Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.975
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0301086, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662719

RESUMEN

There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 µg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.


Asunto(s)
Antivirales , Iridoides , Simulación del Acoplamiento Molecular , Olea , Extractos Vegetales , Hojas de la Planta , Polifenoles , SARS-CoV-2 , Olea/química , Antivirales/farmacología , Antivirales/química , SARS-CoV-2/efectos de los fármacos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Iridoides/farmacología , Iridoides/química , Humanos , Glucósidos Iridoides/farmacología , Glucósidos Iridoides/química , Glucósidos/farmacología , Glucósidos/química , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas 3C de Coronavirus/química , Simulación por Computador , Tratamiento Farmacológico de COVID-19 , Luteolina/farmacología , Luteolina/química , ARN Helicasas/metabolismo , ARN Helicasas/antagonistas & inhibidores , Apigenina/farmacología , Apigenina/química
2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1255-1259, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621972

RESUMEN

The components with hypoglycemic activity in Plumeria rubra were isolated and purified by various column chromatography techniques and activity tracing methods. The physical and chemical properties of all the purified monomer compounds were characterized and analyzed, and a total of six compounds were isolated and identified, including 6″-acetyl-6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside(1), 6-acetyl-6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-glucoside(2), 2-hydroxy-6-methoxy-benzyl-benzoate-2-O-ß-D-glucoside(3), 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside(4), 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-glucoside(5), and 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-xyloside(6). Compounds 1 and 2 were new compounds, and compounds 3-6 were isolated from Plumeria for the first time. The α-glucosidase inhibitory activity of six identified compounds was tested. The results show that compounds 1-6 show certain inhibitory activity with an IC_(50) value ranging from 8.2 to 33.5 µmol·L~(-1).


Asunto(s)
Apocynaceae , Glucósidos , Glucósidos/química , Benzoatos
3.
Sci Rep ; 14(1): 6872, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519553

RESUMEN

Leontodon hispidulus Boiss is a wild annual plant growing in Egypt. The present study aims for the first time, to evaluate the phytochemical profile of the main secondary metabolites of the optimized ethanolic extract of the plant using Quadrupole Time-of-Flight Liquid chromatography-mass spectrometry and Gas chromatography-mass spectrometry. It also aims to assess the anticancer activity of its different fractions against the prostate carcinoma cell line. Moreover, an in-silico docking study was performed using the Hexokinase-two enzyme. LC-qToF-MS analysis revealed the tentative identification of 36 phenolic compounds including the glycosides of (luteolin, quercetin, kaempferol, apigenin, isorhamnetin, and daidzein), coumarines (esculin, esculetin, and daphnetin), and phenolic acids (chlorogenic, caffeic, quinic, P-coumaric, and rosmarinic). GC-MS/MS analysis revealed the presence of 18 compounds where palmitic acid, myristic acid, alpha-amyrin, and beta-amyrin were the major ones. The cytotoxic activity results revealed that methylene chloride and ethyl acetate fractions showed the highest cytotoxic activity against the PC3 cell line, with IC50 values of 19, and 19.6 µg/ml, respectively. Interestingly, the docking study demonstrated that apigenin-7-O-glucoside, luteolin-7-O-glucoside, kaempferol-3-O-glucuronide, quercetin-4'-O-glucoside, esculin, rosmarinic acid, chlorogenic acid, and α-amyrin exhibited high affinity to the selected target, HEK-2 enzyme.


Asunto(s)
Asteraceae , Triterpenos Pentacíclicos , Espectrometría de Masas en Tándem , Apigenina , Quercetina , Hexoquinasa , Esculina , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glucósidos/química , Antioxidantes/química
4.
J Nat Med ; 78(2): 403-410, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38238611

RESUMEN

Morin is a flavonol having 2',4'-dihydroxy group on B-ring identified especially in Moraceae plants. While morin is widely known, its glycosides are relatively rare. To the best of our knowledge, morin-3-O-glucoside (1) was first reported in 2008. However, the reported chemical shift values of 1 were unsatisfactory with those of the aglycone, morin, which is rather similar to quercetin-3-O-glucoside (2). Therefore, we prepared morin-3-O-glucoside (1) by microbial transformation of morin with Cunninghamella sp., and the NMR assignment was reinvestigated. The microbial culture also produced another compound (3). The NMR and MS analyses of 3 revealed it as a novel compound, morin-2'-O-glucoside (3).In this study, the revision of the NMR assignment of morin-3-O-glucoside (1), and the preparation and structural elucidation of a novel compound, morin-2'-O-glucoside (3), were described.


Asunto(s)
Flavonas , Flavonoides , Glucósidos , Flavonoides/química , Glucósidos/química , Glicósidos/química , Flavonoles
5.
Chem Biodivers ; 21(2): e202301764, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050750

RESUMEN

Dracaena cambodiana Pierre ex Gagnep. is well known as a medicinal plant and widely distributed in Vietnam. Phytochemical investigation on the trunks of D. cambodiana lead to the isolation of four undescribed compounds (1-4) together with seven known ones (5-11). Their structures were determined to be pennogenin-24-yl-O-ß-D-glucopyranoside (1), 17α-hydroxycambodianoside C (2), (25R)-27-hydroxypenogenin 3-O-α-L-rhamnopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (3), (3ß,25R)-17α,22α-dihydroxy-furost-5-en-3-yl-O-α-L-rhamnopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-glucopyranoside (4), dracagenin A (5), 1-O-ß-D-glucopyranosyl-2-hydroxy-4-allylbenzene (6), 1-O-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranosyl-2-hydroxy-allylbenzene (7), 2-O-α-L-rhamnopyranosyl-(1→6)-ß-D-glucopyranosyl-1-hydroxy-allylbenzene (8), cinnamrutinoside A (9), icariside D1 (10), and seco-isolariciresinol 9-O-ß-glucopyranoside (11) by extensive spectroscopic investigation, HR-ESI-MS, 1D and 2D NMR spectra. The anti-inflammatory activity of the isolated compounds was evaluated on macrophages. Compounds 1-6 significantly inhibited nitric oxide production in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Among them, compound 1 showed the best inhibitory activity with an IC50 value of 8.90±0.56 µM.


Asunto(s)
Derivados de Alilbenceno , Dracaena , Saponinas , Lipopolisacáridos/farmacología , Estructura Molecular , Óxido Nítrico , Saponinas/farmacología , Saponinas/química , Glucósidos/química , Glucósidos/farmacología
6.
Nat Prod Res ; 38(1): 146-151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-35879853

RESUMEN

A new megastigmane glycoside, (1R,5R,6S,7E)-megastigman-3,9-dione-7-en-6,11-diol 11-O-ß-D-glucopyranoside (1), and a new organic acid glycoside, methyl (4 R)-4-O-ß-D-glucopyranosyl-decanoate (2), together with eight known compounds (3-10), were isolated from the aerial parts of Artemisia halodendron Turcz. ex Bess. (Asteraceae). Their chemical structures were elucidated by 1 D and 2 D NMR and HR-ESI-MS spectra and DP4+ probability analysis. Among the identified compounds, compounds 5, 6 and 10 were isolated from the family Asteraceae, and compounds 3, 4 and 7-9 were identified from the genus Artemisia for the first time. All of the compounds were evaluated for their anticomplementary activity against the classical pathway (CP) and the alternative pathway (AP). Compounds 7 and 9 showed anticomplementary activity with the CH50 values of 0.31 ± 0.08 and 0.50 ± 0.09 mM, respectively.


Asunto(s)
Artemisia , Glicósidos Cardíacos , Glicósidos/farmacología , Glicósidos/química , Artemisia/química , Norisoprenoides/farmacología , Norisoprenoides/química , Glucósidos/química , Estructura Molecular
7.
Phytochemistry ; 217: 113920, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951561

RESUMEN

Ten lignans, including six previously undescribed phenolic ester glycosyl lignans (1-6), were isolated from a well-known traditional Chinese medicine, Qin-Jiao, which is the dry root of Gentiana macrophylla Pall. (Gentianaceae). Their structures were determined by spectroscopic and chemical methods, especially 2D NMR techniques. Quantum chemical calculations of theoretical ECD spectra allowed the determination of their absolute configurations. Refer to its traditional applications for the treatment of rheumatic arthralgia and hepatopathy, these compounds were evaluated on a TNF-α induced MH7A human synoviocyte inflammation model and a D-GalN induced AML12 hepatocyte injury model. Compounds 1, 2, 5, and 6 significantly reduced the release of proinflammatory cytokine IL-1ß in MH7A cells at 15 µM and they also could strongly protect AML12 cells against D-GalN injury at 30 µM. Flow cytometry and Western blot analysis showed that compound 5 ameliorated D-GalN induced AML12 cell apoptosis by upregulating the expression of anti-apoptotic Bcl-2 protein and down-regulating the expression of pro-apoptotic Bax protein.


Asunto(s)
Medicamentos Herbarios Chinos , Gentiana , Lignanos , Humanos , Gentiana/química , Lignanos/farmacología , Glucósidos/farmacología , Glucósidos/química , Medicamentos Herbarios Chinos/farmacología , Inflamación
8.
Molecules ; 28(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005182

RESUMEN

A phytochemical investigation of the stems of the Arabian plant Artemisia sieberi afforded three new isochlorogenic acid derivatives, namely isochlorogenic acid A-3'-O-ß-glucopyranoside (1), isochlorogenic acid A-3'-O-ß-glucopyranoside methyl ester (2), and isochlorogenic acid C-3'-O-ß-glucopyranoside (3), obtained along with thirteen known secondary metabolites belonging to distinct structural classes. The structures of the new metabolites were elucidated by modern spectroscopic techniues based on high-resolution mass spectrometry (HR-ESIMS) and 1D/2D nuclear magnetic resonance (NMR). All isolated compounds were tested for their potential antimicrobial activity against four different bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), in addition to a fungal strain (Candida tropicalis), The results were expressed as the diameter of the clear zone (in millimetres) around each well. Compounds 1 and 3 (isochlorogenic acid A-3'-O-ß-glucopyranoside and isochlorogenic acid C-3'-O-ß-glucopyranoside, respectively) displayed remarkable antifungal effect and potent antibacterial activities against B. subtilis and S. aureus, respectively. 3α,4α-10ß-trihydroxy-8α-acetyloxyguaian-12,6α-olide (6) and angelicoidenol 2-O-ß-d-glucopyranoside (9) emerged as interesting dual antibacterial (selective on P. aeruginosa)/antifungal agents.


Asunto(s)
Artemisia , Plantas Medicinales , Plantas Medicinales/química , Glucósidos/farmacología , Glucósidos/química , Staphylococcus aureus , Extractos Vegetales/química , Antibacterianos/química , Antifúngicos/farmacología , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana
9.
J Nat Med ; 77(4): 972-977, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37432537

RESUMEN

Vietnamese ginseng (Panax vietnamensis Ha and Grushv., Araliaceae) is indigenous in the central highlands of Vietnam and the southernmost distribution in the Panax genus. Like other ginseng, Vietnamese ginseng is well known has been used as a tonic and for management of certain diseases in the traditional medicine. Nevertheless, it is noteworthy that in respect to the long history in use and systematic studied on Korean ginseng (P. ginseng), American ginseng (P. quinquefolius), Japanese ginseng (P. japonicus), and Chinese ginseng (P. notoginseng), the up-to-date published database on Vietnamese ginseng is relatively much less extensive. In our ongoing research on the promising Vietnamese medicinal plants, the present phytochemical investigation of the ethanol extract of the leaves of Panax vietnamensis led to the isolation of three compounds (1-3), including a new indole alkaloid N-glycoside (1) and two known compounds. Their structures were elucidated based on extensive physiochemical and chemical methods, especially the interpretation of NMR and MS spectra. The absolute configuration of 1 was determined based on the comparison of its experimental and theoretical ECD spectra along with NMR calculation. Compound 1 is naturally isolated N-glycoside, which is rarely found in natural products. The isolated compounds showed weak or no inhibitory activity against acetylcholinesterase enzyme (AChE).


Asunto(s)
Glucósidos , Panax , Acetilcolinesterasa , Glucósidos/química , Panax/química , Hojas de la Planta/química , Vietnam
10.
Rapid Commun Mass Spectrom ; 37(16): e9541, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37190851

RESUMEN

RATIONALE: Lignans have attracted much attention from researchers because of their wide distribution and industrial applications in plants, as well as the remarkable diversity of their biological activities. As the literature has mainly focused on the extraction and identification of monomeric compounds of lignans, most lignans in Dendrobium officinale, a traditional Chinese medicine with a long cultivation history and rich sources, have not been detected using quality control methods. The aim of this study was to identify the lignans in Dactilon officinale. METHODS: High-performance liquid chromatography (HPLC) coupled with diode array detection and HPLC multiple-stage tandem mass spectrometry was used to identify the chemical constituents of D. officinale. Simultaneously, the characteristic chromatograms of D. officinale were established. Additionally, a method was established to determine the content of syringaresinol-4,4'-di-O-ß-D-glucoside, syringaresinol-4-O-ß-D-glucoside and syringaresinol. RESULTS: Thirty-three lignans, including 17 tetrahydrofuran lignans, two dibenzylbutane lignans, three aryl tetrahydronaphthalene lignans and 11 8-O-4'-neolignans, were tentatively identified from the methanol extract of the stems of D. officinale. This is the first report of 8-O-4'-neolignans from D. officinale. In addition, a total of eight characteristic peaks were marked in characteristic chromatograms, which were identified as lyoniresinol-9'-O-ß-D-glucoside, syringaresinol-4,4'-di-O-ß-D-glucoside, 8-hydroxy-syringaresinol-4-O-ß-D-glucoside, 5,5'-dimethoxy-lariciresinol-4-O-ß-D-glucoside, syringaresinol-4-O-ß-D-glucoside, 4-hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneoligna-7'-ene-9,9'-diol-9-O-ß-D-glucoside, 4-hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneoligna-7'-ene-9,9'-diol-4-O-ß-D-glucoside and syringaresinol. Our results showed that no significant difference occurred in lignan composition among the 99 batches of D. officinale from different sources. However, the peak areas of the lignans of D. officinale planted under simulated wild culture were generally higher than those in greenhouses, and showed an upward trend with the increase in growth years. The average contents of syringaresinol-4,4'-di-O-ß-D-glucoside, syringaresinol-4-O-ß-D-glucoside and syringaresinol were 10.112-179.873, 51.227-222.294 and 6.368-120.341 µg/g, respectively. CONCLUSIONS: This study provided a basis for improving the quality control of D. officinale and could provide references for the identification of lignans in other Dendrobium species.


Asunto(s)
Dendrobium , Lignanos , Dendrobium/química , Glucósidos/química , Espectrometría de Masas
11.
Chem Biodivers ; 20(3): e202201048, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36879412

RESUMEN

A new isopropyl chromone (1) and a new flavanone glucoside (2) together with eleven known compounds (3-13) were isolated from the leaves of Syzygium cerasiforme (Blume) Merr. & L.M.Perry. Their structures were elucidated as 5,7-dihydroxy-2-isopropyl-6,8-dimethyl-4H-chromen-4-one (1), 5,7-dihydroxyflavanone 7-O-ß-D-(6''-O-galloylglucopyranoside) (2), strobopinin (3), demethoxymatteucinol (4), pinocembrin-7-O-ß-D-glucopyranoside (5), (2S)-hydroxynaringenin-7-O-ß-D-glucopyranoside (6), afzelin (7), quercetin (8), kaplanin (9), endoperoxide G3 (10), grasshopper (11), vomifoliol (12), litseagermacrane (13) by the analysis of HR-ESI-MS, NMR, and CD spectral data. Compounds 1, 2, 5, 6 and 10 inhibited NO production on LPS-activated RAW264.7 cells with IC50 values of 12.28±1.15, 8.52±1.62, 7.68±0.87, 9.67±0.57, and 6.69±0.34 µM, respectively, while the IC50 values of the other compounds ranging from 33.38±0.78 to 86.51±2.98 µM, compared to that of the positive control, NG -monomethyl-L-arginine acetate (L-NMMA) with an IC50 value of 32.50±1.00 µM.


Asunto(s)
Flavanonas , Syzygium , Cromonas/farmacología , Flavanonas/farmacología , Glucósidos/farmacología , Glucósidos/química , Estructura Molecular , Óxido Nítrico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Syzygium/química
12.
J Nat Prod ; 86(2): 256-263, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36744762

RESUMEN

Monoterpenoids are integral to the chemical composition of the widely used adaptogenic dietary supplement Rhodiola rosea. The present study expands the chemical space and stereochemical information about these taxon-specific constituents from the isolation and characterization of five geraniol-derived glucosides, 1-5. While 1 and 2 exhibited almost identical NMR spectra and shared the same 2D structure ascribed to the 4-hydroxygeraniolglucoside previously described as rosiridin, the NMR-based Mosher ester method revealed the enantiomeric nature of their aglycone moieties. This marks the first report of enantiomeric aglycones among geraniol derivatives. These findings also resolve the long-standing dispute regarding the absolute configuration of rosiridin and congeneric C-4 hydroxylated geraniols and may help explain incongruent bioactivity reports of R. rosea extract. Moreover, the three previously undescribed geranioloids 3-5 were fully characterized by extensive spectroscopic analysis. Quantum mechanics-driven 1H iterative functionalized spin analysis (QM-HifSA) was performed for all isolates and provides detailed NMR spin parameters, with adequate decimal place precision, which enable the distinction of such close congeners exhibiting near identical NMR spectra with high specificity. The outcomes also reinforce the importance of reporting chemical shifts and coupling constants with adequate decimal place precision as a means of achieving specificity and reproducibility in structural analysis.


Asunto(s)
Glucósidos , Rhodiola , Glucósidos/química , Rhodiola/química , Monoterpenos , Reproducibilidad de los Resultados , Estructura Molecular , Extractos Vegetales
13.
Zhongguo Zhong Yao Za Zhi ; 48(2): 415-420, 2023 Jan.
Artículo en Chino | MEDLINE | ID: mdl-36725231

RESUMEN

Ten lignans were isolated from the ethanol extract of stems and branches of Rhododendron ovatum through column chromatography over silica gel, ODS, Sephadex LH-20, and MCI-gel resin and semi-preparative RP-HPLC. The structures of all compounds were elucidated by extensive spectroscopic data analysis(UV, IR, HR-ESI-MS, ECD and NMR) as(-)-4-epi-lyoniresinol-9'-O-α-L-rhamnopyranoside(1),(+)-lyoniresinol-3α-O-α-L-rhamnopyranoside(2),(+)-5'-methoxyisolariciresinol-9'-O-α-L-rhamnopyranoside(3),(-)-lyoniresinol-3α-O-ß-D-glucopyranoside(4),(+)-lyoniresinol-3α-O-ß-D-glucopyranoside(5),(-)-4-epi-lyoniresinol-9'-O-ß-D-glucopyransoide(6), racemiside(7), neociwujiaphenol(8),(+)-syringaresinol(9), and homohesperitin(10). Among them, compound 1 was a new aryltetralin-type lignan. All the isolated lignans were tested for antioxidant activities in Fe~(2+)-cysteine induced rat liver microsomal lipid peroxidation in vitro, and compounds 8 and 9 showed antioxidant activities on the formation of malondiadehyde(MDA) in rat liver microsomes at 1×10~(-5) mol·L~(-1), with significant inhibitory rates of 75.20% and 91.12%, respectively.


Asunto(s)
Lignanos , Rhododendron , Animales , Ratas , Glucósidos/química , Antioxidantes/farmacología , Lignanos/química , Tallos de la Planta
14.
Chem Biodivers ; 20(1): e202200900, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36404281

RESUMEN

Four new xanthone glucosides, 3-hydroxy-2-methoxyxanthone-4-O-ß-D-glucopyranoside (1), 4,8-dihydroxy-2-methoxyxanthone-3-O-ß-D-glucopyranoside (2), 2-methoxyxanthone-5-O-ß-D-glucopyranoside (3), 4-hydroxy-2-methoxyxanthone-3-O-ß-D-glucopyranoside (4), a new phenolic acid, 4,4'-dihydroxy-3,3'-imino-di-benzoic acid monomethyl ester (5), and a new isoquinoline, methyl 6-hydroxy-1-oxo-1,2,3,4-tetrahydroisoquinoline-4-carboxylate (6) were isolated from the fruit of Hypericum patulum. The structural elucidation of the isolated compounds was primarily based on HR-ESI-MS, UV, IR, 1D and 2D NMR. All compounds were evaluated for their inhibitory effect against LPS-induced NO production in RAW 264.7 cells. Compound 2, 3 exhibited moderate inhibitory activity against NO production.


Asunto(s)
Hypericum , Hypericum/química , Frutas/química , Glucósidos/química , Espectroscopía de Resonancia Magnética
15.
J Chromatogr Sci ; 61(9): 852-862, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-36250324

RESUMEN

Fangji Huangqi Decoction (FHD) is a classic prescription of traditional Chinese medicine which is recorded in "Jin Gui Yao Lue". The purpose of this study is to develop a method for simultaneous determination multicomponent in FHD. The separation of the 19 compounds that included calycosin, calycosin-7-O-ß-D-glucoside, formononetin, ononin, methylnissolin, methylnissolin-3-O-glucoside, isomucronulatol, tetrandrine, fangchinoline, atractylenolide-I, atractylenolide-III, liquiritigenin, liquiritin, isomucronulatol-7-O-ß-D-glucoside, astragaloside-I, astragaloside-II, astragaloside-III, astragaloside-IV and glycyrrhetinic acid were achieved by linear gradient elution. The 19 components were identified by comparing the chromatographic peaks with the reference compounds and were quantitatively analyzed by multiple reaction monitoring. This method was strict validated with recovery (96.10-101.70%), precision [relative standard deviation (RSD), 1.34-3.34%], stability (RSD, 1.49-3.80%) and repeatability (RSD, 1.60-3.49%), respectively. All the compounds showed good linearities (R2 > 0.999). The limit of detection (LOD) and limit of quantitation (LOQ) for the 19 compounds were in the range of 0.03-0.27 µg/mL (LODs) and 0.05-1.23 µg/mL (LOQs). The correlation analysis indicated that astragalus flavonoids were negatively correlated with astragalosides, tetrandrine and their corresponding flavonoid glycosides, and atractylenolides were positively correlated with astragalosides and fangchinoline. This method proved to be reliable and effective, which would give a helpful basis for the quality control, pharmacological and pharmacokinetic of FHD.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Animales , Espectrometría de Masas en Tándem/métodos , Ratas Sprague-Dawley , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/química , Glucósidos/química , Flavonoides/análisis
16.
Nat Prod Res ; 37(9): 1544-1549, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-35001767

RESUMEN

Using combined chromatographic methods, two new sesquiterpene glucosides, vulgarosides A (1) and B (2), and two known analogs ainsliaside E (3) and pumilaside A (4) were isolated from the aerial parts of Artemisia vulgaris. Their chemical structures were established by spectroscopic methods, including one and two-dimensional nuclear magnetic resonance (1 D and 2 D-NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). In addition, their cytotoxicity on five human cancer cell lines, including KB (epidermoid carcinoma), HepG2 (hepatocarcinoma), MCF7 (breast carcinoma), SK-Mel-2 (melanoma), and LNCaP (prostate cancer) was also evaluated by the SRB assay. However, none of the tested eudesmane sesquiterpene glycosides showed significant cytotoxicity (IC50>100 µM).


Asunto(s)
Artemisia , Neoplasias , Sesquiterpenos de Eudesmano , Sesquiterpenos , Humanos , Artemisia/química , Glucósidos/química , Sesquiterpenos de Eudesmano/farmacología , Sesquiterpenos de Eudesmano/análisis , Sesquiterpenos/farmacología , Sesquiterpenos/análisis , Componentes Aéreos de las Plantas/química , Estructura Molecular
17.
Food Chem ; 398: 133832, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35961170

RESUMEN

The thermal-induced interaction between ß-conglycinin (7S) and cyanidin-3-O-glucoside (C3G) on the bioaccessibility and antioxidant capacity of C3G was investigated. High ratio of 7S to C3G (1:100) led to a more ordered secondary structure of 7S. Thermal treatment promoted the formation of 7S-C3G complexes via hydrophobic and hydrogen bonds but did not induce the formation of 7S-C3G covalent products. Thermal treatment at 65 °C and 121 °C enhanced the binding affinity of 7S-C3G complexes by 46.19 % and 1203 % compared with 25 °C. The 7S-C3G interaction decreased C3G bioaccessibility by 4.37 %, 8.74 %, and 46.37 % at 25 °C, 65 °C, and 121 °C. Diphenylpicrylhydrazyl (DPPH) and ABTS antioxidant capacity assay indicated an antagonistic effect between 7S and C3G. The increased binding affinity of C3G to 7S limited the bioaccessibility of C3G and promoted the antagonism of antioxidant capacity between 7S and C3G. 7S addition was detrimental to the antioxidant capacity and bioaccessibility of C3G in vitro after thermal processing.


Asunto(s)
Antioxidantes , Globulinas , Antocianinas/química , Antígenos de Plantas , Antioxidantes/metabolismo , Globulinas/metabolismo , Glucósidos/química , Proteínas de Almacenamiento de Semillas , Proteínas de Soja
18.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500392

RESUMEN

Artic root is a well-known plant adaptogen with multipotential pharmacological properties. Thin-layer chromatography (TLC)-screening followed by diode-array high-performance liquid chromatography and nuclear magnetic resonance spectroscopy proved to be a reliable and convenient method for the simultaneous determination of the quality of various herbal raw materials and supplements. This combination allowed for comparing and differentiating arctic root samples as well as defining their authenticity. The study provided information on the chemical and biological properties of the seven chosen samples as well as qualitative and quantitative evaluation of the quality markers: rosavin, salidroside, and p-tyrosol. The absence of rosavin, salidroside, and p-tyrosol in three samples was detected using TLC screening and confirmed by HPLC-DAD and NMR. The paper highlighted the importance of quality control and strict regulation for herbal medicine supplements and preparations.


Asunto(s)
Glucósidos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía en Capa Delgada/métodos , Glucósidos/química , Espectroscopía de Resonancia Magnética
19.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364314

RESUMEN

In terms of prevalence, thyroid pathology, associated both with a violation of the gland function and changes in its structure, occupies one of the main places in clinical endocrinology. The problem of developing low-toxic and highly effective herbal preparations for the correction of thyroid hypofunction and its complications is urgent. Salidroside is a glucoside of tyrosol, found mostly in the roots of Rhodiola spp., and has various positive biological activities. The purpose of this study was to study the antihypothyroid potential of salidrosid-containing extract from R. semenovii roots, which was evaluated on a mercazolyl hypothyroidism model. We showed that extract containing salidroside is a safe and effective means of hypothyroidism correction, significantly reducing (p ≤ 0.001) the level of thyroid-stimulating hormone and increasing the level of thyroid hormones. The combined use of R. semenovii extract with potassium iodide enhances the therapeutic effect of the extract by 1.3-times.


Asunto(s)
Hipotiroidismo , Rhodiola , Humanos , Glucósidos/farmacología , Glucósidos/química , Rhodiola/química , Extractos Vegetales/farmacología
20.
J Nat Med ; 76(4): 832-841, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35933520

RESUMEN

Two previously undescribed megastigmane glucosides, (3S)-3-hydroxy-4-oxo-7,8-dihydro-ß-ionone-3-O-ß-D-glucopyranoside (1), (3S)-3-hydroxy-4-oxo-ß-ionone-3-O-ß-D-glucopyranoside (2), an apocarotenoid glucoside named equiseoside A (3) and an unusual aromatic compound with a glucose-fused skeleton named equiseoside B (4), together with 35 known compounds (5-39) were isolated from the aerial parts of Equisetum sylvaticum. The structures of these compounds were elucidated by spectroscopic methods, including 1D and 2D NMR, IR, CD, and HR-MS.


Asunto(s)
Equisetum , Glucosa , Glucósidos/química , Estructura Molecular , Componentes Aéreos de las Plantas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA