Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 535
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38575184

RESUMEN

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Mama , Humanos , Animales , Ratones , Femenino , Línea Celular Tumoral , Mama/metabolismo , Neoplasias de la Mama/metabolismo , Estrógenos , Homeostasis , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucuronosiltransferasa/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
2.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548118

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Asunto(s)
Ácidos Aristolóquicos , Enfermedades Mitocondriales , Humanos , Ácidos Aristolóquicos/toxicidad , Glucurónidos/metabolismo , Microsomas Hepáticos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glucuronosiltransferasa/metabolismo , Cinética , Catálisis , Uridina Difosfato/metabolismo
3.
N Engl J Med ; 389(7): 620-631, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37585628

RESUMEN

BACKGROUND: Patients with the Crigler-Najjar syndrome lack the enzyme uridine diphosphoglucuronate glucuronosyltransferase 1A1 (UGT1A1), the absence of which leads to severe unconjugated hyperbilirubinemia that can cause irreversible neurologic injury and death. Prolonged, daily phototherapy partially controls the jaundice, but the only definitive cure is liver transplantation. METHODS: We report the results of the dose-escalation portion of a phase 1-2 study evaluating the safety and efficacy of a single intravenous infusion of an adeno-associated virus serotype 8 vector encoding UGT1A1 in patients with the Crigler-Najjar syndrome that was being treated with phototherapy. Five patients received a single infusion of the gene construct (GNT0003): two received 2×1012 vector genomes (vg) per kilogram of body weight, and three received 5×1012 vg per kilogram. The primary end points were measures of safety and efficacy; efficacy was defined as a serum bilirubin level of 300 µmol per liter or lower measured at 17 weeks, 1 week after discontinuation of phototherapy. RESULTS: No serious adverse events were reported. The most common adverse events were headache and alterations in liver-enzyme levels. Alanine aminotransferase increased to levels above the upper limit of the normal range in four patients, a finding potentially related to an immune response against the infused vector; these patients were treated with a course of glucocorticoids. By week 16, serum bilirubin levels in patients who received the lower dose of GNT0003 exceeded 300 µmol per liter. The patients who received the higher dose had bilirubin levels below 300 µmol per liter in the absence of phototherapy at the end of follow-up (mean [±SD] baseline bilirubin level, 351±56 µmol per liter; mean level at the final follow-up visit [week 78 in two patients and week 80 in the other], 149±33 µmol per liter). CONCLUSIONS: No serious adverse events were reported in patients treated with the gene-therapy vector GNT0003 in this small study. Patients who received the higher dose had a decrease in bilirubin levels and were not receiving phototherapy at least 78 weeks after vector administration. (Funded by Genethon and others; ClinicalTrials.gov number, NCT03466463.).


Asunto(s)
Síndrome de Crigler-Najjar , Terapia Genética , Glucuronosiltransferasa , Humanos , Administración Intravenosa , Bilirrubina/sangre , Síndrome de Crigler-Najjar/sangre , Síndrome de Crigler-Najjar/complicaciones , Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/terapia , Dependovirus , Terapia Genética/efectos adversos , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Glucuronosiltransferasa/administración & dosificación , Glucuronosiltransferasa/genética , Hiperbilirrubinemia/sangre , Hiperbilirrubinemia/etiología , Hiperbilirrubinemia/genética , Hiperbilirrubinemia/terapia , Trasplante de Hígado , Fototerapia
4.
Phytomedicine ; 112: 154696, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36764095

RESUMEN

BACKGROUND: Xingnaojing injection (XNJ) is a famous emergency Traditional Chinese medicine (TCM) derived from the classical Chinese prescription named An-Gong-Niu-Huang Pill. XNJ is often used along with Edaravone injection (EDA) to treat acute ischemic stroke, they have a synergistic effect in improving patients' blood coagulation and neurological function. However, this combination also causes herb-drug interactions (HDIs), raising the risk of adverse reactions. At present, little is known about the pharmacokinetics and potential mechanism of XNJ combined with EDA. PURPOSE: This study investigates the pharmacokinetics and potential mechanism of the HDIs between XNJ and EDA. STUDY DESIGN AND METHODS: The pharmacokinetic interactions between XNJ and EDA were studied by GC-MS in rats, and the inhibition of XNJ and (-)-borneol on UDP-glucuronosyltransferase (UGTs) were assayed by LC-MS/MS in vitro. In vitro-in vivo extrapolation (IVIVE) and molecular docking were performed to reveal the potential for HDIs. RESULTS: The AUC0-∞ of (-)-borneol was increased by 1.25-fold in group EDA+XNJ 10 min later, and the Cmax of edaravone was increased by 1.6-fold in group XNJ+EDA 10 min later (p < 0.05). XNJ and (-)-borneol inhibited UGTs-mediated edaravone metabolism in HLM and RLM with a similar inhibitory intensity, in which both of them have stronger inhibition in RLM. These findings demonstrated that (-)-borneol in XNJ mainly exerted UGTs inhibition, which was consistent with the pharmacokinetic assays. (-)-Borneol moderately inhibited UGT2B7 and UGT1A6 by a mixed inhibition mechanism, with Ki values of 101.393 and 136.217 µM, respectively. Due to the blood concentration of injection was dramatically increased, the HDIs caused by the inhibitory effect of XNJ on UGTs should be highly emphasized. The binding energies of (-)-borneol and edaravone toward UGT2B7 were -6.254 and -6.643 kcal/mol, and the scores towards UGT1A6 were -5.220 and -6.469 kcal/mol, respectively. Moreover, (-)-borneol has similar free energies to many drugs metabolized by UGT2B7 and UGT1A6. CONCLUSIONS: (-)-Borneol modulates the pharmacokinetic behavior of edaravone via mixed inhibition of UGT2B7 and UGT1A6. It provides a theoretical basis for the synergistic effect of XNJ and EDA combinations in clinical practice. When XNJ is used along with UGT2B7 and UGT1A6 substrates, it should be used clinically with caution.


Asunto(s)
Interacciones de Hierba-Droga , Accidente Cerebrovascular Isquémico , Ratas , Animales , Edaravona , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Espectrometría de Masas en Tándem , Glucuronosiltransferasa/metabolismo
5.
J Diet Suppl ; 20(6): 850-869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36178169

RESUMEN

The predominant catechin in green tea, epigallocatechin gallate (EGCG), may be hepatotoxic in high doses. Our objective was to investigate the influence of catechol-O-methyltransferase (COMT) and uridine 5'-diphospho-glucuronosyltransferase 1A4 (UGT1A4) genotypes on changes in liver injury biomarkers in response to long-term, high-dose green tea extract (GTE) supplementation among postmenopausal women. A secondary analysis was conducted using data from the Minnesota Green Tea Trial (N = 1,075), in which participants were randomized to consume high-dose GTE (843 mg/day EGCG) or placebo capsules for 12 months. Analysis of covariance adjusting for potential confounders was performed to examine changes in aspartate aminotransferase (AST), alanine aminotransferase (ALT), AST: ALT ratio, and alkaline phosphatase from baseline to months 3, 6, 9, and 12 across COMT and UGT1A4 genotypes. Mean age and BMI within the GTE group (n = 400) were 59.8 yrs and 25.1 kg/m2, respectively, and 98% of subjects were white. From baseline to month 3, mean AST: ALT ratio change was +1.0% in the COMT (rs4680) A/G genotype versus -4.8% in the A/A genotype (p = 0.03). From baseline to months 6 and 9, respectively, mean ALT change was +78.1% and +82.1% in the UGT1A4 (rs6755571) A/C genotype versus +28.0% and +30.1% in the C/C genotype (p < 0.001 and p = 0.004, respectively). The UGT1A4 (rs6755571) A/C genotype may be an important risk factor for clinically-relevant serum transaminase elevations with 6-9 months of high-dose GTE supplementation among postmenopausal women. Understanding the genetic underpinnings of GTE-related hepatotoxicity may allow for a genetically-informed paradigm for therapeutic use of GTE.


Asunto(s)
Catequina , Enfermedad Hepática Inducida por Sustancias y Drogas , Extractos Vegetales , Femenino , Humanos , Antioxidantes , Catecol O-Metiltransferasa/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Suplementos Dietéticos , Genotipo , Glucuronosiltransferasa/genética , Extractos Vegetales/toxicidad , Té/toxicidad
6.
Chem Biol Interact ; 368: 110248, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36343684

RESUMEN

UGT1A1 is the main enzyme that catalyzes the metabolic elimination and detoxification of SN-38, the active form of the drug irinotecan. Milk thistle products have been used widely to protect the liver from injury associated with the use of chemotherapeutic agents. To evaluate whether SN-38 metabolism can be affected by milk thistle products, the inhibitory effects of silybins on UGT1A1*1 and UGT1A1*6 were evaluated in the present investigation. Both silybin A and silybin B potently inhibited SN-38 glucuronidation catalyzed by UGT1A1*1 or UGT1A1*6. It was noteworthy that silybin A and silybin B showed synergistic effect in UGT1A1*1 microsomes at concentration around IC50, while additive effect in UGT1A1*6. According to the predicted AUCi/AUC ratios (the ratio of the area under the plasma concentration-time curve of SN-38 in the presence and absence of silybins), the coadministration of irinotecan and several milk thistle products, including silybin-phosphatidylcholine complex, two Legalon capsules, four Silymarin tablets or four Liverman capsules, may lead to clinically significant herb-drug interactions (HDI) via UGT1A1 inhibition. Meanwhile, Rgut values were much higher than 11 in all the groups, indicating potential HDI due to intestinal UGT1A1 inhibition.


Asunto(s)
Glucuronosiltransferasa , Silybum marianum , Irinotecán/metabolismo , Silibina/metabolismo , Silibina/farmacología , Glucuronosiltransferasa/metabolismo , Microsomas Hepáticos/metabolismo , Catálisis , Camptotecina
7.
Curr Drug Metab ; 23(6): 473-483, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35585828

RESUMEN

BACKGROUND: The ethanol of Danshen (DEE) preparation has been widely used to treat cardiac-cerebral disease and cancer. Sweating is one of the primary processing methods of Danshen, which greatly influences its quality and pharmacological properties. Sweated and non-sweated DEE preparation combined with various synthetic drugs, add up the possibility of herbal-drug interactions. OBJECTIVE: This study explored the effects of sweated and non-sweated DEE on human and rat hepatic UGT enzyme expression and activity and proposed a potential mechanism. METHODS: The expression of two processed DEE on rat UGT1A, UGT2B, and nuclear receptors, including pregnane X receptor (PXR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor α (PPARα), were investigated after intragastric administration in rats by Western blot. Enzyme activity of DEE and its active ingredients (Tanshinone I, Cryptotanshinone, and Tanshinone I) on UGT isoenzymes was evaluated by quantifying probe substrate metabolism and metabolite formation in vitro using Ultra Performance Liquid Chromatography. RESULTS: The two processed DEE (5.40 g/kg) improved UGT1A (P<0.01) and UGT2B (P<0.05) protein expression, and the non-sweated DEE (2.70 g/kg) upregulated UGT2B expression protein (P<0.05), compared with the CMCNa group. On day 28, UGT1A protein expression was increased (P<0.05) both in two processed DEE groups meanwhile, the non-sweated DEE significantly enhanced UGT2B protein expression (P<0.05) on day 21, compared with the CMCNa group. The process underlying this mechanism involved the activation of nuclear receptors CAR, PXR, and PPARα. In vitro, sweated DEE (0-80 µg/mL) significantly inhibited the activity of human UGT1A7 (P<0.05) and rat UGT1A1, 1A8, and 1A9 (P<0.05). Non-sweated DEE (0-80 µg/mL) dramatically suppressed the activity of human UGT1A1, 1A3, 1A6, 1A7, 2B4, and 2B15, and rat UGT1A1, 1A3, 1A7, and 1A9 (P<0.05). Tanshinone I (0-1 µM) inhibited the activity of human UGT1A3, 1A6, and 1A7 (P<0.01) and rat UGT1A3, 1A6, 1A7, and 1A8 (P<0.05). Cryptotanshinone (0-1 µM) remarkably inhibited the activity of human UGT1A3 and 1A7 (P<0.05) and rat UGT1A7, 1A8, and 1A9 (P<0.05). Nonetheless, Tanshinone IIA (0-2 µM) is not a potent UGT inhibitor both in humans and rats. Additionally, there existed significant differences between two processed DEE in the expression of PXR, and the activity of human UGT1A1, 1A3, 1A6, and 2B15 and rat UGT1A3, and 2B15 (P<0.05). CONCLUSION: The effects of two processed DEE on hepatic UGT enzyme expression and activity differed. Accordingly, the combined usage of related UGTs substrates with DEE and its monomer components preparations may call for caution, depending on the drug's exposure-response relationship and dose adjustment. Besides, it is vital to pay attention to the distinction between sweated and non-sweated Danshen in clinic, which influences its pharmacological activity.


Asunto(s)
Glucuronosiltransferasa , Interacciones de Hierba-Droga , Extractos Vegetales , Salvia miltiorrhiza , Abietanos , Animales , Etanol , Glucuronosiltransferasa/metabolismo , Humanos , PPAR alfa , Fenantrenos , Extractos Vegetales/farmacología , Ratas , Receptores Citoplasmáticos y Nucleares , Uridina Difosfato
8.
Ital J Pediatr ; 48(1): 59, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35436954

RESUMEN

BACKGROUND: Several mutations of bilirubin uridine diphosphate-glucuronosyltransferase gene (UGT1A1) have been reported in patients with unconjugated hyperbilirubinemia. Few reports are available about the p.Pro364Leu mutation (P364L, c.1091C > T) in homozygous newborns. We describe the clinical, laboratory and therapeutic approach in two Chinese neonates with severe jaundice, homozygous for the P364L mutation. CASE PRESENTATION: Two Chinese breastfed female infants presented prolonged unconjugated hyperbilirubinemia at the age of 1 month. Total bilirubin was higher than 15 mg/dl (D < 1). An exhaustive etiological work-up to detect possible causes of hyperbilirubinemia (notably hemolytic ones) was negative. The promoter and coding regions of UGT1A1 were amplified by polymerase chain reaction (PCR) from genomic DNA isolated from leukocytes. Both patients resulted homozygous for a variant site within the coding region of the gene in the 4 exon, c.1091C > T, p.Pro364Leu. In front of the persistently high level of unconjugated bilirubin, phototherapy was performed without persistent results. A treatment with phenobarbital was then begun and bilirubin level progressively decreased, with a complete and persistent normalization. The therapy was stopped. CONCLUSION: UGT1A1 enzyme activity associated with the P364L mutation has been described as 35.6% of the wild-type enzyme activity. Photo-therapy and phenobarbital can be useful in front of persistently high level of unconjugated bilirubin. Our cases presented high bilirubin values, overlapping between Gilbert syndrome (GS) and Crigler-Najjar syndrome type II (CNS), but the complete normalization of bilirubin makes GS more likely. Homozygous P364L variant can be associated with severe neonatal unconjugated hyperbilirubinemia in Chinese infants, but jaundice can completely resolve in a few months, contrary to what happens in Crigler-Najjar syndrome type II.


Asunto(s)
Síndrome de Crigler-Najjar , Enfermedad de Gilbert , Hiperbilirrubinemia Neonatal , Bilirrubina , Síndrome de Crigler-Najjar/diagnóstico , Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/terapia , Femenino , Enfermedad de Gilbert/diagnóstico , Enfermedad de Gilbert/genética , Glucuronosiltransferasa/genética , Humanos , Hiperbilirrubinemia/genética , Hiperbilirrubinemia Neonatal/diagnóstico , Hiperbilirrubinemia Neonatal/genética , Hiperbilirrubinemia Neonatal/terapia , Lactante , Recién Nacido , Mutación , Fenobarbital
10.
Drug Metab Dispos ; 50(5): 552-565, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35241486

RESUMEN

Bilirubin-related adverse drug reactions (ADRs) or malady (e.g., jaundice) induced by some herbs rich in certain flavonoids have been widely reported. However, the causes and mechanisms of the ADRs are not well understood. The aim of this paper was to explore the mechanism of Shuang-huang-lian (SHL) injections and its major constituents-induced jaundice via inhibiting human UDP-glucuronosyltransferases1A1 (hUGT1A1)-mediated bilirubin glucuronidation. The inhibitory effects of SHL and its major constituents in the herbal medicine, including baicalein (BAI), baicalin (BA), and hyperoside (HYP), on bilirubin glucuroBBREVInidation were investigated. This study indicated that the average formation rates of bilirubin glucuronides [i.e., mono-glucuronide 1 (BMG1), BMG2, and bilirubin diglucuronide] displayed significant differences (P < 0.05). Specifically, the formation of BMGs was favored regardless of whether an inhibitor was absent or present. SHL, BAI, BA, and HYP dose-dependently inhibit bilirubin glucuronidation, showing the IC50 values against total bilirubin glucuronidation were in the range of (7.69 ± 0.94)-(37.09 ± 2.03) µg/ml, (4.51 ± 0.27)-(20.84 ± 1.99) µM, (22.36 ± 5.74)-(41.35 ± 2.40) µM, and (15.16 ± 1.12)-(42.80 ± 2.63) µM for SHL, BAI, BA, and HYP, respectively. Both inhibition kinetics assays and molecular docking simulations suggested that SHL, BAI, BA, and HYP significantly inhibited hUGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibition. Collectively, some naturally occurring flavonoids (BAI, BA, and HYP) in SHL have been identified as the inhibitors against hUGT1A1-mediated bilirubin glucuronidation, which well explains the bilirubin-related ADRs or malady triggered by SHL in clinical settings. SIGNIFICANCE STATEMENT: Herbal products and their components (e.g., flavonoids), which been widely used across the entire world, may cause liver injury. As a commonly used herbal products rich in flavonoids, SHL injections easily lead to symptoms of liver injury (e.g., jaundice) owing to significant inhibition of hUGT1A1-mediated bilirubin glucuronidation by its flavonoid components (i.e., baicalein, baicalin, and hyperoside). Herb-induced bilirubin-related ADRs and the associated clinical significance should be seriously considered.


Asunto(s)
Coptis chinensis , Ictericia , Bilirrubina , Flavanonas , Flavonoides/farmacología , Glucurónidos , Glucuronosiltransferasa , Humanos , Simulación del Acoplamiento Molecular , Quercetina/análogos & derivados , Uridina Difosfato
11.
Drug Chem Toxicol ; 45(6): 2535-2544, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34380357

RESUMEN

The leguminosae of Sophora moorcroftiana (Benth.) Benth.ex Baker is a drought-resistant endemic Sophora shrub species from the Qinghai-Tibet Plateau, and its seeds have hepatoprotective effects. To study the effect of S. moorcroftiana seeds on liver injury and the molecular mechanism underlying the beneficial effects, liquid chromatography-mass spectrometry was used to detect the main active components in the ethanol extract of S. moorcroftiana seeds (SM). Male mice were divided into six groups (n = 8): normal control (NC), CCl4, SM (50, 100, 200 mg/kg), and dimethyl diphenyl bicarboxylate (150 mg/kg) groups. Mice were treated as indicated (once/day, orally) for 14 days, and CCl4 (2 mL/kg) was administered intraperitoneally. The serum and liver of mice were used for biochemical assays. To explore the underlying mechanism, HepG2 cells were treated with SM, stimulated with tert-butyl hydroperoxide (t-BHP, 50 µM), and analyzed by Western blotting. The major active compounds of SM were alkaloids including 22 compounds. Serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) decreased in the SM (200 mg/kg) group. SM can activate the expression of pregnane X receptor (PXR) and downstream molecules cytochrome P4503A11 enzyme (CYP3A11), UDP glucuronosyltransferase 1 family polypeptide A 1 (UGT1A1), and inhibit the multidrug resistance protein 2 (MRP2). In addition, SM improved cell viability in t-BHP-induced HepG2 cells (64% to 83%) and decreased the activation of the mitogen-activated protein kinase (MAPK) pathway. The main compounds in SM were alkaloids. SM showed hepatoprotective effects possibly mediated by the suppression of oxidative stress through the MAPK pathway.


Asunto(s)
Alcaloides , Enfermedad Hepática Inducida por Sustancias y Drogas , Sophora , Animales , Ratones , Sophora/química , Receptor X de Pregnano , terc-Butilhidroperóxido/análisis , terc-Butilhidroperóxido/farmacología , Alanina Transaminasa/análisis , Fosfatasa Alcalina , Semillas/química , Aspartato Aminotransferasas/análisis , Extractos Vegetales/química , Alcaloides/farmacología , Hígado , Glucuronosiltransferasa , Proteínas Quinasas Activadas por Mitógenos/análisis , Proteínas Quinasas Activadas por Mitógenos/farmacología , Etanol , Citocromos/análisis , Citocromos/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control
12.
Plant J ; 109(6): 1441-1456, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34908202

RESUMEN

Homogalacturonan (HG), the most abundant pectic glycan, functions as a cell wall structural and signaling molecule essential for plant growth, development and response to pathogens. HG exists as a component of pectic homoglycans, heteroglycans and glycoconjugates. HG is synthesized by members of the GALACTURONOSYLTRANSFERASE (GAUT) family. UDP-GalA-dependent homogalacturonan:galacturonosyltransferase (HG:GalAT) activity has previously been demonstrated for GAUTs 1, 4 and 11, as well as the GAUT1:GAUT7 complex. Here, we show that GAUTs 10, 13 and 14 are also HG:GalATs and that GAUTs 1, 10, 11, 13, 14 and 1:7 synthesize polymeric HG in vitro. Comparison of the in vitro HG:GalAT specific activities of the heterologously-expressed proteins demonstrates GAUTs 10 and 11 with the lowest, GAUT1 and GAUT13 with moderate, and GAUT14 and the GAUT1:GAUT7 complex with the highest HG:GalAT activity. GAUT13 and GAUT14 are also shown to de novo synthesize (initiate) HG synthesis in the absence of exogenous HG acceptors, an activity previously demonstrated for GAUT1:GAUT7. The rate of de novo HG synthesis by GAUT13 and GAUT14 is similar to their acceptor dependent HG synthesis, in contrast to GAUT1:GAUT7 for which de novo synthesis occurred at much lower rates than acceptor-dependent synthesis. The results suggest a unique role for de novo HG synthesis by GAUTs 13 and 14. The reducing end of GAUT13-de novo-synthesized HG has covalently attached UDP, indicating that UDP-GalA serves as both a donor and acceptor substrate during de novo HG synthesis. The functional significance of unique GAUT HG:GalAT catalytic properties in the synthesis of different pectin glycan or glycoconjugate structures is discussed.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pared Celular/metabolismo , Glucuronosiltransferasa/metabolismo , Glicosiltransferasas/metabolismo , Oligosacáridos/metabolismo , Pectinas/metabolismo
13.
PLoS One ; 16(12): e0260027, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34874937

RESUMEN

Previous studies have revealed that gypenosides produced from Gynostemma pentaphyllum (Thunb.) Makino are mainly dammarane-type triterpenoid saponins with diverse structures and important biological activities, but the mechanism of diversity for gypenoside biosynthesis is still unclear. In this study, a combination of isobaric tags for relative and absolute quantification (iTRAQ) proteome analysis and RNA sequencing transcriptome analysis was performed to identify the proteins and genes related to gypenoside biosynthesis. A total of 3925 proteins were identified by proteomic sequencing, of which 2537 were quantified. Seventeen cytochrome P450 (CYP) and 11 uridine 5'-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, UGT) candidate genes involved in the side chain synthesis and modification of gypenosides were found. Seven putative CYPs (CYP71B19, CYP77A3, CYP86A7, CYP86A8, CYP89A2, CYP90A1, CYP94A1) and five putative UGTs (UGT73B4, UGT76B1, UGT74F2, UGT91C1 and UGT91A1) were selected as candidate structural modifiers of triterpenoid saponins, which were cloned for gene expression analysis. Comprehensive analysis of RNA sequencing and proteome sequencing showed that some CYPs and UGTs were found at both the transcription and translation levels. In this study, an expression analysis of 7 CYPs and 5 UGTs that contributed to gypenoside biosynthesis and distribution in G. pentaphyllum was performed, providing consistent results that will inspire more future research on vital genes/proteins involved in gypenoside biosynthesis.


Asunto(s)
Sistema Enzimático del Citocromo P-450/genética , Glucuronosiltransferasa/genética , Gynostemma/crecimiento & desarrollo , Cromatografía Liquida , Clonación Molecular , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glucuronosiltransferasa/metabolismo , Gynostemma/genética , Gynostemma/metabolismo , Extractos Vegetales/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem
14.
Zhonghua Gan Zang Bing Za Zhi ; 29(10): 1024-1027, 2021 Oct 20.
Artículo en Chino | MEDLINE | ID: mdl-34814402

RESUMEN

Gilbert's syndrome is a kind of benign inherited disease of bilirubin binding disorder, mainly due to the homozygous polymorphism A(TA)7TAA in the promoter of the gene for uridine diphosphate -glucuronosyltransferase 1A1 (UGT1A1), which is a TA insertion into the promoter, designated as UGT1A1*28, with UGT activity reduction to 30% of the normal value. Therefore, circulating fat-soluble unconjugated bilirubin cannot be converted into water-soluble conjugated bilirubin, leading to unconjugated hyperbilirubinemia. Bilirubin has a strong affinity for erythrocyte phospholipids, which interferes with membrane composition and dynamics, resulting in increased erythrocytes fragility, easy rupture, and gradual shortening of survival time. However, there are no obvious sign of hemolysis or abnormal iron metabolism, erythrocytes and bone marrow morphology. A small amount of chronic hemolysis stimulates extramedullary (normal bone marrow morphology) hematopoiesis, ensuing compensatory increase in circulating erythrocytes and hemoglobin. Hyperbilirubinemia may also weaken gastrointestinal motility, increase passive diffusion and absorption across the intestinal mucosal epithelium by 1.5 to 2 times, thereby aggravating or worsening hyperbilirubinemia mainly with unconjugated bilirubin circulation, which indicates that there is a causal relationship between the circulating bilirubin concentration and rapid erythrocytes turnover and hemolysis rate in patients with Gilbert's syndrome. Interestingly, bilirubin also has significant antioxidant and anti-mutagenic activities, and the potential health benefits of mild hyperbilirubinemia in Gilbert's syndrome include reduced prevalence of cardiovascular disease, type 2 diabetes mellitus (and related risk factors), certain cancers, and cardiovascular-related and all-cause mortality. Exogenous bilirubin and biliverdin supplements in intestinal epithelial cells can be absorbed and may increase circulating concentration of these antioxidant compounds. With this information, we hope to raise awareness of the potentially harmful and beneficial effects of benign hyperbilirubinemia, and explore and develop beneficial medical interventions.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad de Gilbert , Bilirrubina , Amigos , Glucuronosiltransferasa/genética , Humanos , Hiperbilirrubinemia
15.
Basic Clin Pharmacol Toxicol ; 129(6): 437-449, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34478607

RESUMEN

Methylophiopogonanone A (MOA) is an abundant homoisoflavonoid in the Chinese herb Ophiopogonis Radix. Recent investigations revealed that MOA inhibited several human cytochrome P450 enzymes (CYPs) and stimulated OATP1B1. However, the inhibitory effects of MOA on phase II drug-metabolizing enzymes, such as human UDP-glucuronosyltransferases (hUGTs), have not been well investigated. Herein, the inhibition potentials of MOA on hUGTs were assessed. The results clearly demonstrated that MOA dose-dependently inhibited all tested hUGTs including UGT1A1 (IC50 = 1.23 µM), one of the most important detoxification enzymes in humans. Further investigations showed that MOA strongly inhibited UGT1A1-catalysed NHPH-O-glucuronidation in a range of biological settings including hUGT1A1, human liver microsomes (HLM) and HeLa cells overexpressing UGT1A1. Inhibition kinetic analyses demonstrated that MOA competitively inhibited UGT1A1-catalysed NHPH-O-glucuronidation in both hUGT1A1 and HLM, with Ki values of 0.52 and 1.22 µM, respectively. Collectively, our findings expanded knowledge of the interactions between MOA and human drug-metabolizing enzymes, which would be very helpful for guiding the use of MOA-related herbal products in clinical settings.


Asunto(s)
Benzodioxoles/farmacología , Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Interacciones de Hierba-Droga , Isoflavonas/farmacología , Benzodioxoles/administración & dosificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/administración & dosificación , Células HeLa , Humanos , Concentración 50 Inhibidora , Isoflavonas/administración & dosificación , Microsomas Hepáticos/enzimología
16.
Phytomedicine ; 92: 153726, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34536821

RESUMEN

BACKGROUND: Isomeric ursolic acid (UA) and oleanolic acid (OA) compounds have recently garnered great attention due to their biological effects. Previously, it had been shown that UA and OA can exert important pharmacological action via the protein kinase C (PKC) and nuclear factor-κB (NF-κB) signaling, and that they can induce the expression of UDP-glucuronosyltransferase 1A1 (UGT1A1) in HepG2 cells. This study aims to investigate the role of PKC/NF-κB signaling in regulating the expression of UGT1A1 and examine how UA and OA induce UGT1A1 based on this signaling pathway. METHODS: HepG2 cells, hp65-overexpressed HepG2 cell and lentivirus-hp65-shRNA silenced HepG2 cells were stimulated with PKC/NF-κB specific agonists and inhibitors for 24 h in the presence or absence of UA and OA. The expression of UGT1A1, PKC, and NF-κB were determined by qRT-PCR, western blot, and dual-luciferase reporter gene assays. RESULTS: PKC/NF-κB activation downregulates UGT1A1 expression. This effect is countered by UA and OA treatment. Phorbol 12-myristate 13-acetate (PMA) and lipopolysaccharide (LPS), the agonists of PKC and NF-κB signaling, respectively, significantly inhibit hp65-mediated UGT1A1 luciferase activity. UA, OA, and the PKC/NF-κB inhibitors suppress this effect. PMA and LPS do not affect UGT1A1 activity in p65-silenced HepG2 cells; however, UA and OA mildly influence UGT1A1 expression in these cells. CONCLUSION: The activation of PKC/NF-κB signaling can significantly downregulate UGT1A1 expression. By inhibiting the PKC/NF-κB signaling pathway, UA and OA promote UGT1A1 expression in HepG2 cells.


Asunto(s)
Ácido Oleanólico , Glucuronosiltransferasa , FN-kappa B/metabolismo , Ácido Oleanólico/farmacología , Proteína Quinasa C/metabolismo , Transducción de Señal , Triterpenos , Regulación hacia Arriba , Ácido Ursólico
17.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3410-3421, 2021 Jul.
Artículo en Chino | MEDLINE | ID: mdl-34396762

RESUMEN

This study aims to investigate metabolic activities of psoralidin in human liver microsomes( HLM) and intestinal microsomes( HIM),and to identify cytochrome P450 enzymes( CYPs) and UDP-glucuronosyl transferases( UGTs) involved in psoralidin metabolism as well as species differences in the in vitro metabolism of psoralen. First,after incubation serial of psoralidin solutions with nicotinamide adenine dinucleotide phosphate( NADPH) or uridine 5'-diphosphate-glucuronic acid( UDPGA)-supplemented HLM or HIM,two oxidic products( M1 and M2) and two conjugated glucuronides( G1 and G2) were produced in HLM-mediated incubation system,while only M1 and G1 were detected in HIM-supplemented system. The CLintfor M1 in HLM and HIM were 104. 3,and57. 6 µL·min~(-1)·mg~(-1),respectively,while those for G1 were 543. 3,and 75. 9 µL·min~(-1)·mg~(-1),respectively. Furthermore,reaction phenotyping was performed to identify the main contributors to psoralidin metabolism after incubation of psoralidin with NADPH-supplemented twelve CYP isozymes( or UDPGA-supplemented twelve UGT enzymes),respectively. The results showed that CYP1 A1( 39. 5 µL·min~(-1)·mg~(-1)),CYP2 C8( 88. 0 µL·min~(-1)·mg~(-1)),CYP2 C19( 166. 7 µL·min~(-1)·mg~(-1)),and CYP2 D6( 9. 1 µL·min~(-1)·mg~(-1)) were identified as the main CYP isoforms for M1,whereas CYP2 C19( 42. 0 µL·min~(-1)·mg~(-1)) participated more in producing M2. In addition,UGT1 A1( 1 184. 4 µL·min~(-1)·mg~(-1)),UGT1 A7( 922. 8 µL·min~(-1)·mg~(-1)),UGT1 A8( 133. 0 µL·min~(-1)·mg~(-1)),UGT1 A9( 348. 6 µL·min~(-1)·mg~(-1)) and UGT2 B7( 118. 7 µL·min~(-1)·mg~(-1)) played important roles in the generation of G1,while UGT1 A9( 111. 3 µL·min~(-1)·mg~(-1)) was regarded as the key UGT isozyme for G2. Moreover,different concentrations of psoralidin were incubated with monkey liver microsomes( MkLM),rat liver microsomes( RLM),mice liver microsomes( MLM),dog liver microsomes( DLM) and mini-pig liver microsomes( MpLM),respectively. The obtained CLintwere used to evaluate the species differences.Phase Ⅰ metabolism and glucuronidation of psoralidinby liver microsomes showed significant species differences. In general,psoralidin underwent efficient hepatic and intestinal metabolisms. CYP1 A1,CYP2 C8,CYP2 C19,CYP2 D6 and UGT1 A1,UGT1 A7,UGT1 A8,UGT1 A9,UGT2 B7 were identified as the main contributors responsible for phase Ⅰ metabolism and glucuronidation,respectively. Rat and mini-pig were considered as the appropriate model animals to investigate phase Ⅰ metabolism and glucuronidation,respectively.


Asunto(s)
Glucuronosiltransferasa , Microsomas Hepáticos , Animales , Benzofuranos , Cumarinas , Perros , Glucurónidos , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Cinética , Ratones , Microsomas Hepáticos/metabolismo , Fenotipo , Ratas , Especificidad de la Especie , Porcinos , Porcinos Enanos/metabolismo
18.
BMC Plant Biol ; 21(1): 245, 2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34051740

RESUMEN

BACKGROUND: Arabinogalactan-proteins (AGPs) are heavily glycosylated with type II arabinogalactan (AG) polysaccharides attached to hydroxyproline residues in their protein backbone. Type II AGs are necessary for plant growth and critically important for the establishment of normal cellular functions. Despite the importance of type II AGs in plant development, our understanding of the underlying role of these glycans/sugar residues in mucilage formation and seed coat epidermal cell development is poorly understood and far from complete. One such sugar residue is the glucuronic acid residues of AGPs that are transferred onto AGP glycans by the action of ß-glucuronosyltransferase genes/enzymes. RESULTS: Here, we have characterized two ß-glucuronosyltransferase genes, GLCAT14A and GLCAT14C, that are involved in the transfer of ß-glucuronic acid (GlcA) to type II AGs. Using a reverse genetics approach, we observed that glcat14a-1 mutants displayed subtle alterations in mucilage pectin homogalacturonan (HG) compared to wild type (WT), while glcat14a-1glcat14c-1 mutants displayed much more severe mucilage phenotypes, including loss of adherent mucilage and significant alterations in cellulose ray formation and seed coat morphology. Monosaccharide composition analysis showed significant alterations in the sugar amounts of glcat14a-1glcat14c-1 mutants relative to WT in the adherent and non-adherent seed mucilage. Also, a reduction in total mucilage content was observed in glcat14a-1glcat14c-1 mutants relative to WT. In addition, glcat14a-1glcat14c-1 mutants showed defects in pectin formation, calcium content and the degree of pectin methyl-esterification (DM) as well as reductions in crystalline cellulose content and seed size. CONCLUSIONS: These results raise important questions regarding cell wall polymer interactions and organization during mucilage formation. We propose that the enzymatic activities of GLCAT14A and GLCAT14C play partially redundant roles and are required for the organization of the mucilage matrix and seed size in Arabidopsis thaliana. This work brings us a step closer towards identifying potential gene targets for engineering plant cell walls for industrial applications.


Asunto(s)
Arabidopsis/enzimología , Galactanos/metabolismo , Glucuronosiltransferasa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Pared Celular/metabolismo , Celulosa/metabolismo , Esterificación , Glucuronosiltransferasa/genética , Monosacáridos/metabolismo , Pectinas/metabolismo , Fenotipo , Polisacáridos/metabolismo , Semillas/enzimología , Semillas/genética
19.
Biochem Pharmacol ; 190: 114592, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33961837

RESUMEN

UGT1A1 is the only enzyme that can metabolize bilirubin, and its encoding gene is frequently mutated. UGT1A1*6 (G71R) is a common mutant in Asia which leads to the decrease of UGT1A1 activity and abnormal bilirubin metabolism. However, it is not clear whether low UGT1A1 activity-induced bilirubin metabolism disorder increases hepatocyte fragility. ugt1a+/- mice were used to simulate the UGT1A1*6 (G71R) population. Under the same CCl4 induction condition, ugt1a+/- mice showed severer liver damage and fibrosis, indicating that ugt1a1 dysfunction increased liver burden and aggravated hepatocyte damage. In the animal experiment with a continuous intraperitoneal injection of bilirubin, the ugt1a+/- mice livers had more serious unconjugated bilirubin accumulation. The accumulated bilirubin leads to hyperphosphorylation of IκB-α, Ikk-ß, and p65 and a significant increase of inflammatory factor. The α-SMA and Collagen I proteins markedly up-regulated in the ugt1a+/- mice livers. Immunofluorescence and confocal microscopy showed that hepatic stellate cells and Kupffer cells were activated in ugt1a+/- mice. Comprehensive results show that there was a crosstalk relationship between low UGT1A1 activity-bilirubin-liver damage. Furthermore, cell experiments confirmed that unconjugated bilirubin activated the NF-κB pathway and induced DNA damage in hepatocytes, leading to the significant increase of inflammatory factors. UGT1A1 knockdown in hepatocytes aggravated the toxicity of unconjugated bilirubin. Conversely, overexpression of UGT1A1 had a protective effect on hepatocytes. Finally, Schisandrin B, an active ingredient with hepatoprotective effects, extracted from a traditional Chinese medicinal herb, which could protect the liver from bilirubin metabolism disorders caused by ugt1a1 deficiency by downregulating p65 phosphorylation, inhibiting Kupffer cells, reducing inflammation levels. Our data clarified the mechanism of liver vulnerability caused by cross-talk between low UGT1A1 activity bilirubin, and provided a reference for individualized prevention of liver fragility in Gilbert's syndrome.


Asunto(s)
Bilirrubina/metabolismo , Glucuronosiltransferasa/deficiencia , Hepatocitos/metabolismo , Animales , Bilirrubina/genética , Línea Celular , Enfermedad de Gilbert/genética , Enfermedad de Gilbert/metabolismo , Enfermedad de Gilbert/patología , Glucuronosiltransferasa/química , Glucuronosiltransferasa/genética , Hepatocitos/patología , Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estructura Secundaria de Proteína , Factores de Tiempo
20.
Int J Biol Macromol ; 180: 252-261, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33741369

RESUMEN

Strong inhibition of the human UDP-glucuronosyltransferase enzymes (UGTs) may lead to undesirable effects, including hyperbilirubinaemia and drug/herb-drug interactions. Currently, there is no good way to examine the inhibitory effects and specificities of compounds toward all the important human UGTs, side-by-side and under identical conditions. Herein, we report a new, broad-spectrum substrate for human UGTs and its uses in screening and characterizing of UGT inhibitors. Following screening a variety of phenolic compound(s), we have found that methylophiopogonanone A (MOA) can be readily O-glucuronidated by all tested human UGTs, including the typical N-glucuronidating enzymes UGT1A4 and UGT2B10. MOA-O-glucuronidation yielded a single mono-O-glucuronide that was biosynthesized and purified for structural characterization and for constructing an LC-UV based MOA-O-glucuronidation activity assay, which was then used for investigating MOA-O-glucuronidation kinetics in recombinant human UGTs. The derived Km values were crucial for selecting the most suitable assay conditions for assessing inhibitory potentials and specificity of test compound(s). Furthermore, the inhibitory effects and specificities of four known UGT inhibitors were reinvestigated by using MOA as the substrate for all tested UGTs. Collectively, MOA is a broad-spectrum substrate for the human UGTs, which offers a new and practical tool for assessing inhibitory effects and specificities of UGT inhibitors.


Asunto(s)
Benzodioxoles/metabolismo , Inhibidores Enzimáticos/farmacología , Glucuronosiltransferasa/antagonistas & inhibidores , Glucuronosiltransferasa/metabolismo , Isoflavonas/metabolismo , Animales , Benzodioxoles/química , Perros , Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas , Inhibidores Enzimáticos/metabolismo , Femenino , Glucurónidos/química , Glucurónidos/metabolismo , Glucuronosiltransferasa/química , Humanos , Isoflavonas/química , Cinética , Macaca fascicularis , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Conejos , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA