tsa1Δ ZnD cells, indicating that inefficient glycolysis is a major factor limiting yeast growth. Surprisingly however, this restriction was not primarily due to low fructose-bisphosphate aldolase 1 activity, but instead occurs earlier in glycolysis.


Asunto(s)
Glucólisis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Zinc , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Zinc/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Piruvato Quinasa/metabolismo , Piruvato Quinasa/genética , Regulación Fúngica de la Expresión Génica , Peroxidasas/metabolismo , Peroxidasas/genética , Mutación
2.
Acta Biomater ; 179: 284-299, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494084

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is the primary pathogenic agent responsible for epidermal wound infection and suppuration, seriously threatening the life and health of human beings. To address this fundamental challenge, we propose a heterojunction nanocomposite (Ca-CN/MnS) comprised of Ca-doped g-C3N4 and MnS for the therapy of MRSA-accompanied wounds. The Ca doping leads to a reduction in both the bandgap and the singlet state S1-triplet state T2 energy gap (ΔEST). The Ca doping also facilitates the two-photon excitation, thus remarkably promoting the separation and transfer of 808 nm near-infrared (NIR) light-triggered electron-hole pairs together with the built-in electric field. Thereby, the production of reactive oxygen species and heat are substantially augmented nearby the nanocomposite under 808 nm NIR light irradiation. Consequently, an impressive photocatalytic MRSA bactericidal efficiency of 99.98 ± 0.02 % is achieved following exposure to NIR light for 20 min. The introduction of biologically functional elements (Ca and Mn) can up-regulate proteins such as pyruvate kinase (PKM), L-lactate dehydrogenase (LDHA), and calcium/calmodulin-dependent protein kinase (CAMKII), trigger the glycolysis and calcium signaling pathway, promote cell proliferation, cellular metabolism, and angiogenesis, thereby expediting the wound-healing process. This heterojunction nanocomposite, with its precise charge-transfer pathway, represents a highly effective bactericidal and bioactive system for treating multidrug-resistant bacterial infections and accelerating tissue repair. STATEMENT OF SIGNIFICANCE: Due to the bacterial resistance, developing an antibiotic-free and highly effective bactericidal strategy to treat bacteria-infected wounds is critical. We have designed a heterojunction consisting of calcium doped g-C3N4 and MnS (Ca-CN/MnS) that can rapidly kill methicillin-resistant Staphylococcus aureus (MRSA) without damaging normal tissue through a synergistic effect of two-photon stimulated photothermal and photodynamic therapy. In addition, the release of trace amounts of biofunctional elements Mn and Ca triggers glycolysis and calcium signaling pathways that promote cellular metabolism and cell proliferation, contributing to tissue repair and wound healing.


Asunto(s)
Calcio , Glucólisis , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Glucólisis/efectos de los fármacos , Animales , Calcio/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Fototerapia , Infección de Heridas/microbiología , Infección de Heridas/patología , Infección de Heridas/tratamiento farmacológico , Humanos , Nanocompuestos/química , Cicatrización de Heridas/efectos de los fármacos , Ratones , Rayos Infrarrojos
3.
J Colloid Interface Sci ; 665: 477-490, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38429120

RESUMEN

Clinical pancreatic ductal adenocarcinoma (PDAC) treatment is severely limited by lack of effective KRAS suppression strategies. To address this dilemma, a reactive oxygen species (ROS)-responsive and PDAC-targeted nanodrug named Z/B-PLS was constructed to confront KRAS through dual-blockade of its downstream PI3K/AKT/mTOR and RAF/MEK/ERK for enhanced PDAC treatment. Specifically, photosensitizer zinc phthalocyanine (ZnPc) and PI3K/mTOR inhibitor BEZ235 (BEZ) were co-loaded into PLS which was constructed by click chemistry conjugating MEK inhibitor selumetinib (SEL) to low molecular weight heparin with ROS-responsive oxalate bond. The BEZ and SEL blocked PI3K/AKT/mTOR and RAF/MEK/ERK respectively to remodel glycolysis and non-canonical glutamine metabolism. ZnPc mediated photodynamic therapy (PDT) could enhance drug release through ROS generation, further facilitating KRAS downstream dual-blockade to create treatment-promoting drug delivery-therapeutic positive feedback. Benefiting from this broad metabolic modulation cascade, the metabolic symbiosis between normoxic and hypoxic tumor cells was also cut off simultaneously and effective tumor vascular normalization effects could be achieved. As a result, PDT was dramatically promoted through glycolysis-non-canonical glutamine dual-metabolism regulation, achieving complete elimination of tumors in vivo. Above all, this study achieved effective multidimensional metabolic modulation based on integrated smart nanodrug delivery, helping overcome the therapeutic challenges posed by KRAS mutations of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Glutamina/farmacología , Glutamina/metabolismo , Glutamina/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Glucólisis , Fototerapia , Línea Celular Tumoral
4.
Phytomedicine ; 128: 155539, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522311

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is the predominant histological subtype of esophageal cancer (EC) in China, and demonstrates varying levels of resistance to multiple chemotherapeutic agents. Our previous studies have proved that periplocin (CPP), derived from the extract of cortex periplocae, exhibiting the capacity to hinder proliferation and induce apoptosis in ESCC cells. Several studies have identified additional anti-cancer constituents in the extract of cortex periplocae, named periplcymarin (PPM), sharing similar compound structure with CPP. Nevertheless, the inhibitory effects of PPM on ESCC and their underlying mechanisms remain to be further elucidated. PURPOSE: The aim of this study was to investigate function of PPM inhibiting the growth of ESCC in vivo and in vitro and to explore its underlying mechanism, providing the potential anti-tumor drug for ESCC. METHODS: Initially, a comparative analysis was conducted on the inhibitory activity of three naturally compounds obtained from the extract of cortex periplocae on ESCC cells. Among these compounds, PPM was chosen for subsequent investigation owing to its comparatively structure and anti-tumor activity simultaneously. Subsequently, a series of biological functional experiments were carried out to assess the impact of PPM on the proliferation, apoptosis and cell cycle arrest of ESCC cells in vitro. In order to elucidate the molecular mechanism of PPM, various methodologies were employed, including bioinformatics analyses and mechanistic experiments such as high-performance liquid chromatography combined with mass spectrometry (HPLC-MS), cell glycolysis pressure and mitochondrial pressure test. Additionally, the anti-tumor effects of PPM on ESCC cells and potential toxic side effects were evaluated in vivo using the nude mice xenograft assay. RESULTS: Our study revealed that PPM possesses the ability to impede the proliferation of ESCC cells, induce apoptosis, and arrest the cell cycle of ESCC cells in the G2/M phase in vitro. Mechanistically, PPM exerted its effects by modulating glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), as confirmed by glycolysis pressure and mitochondrial pressure tests. Moreover, rescue assays demonstrated that PPM inhibits glycolysis and OXPHOS in ESCC cells through the PI3K/AKT and MAPK/ERK signaling pathways. Additionally, we substantiated that PPM effectively suppresses the growth of ESCC cells in vivo, with only modest potential toxic side effects. CONCLUSION: Our study provides novel evidence that PPM has the potential to simultaneously target glycolysis and mitochondrial OXPHOS in ESCC cells. This finding highlights the need for further investigation into PPM as a promising therapeutic agent that targets the tumor glucose metabolism pathway in ESCC.


Asunto(s)
Antineoplásicos Fitogénicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Glucólisis , Ratones Desnudos , Mitocondrias , Fosforilación Oxidativa , Saponinas , Humanos , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Glucólisis/efectos de los fármacos , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Línea Celular Tumoral , Fosforilación Oxidativa/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones , Proliferación Celular/efectos de los fármacos , Carcinoma de Células Escamosas/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Chem Biol Interact ; 392: 110926, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38431053

RESUMEN

Metabolic reprogramming enables cancer cells to generate energy mainly through aerobic glycolysis, which is achieved by increasing the expression levels of glycolysis-related enzymes. Therefore, the development of drugs targeting aerobic glycolysis could be an effective strategy for cancer treatment. Icaritin (ICT) is an active ingredient from the Chinese herbal plant Epimedium with several biological activities, but its anti-cancer mechanism remains inconclusive. Using normal hepatocytes and hepatoma cells, our results showed that ICT suppressed cell proliferation and clonal formation and decreased glucose consumption and lactate production in liver cancer cells. In consistent, the mRNA and protein levels of several aerobic glycolysis-related genes were decreased upon ICT treatment. Furthermore, our results demonstrated that the expression levels of the aerobic glycolysis-related proteins were correlated with the p53 status in hepatoma cells. Using PFT-α or siRNA-p53, our results confirmed that ICT regulated aerobic glycolysis in a p53-dependent manner. In addition, ICT was found to stabilize p53 at the post-translational level which might be mediated by inhibiting MDM2 expression and affecting its interaction with p53. Finally, our results demonstrated that ICT increased the levels of ROS that activated p53 via the p38 MAPK pathway. In conclusion, ICT increased intracellular ROS levels in liver cancer cells, which promoted the stabilization and activation of p53, inhibiting the expression of aerobic glycolysis-related genes and glycolysis, and ultimately leading to the suppression of liver cancer development.


Asunto(s)
Carcinoma Hepatocelular , Flavonoides , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Glucólisis , Proliferación Celular , Línea Celular Tumoral
6.
Acta Physiol (Oxf) ; 240(4): e14113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38380737

RESUMEN

AIM: Aortic dissection (AD) is a disease with rapid onset but with no effective therapeutic drugs yet. Previous studies have suggested that glucose metabolism plays a critical role in the progression of AD. Transketolase (TKT) is an essential bridge between glycolysis and the pentose phosphate pathway. However, its role in the development of AD has not yet been elucidated. In this study, we aimed to explore the role of TKT in AD. METHODS: We collected AD patients' aortic tissues and used high-throughput proteome sequencing to analyze the main factors influencing AD development. We generated an AD model using BAPN in combination with angiotensin II (Ang II) and pharmacological inhibitors to reduce TKT expression. The effects of TKT and its downstream mediators on AD were elucidated using human aortic vascular smooth muscle cells (HAVSMCs). RESULTS: We found that glucose metabolism plays an important role in the development of AD and that TKT is upregulated in patients with AD. Western blot and immunohistochemistry confirmed that TKT expression was upregulated in mice with AD. Reduced TKT expression attenuated AD incidence and mortality, maintained the structural integrity of the aorta, aligned elastic fibers, and reduced collagen deposition. Mechanistically, TKT was positively associated with impaired mitochondrial bioenergetics by upregulating AKT/MDM2 expression, ultimately contributing to NDUFS1 downregulation. CONCLUSION: Our results provide new insights into the role of TKT in mitochondrial bioenergetics and AD progression. These findings provide new intervention options for the treatment of AD.


Asunto(s)
Disección Aórtica , Transcetolasa , Humanos , Ratones , Animales , Transcetolasa/metabolismo , Metabolismo Energético , Glucólisis , Glucosa
7.
Pharmacol Res ; 202: 107119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417775

RESUMEN

Intervertebral disc (IVD) degeneration is a frequent cause of low back pain and is the most common cause of disability. Treatments for symptomatic IVD degeneration, including conservative treatments such as analgesics, physical therapy, anti-inflammatories and surgeries, are aimed at alleviating neurological symptoms. However, there are no effective treatments to prevent or delay IVD degeneration. Previous studies have identified risk factors for IVD degeneration such as aging, inflammation, genetic factors, mechanical overload, nutrient deprivation and smoking, but metabolic dysfunction has not been highlighted. IVDs are the largest avascular structures in the human body and determine the hypoxic and glycolytic features of nucleus pulposus (NP) cells. Accumulating evidence has demonstrated that intracellular metabolic dysfunction is associated with IVD degeneration, but a comprehensive review is lacking. Here, by reviewing the physiological features of IVDs, pathological processes and metabolic changes associated with IVD degeneration and the functions of metabolic genes in IVDs, we highlight that glycolytic pathway and intact mitochondrial function are essential for IVD homeostasis. In degenerated NPs, glycolysis and mitochondrial function are downregulated. Boosting glycolysis such as HIF1α overexpression protects against IVD degeneration. Moreover, the correlations between metabolic diseases such as diabetes, obesity and IVD degeneration and their underlying molecular mechanisms are discussed. Hyperglycemia in diabetic diseases leads to cell senescence, the senescence-associated phenotype (SASP), apoptosis and catabolism of extracellualr matrix in IVDs. Correcting the global metabolic disorders such as insulin or GLP-1 receptor agonist administration is beneficial for diabetes associated IVD degeneration. Overall, we summarized the recent progress of investigations on metabolic contributions to IVD degeneration and provide a new perspective that correcting metabolic dysfunction may be beneficial for treating IVD degeneration.


Asunto(s)
Diabetes Mellitus , Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patología , Glucólisis , Diabetes Mellitus/metabolismo
8.
Mol Neurodegener ; 19(1): 13, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38282024

RESUMEN

BACKGROUND: Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS: We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS: We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION: NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.


Asunto(s)
Transporte Axonal , NAD , Nicotinamida-Nucleótido Adenililtransferasa , Animales , Ratones , Adenosina Trifosfato/metabolismo , Proteínas del Dominio Armadillo/metabolismo , Axones/metabolismo , Proteínas del Citoesqueleto/metabolismo , Glucólisis , Homeostasis , NAD/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo
9.
Phytother Res ; 38(3): 1235-1244, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176954

RESUMEN

Since the silent information regulation 2 homolog-1 (sirtuin, SIRT1) and glucose transporter 1 (GLUT1) are known to modulate cancer cell metabolism and proliferation, the role of SIRT1/GLUT1 signaling was investigated in the apoptotic effect of Leptosidin from Coreopsis grandiflora in DU145 and PC3 human prostate cancer (PCa) cells. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis, Western blotting, cBioportal correlation analysis, and co-immunoprecipitation were used in this work. Leptosidin showed cytotoxicity, augmented sub-G1 population, and abrogated the expression of pro-poly (ADP-ribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (pro-caspase3) in DU145 and PC3 cells. Also, Leptosidin inhibited the expression of SIRT1, GLUT1, pyruvate kinase isozymes M2 (PKM2), Hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA) in DU145 and PC3 cells along with disrupted binding of SIRT1 and GLUT1. Consistently, Leptosidin curtailed lactate, glucose, and ATP in DU145 and PC3 cells. Furthermore, SIRT1 depletion enhanced the decrease of GLUT1, LDHA, and pro-Cas3 by Leptosidin in treated DU145 cells, while pyruvate suppressed the ability of Leptosidin in DU145 cells. These findings suggest that Leptosidin induces apoptosis via inhibition of glycolysis and SIRT1/GLUT1 signaling axis in PCa cells.


Asunto(s)
Benzofuranos , Neoplasias de la Próstata , Sirtuina 1 , Humanos , Masculino , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/fisiología , Neoplasias de la Próstata/metabolismo , Sirtuina 1/metabolismo
10.
Phytomedicine ; 123: 155181, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091824

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer and exhibits high rate of chemoresistance, metastasis, and relapse. This can be attributed to the failure of conventional therapeutics to target a sub-population of slow cycling or quiescent cells called as cancer stem cells (CSCs). Therefore, elimination of CSCs is essential for effective TNBC treatment. PURPOSE: Research suggests that breast CSCs exhibit elevated glycolytic metabolism which directly contributes in maintenance of stemness, self-renewability and chemoresistance as well as in tumor progression. Therefore, this study aimed to target rewired metabolism which can serve as Achilles heel for CSCs population and have far reaching effect in TNBC treatment. METHODS: We used two preclinical models, zebrafish and nude mice to evaluate the fate of nanoparticles as well as the therapeutic efficacy of both piperlongumine (PL) and its nanomedicine (PL-NPs). RESULTS: In this context, we explored a phytochemical piperlongumine (PL) which has potent anti-cancer properties but poor pharmacokinetics impedes its clinical translation. So, we developed PLGA based nanomedicine for PL (PL-NPs), and demonstrated that it overcomes the pharmacokinetic limitations of PL, along with imparting advantages of selective tumor targeting through Enhanced Permeability and Retention (EPR) effect in zebrafish xenograft model. Further, we demonstrated that PL-NPs efficiently inhibit glycolysis in CSCs through inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by modulating glutathione S-transferase pi 1 (GSTP1) and upregulation of fructose-1,6-bisphosphatase 1 (FBP1), a rate-limiting enzyme in gluconeogenesis. We also illustrated that inhibition of glycolysis results in overall tumor regression in two preclinical models. CONCLUSION: This study discusses novel mechanism of action by which PL acts on CSCSs. Taken together our study provides insight into development of PL based nanomedicine which could be exploited in clinics to achieve complete eradication of TNBC by targeting CSCs.


Asunto(s)
Benzodioxoles , Neoplasias de la Mama Triple Negativas , Animales , Ratones , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Pez Cebra/metabolismo , Nanomedicina , Ratones Desnudos , Línea Celular Tumoral , Recurrencia Local de Neoplasia/metabolismo , Células Madre Neoplásicas , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/uso terapéutico , Glucólisis
11.
J Infect Dis ; 229(2): 535-546, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37592764

RESUMEN

Mastitis caused by antibiotic-resistant strains of Staphylococcus aureus is a significant concern in the livestock industry due to the economic losses it incurs. Regulating immunometabolism has emerged as a promising approach for preventing bacterial inflammation. To investigate the possibility of alleviating inflammation caused by S aureus infection by regulating host glycolysis, we subjected the murine mammary epithelial cell line (EpH4-Ev) to S aureus challenge. Our study revealed that S aureus can colonize EpH4-Ev cells and promote inflammation through hypoxic inducible factor 1α (HIF1α)-driven glycolysis. Notably, the activation of HIF1α was found to be dependent on the production of reactive oxygen species (ROS). By inhibiting PFKFB3, a key regulator in the host glycolytic pathway, we successfully modulated HIF1α-triggered metabolic reprogramming by reducing ROS production in S aureus-induced mastitis. Our findings suggest that there is a high potential for the development of novel anti-inflammatory therapies that safely inhibit the glycolytic rate-limiting enzyme PFKFB3.


Asunto(s)
Mastitis , Staphylococcus aureus , Femenino , Animales , Ratones , Humanos , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/metabolismo , Células Epiteliales/microbiología , Inflamación , Glucólisis , Proliferación Celular , Fosfofructoquinasa-2/metabolismo
12.
Phytomedicine ; 123: 155185, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134863

RESUMEN

BACKGROUND: Elemene, an active anticancer extract derived from Curcuma wenyujin, has well-documented anticarcinogenic properties. Nevertheless, the role of elemene in prostate cancer (PCa) and its underlying molecular mechanism remain elusive. PURPOSE: This study focuses on investigating the anti-PCa effects of elemene and its underlying mechanisms. METHODS: Cell-based assays, including CCK-8, scratch, colony formation, cell cycle, and apoptosis experiments, to comprehensively assess the impact of elemene on PCa cells (LNCaP and PC3) in vitro. Additionally, we used a xenograft model with PC3 cells in nude mice to evaluate elemene in vivo efficacy. Targeted metabolomics analysis via HILIC-MS/MS was performed to investigate elemene potential target pathways, validated through molecular biology experiments, including western blotting and gene manipulation studies. RESULTS: In this study, we discovered that elemene has remarkable anti-PCa activity in both in vitro and in vivo settings, comparable to clinical chemotherapeutic drugs but with fewer side effects. Using our established targeted metabolomics approach, we demonstrated that ß-elemene, elemene's primary component, effectively inhibits glycolysis in PCa cells by downregulating 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) expression. Furthermore, we found that ß-elemene accomplishes this downregulation by upregulating p53 and FZR1. Knockdown and overexpression experiments conclusively confirmed the pivotal role of PFKFB3 in mediating ß-elemene's anti-PCa activity. CONCLUSION: This finding presents compelling evidence that elemene exerts its anti-PCa effect by suppressing glycolysis through the downregulation of PFKFB3. This study not only improves our understanding of elemene in PCa treatment but also provides valuable insights for developing more effective and safer therapies for PCa.


Asunto(s)
Neoplasias de la Próstata , Sesquiterpenos , Espectrometría de Masas en Tándem , Masculino , Animales , Ratones , Humanos , Ratones Desnudos , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Glucólisis , Proliferación Celular , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/farmacología
13.
J Ethnopharmacol ; 319(Pt 3): 117250, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37832811

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Based on the theory of traditional Chinese medicine (TCM), diabetic cardiomyopathy (DCM) belongs to the category of "Xiaoke disease" according to the symptoms, and "stasis-heat" is the main pathogenesis of DCM. The Chinese medicine Anemarrhena asphodeloides Bunge (AAB), as a representative of heat-clearing and engendering fluid, is often used clinically in the treatment of DCM. Anemarrhena asphodeloides Bunge total saponins (RATS) are the main bioactive components of AAB, the modern pharmacologic effects of RATS are anti-inflammatory, hypoglycemic, and cardioprotective. However, the potential protective mechanisms of RATS against DCM remain largely undiscovered. AIM OF THE STUDY: The primary goal of this study was to explore the effect of RATS on DCM and its mechanism of action. MATERIALS AND METHODS: Streptozotocin and a high-fat diet were used to induce DCM in rats. UHPLC/Q-TOF-MS was used to determine the chemical components of RATS. The degenerative alterations and apoptotic cells in the heart were assessed by HE staining and TUNEL. Network pharmacology was used to anticipate the probable targets and important pathways of RATS. The alterations in metabolites and main metabolic pathways in heart tissue were discovered using 1 H-NMR metabolomics. Ultimately, immunohistochemistry was used to find critical pathway protein expression. RESULTS: First of all, UHPLC/Q-TOF-MS analysis showed that RATS contained 11 active ingredients. In animal experiments, we found that RATS lowered blood glucose and lipid levels in DCM rats, and alleviated cardiac pathological damage, and decreased cardiomyocyte apoptosis. Furthermore, the study found that RATS effectively reduced inflammatory factor release and the level of oxidative stress. Mechanistically, RATS downregulated the expression levels of PI3K, AKT, HIF-1α, LDHA, and GLUT4 proteins. Additionally, glycolysis was discovered to be a crucial pathway for RATS in the therapy of DCM. CONCLUSIONS: Our findings suggest that the protective effect of RATS on DCM may be attributed to the inhibition of the PI3K/AKT/HIF-1α pathway and the correction of glycolytic metabolism.


Asunto(s)
Anemarrhena , Diabetes Mellitus , Cardiomiopatías Diabéticas , Saponinas , Animales , Cardiomiopatías Diabéticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Anemarrhena/química , Saponinas/farmacología , Saponinas/uso terapéutico , Saponinas/química , Glucólisis
14.
Curr Drug Metab ; 24(12): 803-816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155471

RESUMEN

Cancer is the second leading cause of mortality worldwide. The heightened nutrient uptake, particularly glucose, and elevated glycolysis observed in rapidly proliferating tumor cells highlight the potential targeting of energy metabolism pathways for the treatment of cancer. Numerous studies and clinical trials have demonstrated the efficacy of nutritional therapy in mitigating the adverse effects of chemotherapy and radiotherapy, enhancing treatment outcomes, prolonging survival, and improving the overall quality of life of patients. This review article comprehensively examines nutritional therapy strategies that specifically address tumor energy metabolism. Moreover, it explores the intricate interplay between energy metabolism and the gut microbiota in the context of nutritional therapy. The findings aim to provide valuable insights for future clinical research endeavors in this field.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Calidad de Vida , Neoplasias/tratamiento farmacológico , Metabolismo Energético , Glucólisis
15.
J Mater Chem B ; 11(44): 10717-10727, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37921004

RESUMEN

Phototherapy is a local and precise therapeutic technique for tumor treatment. However, the therapeutic effects of photothermal and photodynamic therapies are inevitably encountered by hypoxia of the tumor microenvironment and heat shock protein induced by hyperthermia, respectively. Herein, we found that mannose, a glucose analog, could reverse tumor hypoxia by inhibiting glycolysis of cancer cells and suppressing the expression of heat shock protein through inhibiting cellular adenosine triphosphate (ATP) generation. Next, we used lipid nanoparticles simultaneously loaded with indocyanine green (ICG) and mannose molecules, named imLipo, for tumor therapy. Both in vitro and in vivo experiments evidenced that the imLipo nanoplatform has significant therapeutic efficacy through synergistic phototherapy under single near-infrared laser irradiation. This work shows that glycolysis inhibition can overcome the challenges of phototherapy. In addition, all three parts (mannose, ICG, and lipid) of imLipo are clinically approved and our designed nanoplatforms have great potential for future tumor treatment.


Asunto(s)
Hipertermia Inducida , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Manosa , Fototerapia , Glucólisis , Proteínas de Choque Térmico , Microambiente Tumoral
16.
Poult Sci ; 102(12): 103103, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37837679

RESUMEN

Chronic heat stress has detrimental effects on the growth performance of broilers, and the potential mechanism is under exploration. In this study, the protein carbonyl modification was introduced to glycolytic enzymes to evaluate its relationship with the growth performance of heat-stressed (HS) broilers. A total of 144 male 28-day-old broilers were assigned to 3 treatments: the normal control group (NC, raised at 22°C with free access to feed and water), the HS group (raised at 32°C with free access to feed and water), and the pair-fed group (PF, raised at 22°C with an amount of feed equal to that consumed by the HS group on a previous day). Results showed that heat stress decreased the average daily growth, increased the feed-to-gain ratio (F/G), decreased breast muscle rate, and increased abdominal fat rate compared with the NC and PF groups (P < 0.05). Higher cloacal temperature and serum creatine kinase activity were found in the HS group than those of the NC and PF groups (P < 0.05). Heat stress increased the contents of carbonyl, advanced glycation end-products, malonaldehyde, and the activities of catalase, glutathione peroxidase, and total antioxidant capacity compared with the NC and PF groups (P < 0.05). Heat stress increased the contents of glucose and lactate, declined the glycogen content, and lowered the relative protein expressions of pyruvate kinase muscle type, lactate dehydrogenase A type (LDHA), and citrate synthase compared to those of the NC group (P < 0.05). In contrast to the NC and PF groups, heat stress intensified the carbonylation levels of phosphoglucomutase 1, triosephosphate isomerase 1, ß-enolase, and LDHA, which were positively correlated with the F/G (P < 0.05). These findings demonstrate that heat stress depresses growth performance on account of oxidative stress and glycolysis disorders. It further increases the carbonylation of glycolytic enzymes, which potentially correlates with the F/G by disturbing the mode of energy supply of broilers.


Asunto(s)
Pollos , Respuesta al Choque Térmico , Masculino , Animales , Pollos/fisiología , Glucólisis , Músculos Pectorales/metabolismo , Agua/metabolismo , Alimentación Animal/análisis , Suplementos Dietéticos , Calor , Dieta
17.
Int J Hyperthermia ; 40(1): 2270654, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37871910

RESUMEN

Cellular metabolic reprogramming is an important feature of malignant tumors. Metabolic reprogramming causes changes in the levels or types of specific metabolites inside and outside the cell, which affects tumorigenesis and progression by influencing gene expression, the cellular state, and the tumor microenvironment. During tumorigenesis, a series of changes in the glucose metabolism, fatty acid metabolism, amino acid metabolism, and cholesterol metabolism of tumor cells occur, which are involved in the process of cellular carcinogenesis and constitute part of the underlying mechanisms of tumor formation. Hyperthermia, as one of the main therapeutic tools for malignant tumors, has obvious effects on tumor cell metabolism. In this paper, we will combine the latest research progress in the field of cellular metabolic reprogramming and focus on the current experimental research and clinical treatment of hyperthermia in cellular metabolic reprogramming to discuss the feasibility of cellular metabolic reprogramming-related mechanisms guiding hyperthermia in malignant tumor treatment, so as to provide more ideas for hyperthermia to treat malignant tumors through the direction of cellular metabolic reprogramming.


Asunto(s)
Hipertermia Inducida , Neoplasias , Humanos , Neoplasias/patología , Carcinogénesis , Transformación Celular Neoplásica/metabolismo , Glucólisis , Hipertermia , Microambiente Tumoral
18.
Nat Commun ; 14(1): 5333, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660049

RESUMEN

Inhibition of glycolysis in immune cells and cancer cells diminishes their activity, and thus combining immunotherapies with glycolytic inhibitors is challenging. Herein, a strategy is presented where glycolysis is inhibited in cancer cells using PFK15 (inhibitor of PFKFB3, rate-limiting step in glycolysis), while simultaneously glycolysis and function is rescued in DCs by delivery of fructose-1,6-biphosphate (F16BP, one-step downstream of PFKFB3). To demonstrate the feasibility of this strategy, vaccine formulations are generated using calcium-phosphate chemistry, that incorporate F16BP, poly(IC) as adjuvant, and phosphorylated-TRP2 peptide antigen and tested in challenging and established YUMM1.1 tumours in immunocompetent female mice. Furthermore, to test the versatility of this strategy, adoptive DC therapy is developed with formulations that incorporate F16BP, poly(IC) as adjuvant and mRNA derived from B16F10 cells as antigens in established B16F10 tumours in immunocompetent female mice. F16BP vaccine formulations rescue DCs in vitro and in vivo, significantly improve the survival of mice, and generate cytotoxic T cell (Tc) responses by elevating Tc1 and Tc17 cells within the tumour. Overall, these results demonstrate that rescuing glycolysis of DCs using metabolite-based formulations can be utilized to generate immunotherapy even in the presence of glycolytic inhibitor.


Asunto(s)
Inmunoterapia , Neoplasias , Femenino , Animales , Ratones , Glucólisis , Adyuvantes Inmunológicos/farmacología , Fructosa , Poli I-C , Células Dendríticas
19.
Biomed Pharmacother ; 166: 115293, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37567069

RESUMEN

Hepatocellular carcinoma (HCC) is the most common primary malignant tumor. Although sorafenib and regorafenib have been approved for first-line and second-line treatment, respectively, of patients with advanced HCC, long-term treatment often results in acquired resistance. Given that glycolysis-mediated lactate production can contribute to drug resistance and impair HCC treatment efficacy, we investigated the effects of ketone body treatment on the metabolic shift in sorafenib-resistant HCC cells. We discovered differential expression of 3-hydroxymethyl glutaryl-CoA synthase 2 (HMGCS2) and the ketone body D-ß-hydroxybutyrate (ß-HB) in four sorafenib-resistant HCC cell lines. In sorafenib-resistant HCC cells, lower HMGCS2 and ß-HB levels were correlated with more glycolytic alterations and higher lactate production. ß-HB treatment enhanced pyruvate dehydrogenase (PDH) expression and decreased lactate dehydrogenase (LDHA) expression and lactate production in sorafenib-resistant HCC cells. Additionally, ß-HB combined with sorafenib or regorafenib promoted the antiproliferative and antimigratory abilities of sorafenib-resistant HCC cells by inhibiting the B-raf/mitogen-activated protein kinase pathway and mesenchymal N-cadherin-vimentin axis. Although the in vivo ß-HB administration did not affect tumor growth, the expression of proliferative and glycolytic proteins was inhibited in subcutaneous sorafenib-resistant tumors. In conclusion, exogenous ß-HB treatment can reduce lactate production and reverse sorafenib resistance by inducing a glycolytic shift; it can also synergize with regorafenib for treating sorafenib-resistant HCC.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/patología , Ácido 3-Hidroxibutírico , Neoplasias Hepáticas/patología , Resistencia a Antineoplásicos , Glucólisis , Lactatos/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
20.
Am J Chin Med ; 51(7): 1905-1925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37646142

RESUMEN

Hexokinase 2 (HK2), the first glycolytic rate-limiting enzyme, is closely correlated with the occurrence and progression of tumors. Effective therapeutic agents targeting HK2 are urgently needed. Bergenin has exhibited various pharmacological activities, such as antitumor properties. However, the effects of bergenin on the abnormal glucose metabolism of cancer cells are yet unclear. In this study, HK2 was overexpressed in OSCC tissues, and the depletion of HK2 inhibited the growth of OSCC cells in vitro and in vivo. Moreover, these results showed that the natural compound, bergenin, exerted a robust antitumor effect on OSCC cells. Bergenin inhibited cancer cell proliferation, suppressed glycolysis, and induced intrinsic apoptosis in OSCC cells by downregulating HK2. Notably, bergenin restored the antitumor efficacy of irradiation in the radioresistant OSCC cells. A mechanistic study revealed that bergenin upregulated the protein level of phosphatase and the tensin homolog deleted on chromosome 10 (PTEN) by enhancing the interaction between PTEN and ubiquitin-specific protease 13 (USP13) and stabilizing PTEN; this eventually inhibited AKT phosphorylation and HK2 expression. Bergenin was identified as a novel therapeutic agent against glycolysis to inhibit OSCC and overcome radioresistance. Targeting PTEN/AKT/HK2 signaling could be a promising option for clinical OSCC treatment.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Glucólisis/genética , Línea Celular Tumoral , Proliferación Celular , Proteasas Ubiquitina-Específicas/metabolismo , Proteasas Ubiquitina-Específicas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA