Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Intervalo de año de publicación
1.
Minerva Ginecol ; 70(5): 609-620, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29999286

RESUMEN

Gonadotropins and thyroid hormones are essential, respectively, for reproduction and metabolism. The classical endocrinological approach is based on the detection of axes that start from the hypothalamus and arrive at the final effector organ, in this case gonads and thyroid. However, several clues suggest that these axes do not work in parallel, but they dialogue with each other. In this article, we review evidences demonstrating crosstalk between gonadotropins and thyroid axis. Firstly, there is an undeniable structural similarity of both hormones and receptors, maybe due to a common ancient origin. This structural similarity leads to possible interaction at the receptor level, explaining the influence of thyroid stimulating hormone on gonadal development and vice versa. Indeed, altered levels of thyroid hormones could lead to different disorders of gonadal development and function throughout entire life, especially during puberty and fertile life. We here report the current knowledge on this item both in males and in females. In particular, we deepen the interaction between thyroid and gonads in two situations in females: polycystic ovary syndrome, the most frequent cause of menstrual alteration, and pregnancy.


Asunto(s)
Gonadotropinas/fisiología , Hipotálamo/fisiología , Hormonas Tiroideas/fisiología , Animales , Femenino , Gónadas/fisiología , Humanos , Masculino , Trastornos de la Menstruación/fisiopatología , Síndrome del Ovario Poliquístico/fisiopatología , Embarazo , Reproducción/fisiología , Glándula Tiroides/fisiología
2.
J Biol Rhythms ; 30(1): 7-19, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25367899

RESUMEN

Rhythmic events in the female reproductive system depend on the coordinated and synchronized activity of multiple neuroendocrine and endocrine tissues. This coordination is facilitated by the timing of gene expression and cellular physiology at each level of the hypothalamo-pituitary-ovarian (HPO) axis, including the basal hypothalamus and forebrain, the pituitary gland, and the ovary. Central to this pathway is the primary circadian pacemaker in the suprachiasmatic nucleus (SCN) that, through its myriad outputs, provides a temporal framework for gonadotropin release and ovulation. The heart of the timing system, a transcription-based oscillator, imparts SCN pacemaker cells and a company of peripheral tissues with the capacity for daily oscillations of gene expression and cellular physiology. Although the SCN sits comfortably at the helm, peripheral oscillators (such as the ovary) have undefined but potentially critical roles. Each cell type of the ovary, including theca cells, granulosa cells, and oocytes, harbor a molecular clock implicated in the processes of follicular growth, steroid hormone synthesis, and ovulation. The ovarian clock is influenced by the reproductive cycle and diseases that perturb the cycle and/or follicular growth can disrupt the timing of clock gene expression in the ovary. Chronodisruption is known to negatively affect reproductive function and fertility in both rodent models and women exposed to shiftwork schedules. Thus, influencing clock function in the HPO axis with chronobiotics may represent a novel avenue for the treatment of common fertility disorders, particularly those resulting from chronic circadian disruption.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Fertilidad , Ovario/fisiología , Reproducción , Animales , Femenino , Expresión Génica , Gonadotropinas/fisiología , Células de la Granulosa/fisiología , Humanos , Hipotálamo/fisiología , Oocitos/fisiología , Ovulación/fisiología , Hipófisis/metabolismo , Prosencéfalo/fisiología , Núcleo Supraquiasmático/fisiología , Células Tecales/fisiología
3.
Gen Comp Endocrinol ; 165(3): 438-55, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19393655

RESUMEN

This review aims at synthesizing the most relevant information regarding the neuroendocrine circuits controlling reproduction, mainly gonadotropin release, in teleost fish. In teleosts, the pituitary receives a more or less direct innervation by neurons sending projections to the vicinity of the pituitary gonadotrophs. Among the neurotransmitters and neuropeptides released by these nerve endings are gonadotrophin-releasing hormones (GnRH) and dopamine, acting as stimulatory and inhibitory factors (in many but not all fish) on the liberation of LH and to a lesser extent that of FSH. The activity of the corresponding neurons depends on a complex interplay between external and internal factors that will ultimately influence the triggering of puberty and sexual maturation. Among these factors are sex steroids and other peripheral hormones and growth factors, but little is known regarding their targets. However, very recently a new actor has entered the field of reproductive physiology. KiSS1, first known as a tumor suppressor called metastin, and its receptor GPR54, are now central to the regulation of GnRH, and consequently LH and FSH secretion in mammals. The KiSS system is notably viewed as instrumental in integrating both environmental cues and metabolic signals and passing this information onto the reproductive axis. In fish, there are two KiSS genes, KiSS1 and KiSS2, expressed in neurons of the preoptic area and mediobasal hypothalamus. Pionneer studies indicate that KiSS and GPR54 expression seem to be activated at puberty. Although precise information as to the physiological effects of KiSS1 in fish, notably on GnRH neurons and gonadotropin release, is still limited, KiSS neurons may emerge as the "gatekeeper" of puberty and reproduction in fish as in mammals.


Asunto(s)
Peces/fisiología , Hormona Liberadora de Gonadotropina/fisiología , Hipotálamo/fisiología , Hipófisis/fisiología , Reproducción/fisiología , Animales , Femenino , Peces/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Hormonas Esteroides Gonadales/fisiología , Hormona Liberadora de Gonadotropina/metabolismo , Gonadotropinas/metabolismo , Gonadotropinas/fisiología , Hipotálamo/metabolismo , Kisspeptinas , Masculino , Neuroendocrinología , Neuropéptido Y/metabolismo , Neuropéptido Y/fisiología , Hipófisis/inervación , Hipófisis/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Maduración Sexual/genética , Maduración Sexual/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/fisiología
4.
Rev. argent. endocrinol. metab ; 45(2): 89-111, abr.-jun. 2008. graf, tab
Artículo en Español | LILACS | ID: lil-641937

RESUMEN

El síndrome de poliquistosis ovárica (SPCO) es una de las endocrinopatías más comunes que afecta a las mujeres en edad reproductiva, su expresión clínica comienza en edad perimenárquica y si bien fue descripto hace más de 70 años, hasta el presente, el(los) mecanismo(s) fisiopatológico(s) que lo origina(n) no se conoce(n) con certeza. Debido a la gran heterogeneidad en la expresión clínica y bioquímica que caracteriza al SPCO es probable que existan subgrupos de pacientes en las que sea posible identificar alguno de los mecanismos implicados en la patogenia como el responsable de los principales signos y síntomas observados. La presente revisión propone conocer en profundidad las anormalidades neuroendocrinas como uno de los principales componentes del síndrome. En nuestra experiencia, las adolescentes con SPCO presentan hipersecreción de LH (aumento de la masa de LH secretada por pulso, de la frecuencia de pulsos y de la tasa de producción), y un patrón desordenado de secreción de LH (mayores valores de ApEn) en relación a adolescentes eumenorreicas. Varias líneas de evidencia sugieren que uno de los mecanismos responsables de estos defectos es el aumento de frecuencia de secreción del GnRH. Las adolescentes con SPCO secretan moléculas de LH con mayor actividad biológica y mayor proporción de isoformas con punto isoeléctrico más alcalino que las adolescentes eumenorreicas. La preponderancia de isoformas más básicas y más bioactivas en estas pacientes se relaciona con elevados niveles séricos de 17-hidroxiprogesterona, androstenodiona (A) y testosterona (T). El aumento de la frecuencia de pulsos de GnRH y un microambiente hormonal caracterizado por exceso de andrógenos podrían conjuntamente promover la predominante secreción de este tipo de isoformas de LH. En ausencia de obesidad, las pacientes con SPCO presentan un incremento de la tasa de producción de GH y un patrón de secreción más ordenado (menores valores de ApEn, similar al patrón de secreción de GH observado en el varón adulto). La mayor secreción de GH podría potenciar la acción gonadotrófica sobre la esteroideogénesis ovárica. Analizando la sincronía entre pares de hormonas relacionadas mediante dos técnicas complementarias (cross ApEn y cross correlación) se demuestra que las adolescentes con SPCO presentan un deterioro en las asociaciones entre LH-andrógenos comparadas con las adolescentes eumenorreicas. El desacople de la secreción bihormonal (LH-A y LH-T) en adolescentes con SPCO es consistente con defectos en el control de la secreción ovárica de andrógenos dependiente de LH y con una alteración en el control negativo que ejercen los andrógenos sobre la secreción GnRH/LH. Estas alteraciones neuroendocrinas en la unidad GnRH/LH y andrógenos ováricos podrían promover el hiperandrogenismo y alterar la maduración folicular.


Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women in reproductive age, frequently begins during adolescence causing menstrual irregularity and hirsutism. Although described up more than seventy years ago, the primary pathophysiologic mechanisms underlying this disorder remain unknown.There is not a single etiologic factor that fully accounts for the spectrum of abnormalities in the PCOS. This review addresses current knowledge about the neuroendocrine abnormalities as a major component of the syndrome. From this perspective, adolescents with PCOS exhibit an accelerated frequency and/or higher amplitude of LH pulses, augmentation of secretory burst mass, and a more disorderly LH release (higher ApEn) than eumenorrheic adolescents. Several lines of evidence suggest that the mechanisms underlying the defects in LH secretion in PCOS include an increased frequency of GnRH secretion. These patients also show elevated in vitro LH bioactivity and a preponderance of basic LH isoforms, which correlate positively with elevated serum of 17-hydroxyprogesterone, androstenedione (A), and testosterone (T) concentrations. Heightened GnRH drive of gonadotropin secretion and steroid-permissive milieu appear to jointly promote elevated secretion of basic LH isoforms. Non obese adolescents with PCOS secrete GH at a higher rate and with more orderly patterns (resembling a male profile) than controls. Indeed, GH appears to act as a co-gonadotropin. When synchronicity of paired hormone profiles was appraised by two independent, but complementary, statistical tools (cross-entropy and cross correlation), concomitant uncoupling of the pairwise synchrony of LH - androgens was demonstrated in girls with PCOS. Asynchrony of LH-A and LH-T pairs further localizes a pathway defect to LH-dependent feedforward control of ovarian androgen secretion. These abnormalities are also consistent with altered androgen negative feed-back regulation of GnRH/LH output. These data suggest that in PCOS there are anomalies of signaling between GnRH/LH and ovarian androgens that promote hiperandrogenism and impaired follicle maturation.


Asunto(s)
Humanos , Femenino , Adolescente , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/diagnóstico por imagen , Gonadotropinas/fisiología , Hormona Liberadora de Gonadotropina , Hiperandrogenismo , Gonadotropinas/efectos adversos , Gonadotropinas/química , Hormonas/química , Trastornos de la Menstruación
5.
Nig Q J Hosp Med ; 17(1): 5-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17688164

RESUMEN

UNLABELLED: Many plants remedies have been employed in solving man's health needs especially the nutritive value which enhances health living. Aphrodisiac plants are plants with anabolic properties i.e. they help in protein synthesis and enhances sexual abilities in males. They are also known as androgenic plants because their properties are similar to that of androgen a male hormone. Cold aqueous extract of Hibiscus rosasinensis leaves is reported by local traditional practioners in Western Nigeria to be aphrodisiac. OBJECTIVE: To investigate the anabolic properties of Hibiscus rosasinensis. MATERIALS AND METHOD: Three groups (8/group) of immature male rats of known weights were administered equal doses of aqueous (cold and hot) and alcoholic extracts of Hibiscus rosasinensis leaves for 8 weeks. The gain in body and isolated sexual organs (testis, epididymis, seminal vesicle and prostate) weights were determined after treatment and compared to the value obtained from a fourth untreated group which served as the control. Section through the testes of both the treated and untreated rats were also examined microscopically and displayed as a photomicrograph for comparism. All data were statistically analysed and displaced in graphic form. RESULTS: Over the 8 weeks of treatment, the control, the cold aqueous extract dosed, hot aqueous extract dosed and alcoholic extract dosed rats gained 8%, 15%, 18% and 22% in body weights respectively. The increase in the weight of testis, epididymis, seminal vesicle and prostate of the alcoholic extract dosed rats was 19%, 30%, 31% and 40% respectively. CONCLUSION: The anabolic effect of the leaf extracts of H. rosasinensis is hereby established. More work needs to be done on these leaf extracts to know their effect on the gonadotrophin hormones which regulate the activity of the androgens in relation to spermatogenesis.


Asunto(s)
Anabolizantes/farmacología , Genitales Masculinos/efectos de los fármacos , Hibiscus , Extractos Vegetales/farmacología , Animales , Afrodisíacos , Peso Corporal/efectos de los fármacos , Composición de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Epidídimo/efectos de los fármacos , Genitales Masculinos/ultraestructura , Gonadotropinas/fisiología , Masculino , Medicinas Tradicionales Africanas , Modelos Animales , Nigeria , Tamaño de los Órganos/efectos de los fármacos , Fotomicrografía , Fitoterapia/métodos , Hojas de la Planta , Próstata/efectos de los fármacos , Distribución Aleatoria , Ratas , Vesículas Seminales/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos
6.
Reprod Sci ; 14(2): 101-16, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17636222

RESUMEN

Proper gonadal function requires coordinated (feedback) interactions between the gonads, adenohypophysis, and brain: the gonads elaborate sex steroids (progestins, androgens, and estrogens) and proteins (inhibin-activin family) during gamete development. In both sexes, the brain-pituitary gonadotrophin-regulating interaction is coordinated by estradiol through its opposing actions on pituitary gonadotrophs (sensitization of the response to gonadotrophin-releasing hormone [GnRH]) versus hypothalamic neurons (inhibition of GnRH secretion). This dynamic tension between the gonadotrophs and the GnRH cells in the brain regulates the circulating gonadotrophins and is termed reciprocal/negative feedback. In females, reciprocal/negative feedback dominates approximately 90% of the ovarian cycle. In a spectacular exception, the dynamic tension is broken during the surge of circulating estrogen that marks follicle and oocyte(s) maturation. The cause is an estradiol-induced disinhibition of the GnRH neurons that releases GnRH secretion to the highly sensitized pituitary gonadotrophs that in turn release the gonadotrophin surge (the estrogen-induced gonadotrophin surge [EIGS], also known as positive feedback). Studies during the past 4 decades have shown this disinhibition to result from estrogen-induced synaptic plasticity (EISP), including a reversible approximately 50% loss in arcuate nucleus synapses. The disinhibited GnRH secretion occurs during maximal gonadotroph sensitization and results in the EIGS. Specific immunoneutralization of estradiol blocks the EISP and EIGS. The EISP is accompanied by increases in insulinlike growth factor 1, polysialylated neural cell adhesion molecule, and ezrin, 3 proteins that the authors believe are the links between estrogen-induced astroglial extension and the EISP that releases GnRH secretion at the moment of maximal sensitization of the pituitary gonadotrophs. The result is the paradoxical surge of gonadotrophins at the peak of ovarian estrogen secretion and the triggering of ovulation. This enhanced understanding of the mechanics of gonadotrophin control clarifies elements of the involved feedback loops and opens the way to a better understanding of the neurobiology of reproduction.


Asunto(s)
Estrógenos/fisiología , Gonadotropinas/fisiología , Hipotálamo/fisiología , Ciclo Menstrual/fisiología , Plasticidad Neuronal/fisiología , Hipófisis/metabolismo , Animales , Estrógenos/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/fisiología , Gónadas/fisiología , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/fisiología , Neuronas/fisiología , Ratas , Sinapsis/fisiología
7.
Biol Reprod ; 74(6): 993-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16481592

RESUMEN

The frequency of gonadotropin-releasing hormone (GNRH1, or GnRH) pulses secreted from the hypothalamus determine the ratios of the gonadotropin subunit genes luteinizing hormone beta (Lhb), follicle-stimulating hormone beta (Fshb) and the common alpha-glycoprotein subunit gene (Cga) transcribed in the anterior pituitaries of mammals. Fshb is preferentially transcribed at slower GNRH1 pulse frequencies, whereas Lhb and Cga are preferentially transcribed at more rapid pulse frequencies. Producing the gonadotropins in the correct proportions is critical for normal fertility. Currently, there is no definitive explanation for how GNRH1 pulses differentially activate gonadotropin subunit gene transcription. Several pathways may contribute to this regulation. For example, GNRH1-regulated GNRH1-receptor concentrations may lead to variable signaling pathway activation. Several signaling pathways are activated by GnRH, including mitogen-activated protein kinase, protein kinase C, calcium influx, and calcium-calmodulin kinase, and these may be preferentially regulated under certain conditions. In addition, some signaling proteins feed back to downregulate their own levels. Other arms of gonadotroph signaling appear to be regulated by synthesis, modification, and degradation of either transcription factors or regulatory proteins. Finally, the dynamic binding of proteins to the chromatin, and how that might be regulated by chromatin-modifying proteins, is addressed. Oscillations in expression, modification, and chromatin binding of the proteins involved in gonadotropin gene expression are likely a link between GNRH1 pulsatility and differential gonadotropin transcription.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hormona Liberadora de Gonadotropina/fisiología , Gonadotropinas/genética , Transcripción Genética/fisiología , Animales , Cromatina/fisiología , Hormona Folículo Estimulante de Subunidad beta/genética , Hormona Folículo Estimulante de Subunidad beta/metabolismo , Hormona Folículo Estimulante de Subunidad beta/fisiología , Hormonas Glicoproteicas de Subunidad alfa/genética , Hormonas Glicoproteicas de Subunidad alfa/metabolismo , Hormonas Glicoproteicas de Subunidad alfa/fisiología , Gonadotropinas/metabolismo , Gonadotropinas/fisiología , Gónadas/fisiología , Humanos , Sistema Hipotálamo-Hipofisario/fisiología , Hipotálamo/metabolismo , Hormona Luteinizante de Subunidad beta/genética , Hormona Luteinizante de Subunidad beta/metabolismo , Hormona Luteinizante de Subunidad beta/fisiología , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Transcripción Genética/genética
8.
Biol Reprod ; 74(5): 857-64, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16421234

RESUMEN

To elucidate the involvement of aromatase in sex reversal, the gilthead seabream ovarian P450 aromatase (cyp19a1a) cDNA and its 5'-flanking region were isolated and characterized. Northern blot analysis revealed that only one cyp19a1a transcript (2.0 kb) is expressed in the ovary. Four cAMP-responsive elements were identified at the 5'-flanking region of seabream cyp19a1a indicating a high potential to respond to gonadotropin signaling. Studying the seasonal profile, two expression peaks of cyp19a1a transcripts in the ovarian tissues were found in July (about 15000 copies/ng total RNA) for ambisexual fish and in December (about 12000 copies/ng total RNA) for spawning females. Starting from September, transcript levels of cyp19a1a in the ovarian portions of the male-developing gonads gradually decreased. Furthermore, the ovarian portions of the female gonads expressed cyp19a1a at a significantly higher level than the ovarian portions of the male gonads after November. Taken together with levels of plasma estradiol in reversing females being significantly higher than those in developing males, the above results reinforce the importance of cyp19a1a in sex reversal. In vitro exposure of ovarian fragments to gonadotropins (hCG) at 1, 10, and 100 IU/ml significantly (P < 0.05) upregulated cyp19a1a expression. Additionally, expression of cyp19a1a displayed a stronger and significant correlation with the transcript expression of ovarian Lh receptor rather than Fsh receptor during the ambisexual stage. Our results indicate that the differential expression of cyp19a1a gene is associated with sex reversal and that gonadotropin signals (particularly Lh) may serve as major players in regulating the expression of cyp19a1a during the process of sex reversal.


Asunto(s)
Aromatasa/fisiología , Organismos Hermafroditas , Dorada/fisiología , Procesos de Determinación del Sexo , Región de Flanqueo 5' , Animales , Aromatasa/genética , Aromatasa/metabolismo , Northern Blotting , ADN Complementario , Estradiol/sangre , Femenino , Hormonas Gonadales/genética , Hormonas Gonadales/metabolismo , Hormonas Gonadales/fisiología , Gonadotropinas/fisiología , Gónadas/crecimiento & desarrollo , Masculino , Reacción en Cadena de la Polimerasa/métodos , Estaciones del Año , Análisis de Secuencia de ADN
9.
Endocr Rev ; 27(2): 101-40, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16434512

RESUMEN

Integrative neuroendocrine control of the gonadotropic and somatotropic axes in childhood, puberty, and young adulthood proceeds via multiple convergent and divergent pathways in the human and experimental animal. Emerging ensemble concepts are required to embody independent, parallel, and interacting mechanisms that subserve physiological adaptations and pathological disruption of reproduction and growth. Significant advances in systems biology will be needed to address these challenges.


Asunto(s)
Gonadotropinas/fisiología , Hormona del Crecimiento/fisiología , Crecimiento/fisiología , Pubertad/fisiología , Envejecimiento , Animales , Femenino , Hormonas Esteroides Gonadales/fisiología , Hormona Liberadora de Gonadotropina/fisiología , Gónadas/fisiología , Hormona de Crecimiento Humana/metabolismo , Humanos , Hipotálamo/fisiología , Insulina/fisiología , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/fisiología , Factor II del Crecimiento Similar a la Insulina/fisiología , Hormona Luteinizante/metabolismo , Masculino , Periodicidad , Hipófisis/fisiología , Caracteres Sexuales , Maduración Sexual/fisiología
10.
Rev Endocr Metab Disord ; 7(4): 257-63, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17206526

RESUMEN

The finding of inactivating mutations in GPR54 in IHH patients and the lack of reproductive maturation of the GPR54 null mouse have uncovered a previously unrecognized role for GPR54 and KiSS-1 in the physiologic regulation of puberty and reproduction. This newly identified function for GPR54 and its cognate ligand, kisspeptin, has led to additional studies that have localized GPR54 and KiSS-1 mRNA in the hypothalamus, colocalized GPR54 in GnRH neurons, demonstrated GnRH-dependent activation of LH and FSH release by kisspeptin, and shown increased hypothalamic KiSS-1 and GPR54 mRNA levels at the time of puberty. Taken together, these findings establish the role of the kisspeptin-GPR54 system in the stimulation of GnRH neurons during puberty. The mechanisms by which kisspeptin activates GnRH release, as well as the trigger for this pathway at the onset of puberty, are yet to be elucidated. In the future, modulators of GPR54 activity, including kisspeptin, may prove valuable in clinical applications in the fields of both cancer therapy and reproductive medicine.


Asunto(s)
Pubertad/fisiología , Receptores Acoplados a Proteínas G/fisiología , Reproducción/fisiología , Proteínas Supresoras de Tumor/fisiología , Gonadotropinas/metabolismo , Gonadotropinas/fisiología , Humanos , Hipotálamo/metabolismo , Kisspeptinas , Modelos Biológicos , Pubertad/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reproducción/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
J Biol Chem ; 280(15): 15438-48, 2005 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-15701645

RESUMEN

Gonadotropins are the major regulators of ovarian function and may be involved in the etiology of ovarian cancer. In this study, we report a new mechanism whereby gonadotropins regulate the survival of human ovarian surface epithelium (OSE), the tissue of origin of epithelial ovarian carcinomas. Our results indicate that disruption of N-cadherin-mediated cell-cell adhesion is an important molecular event in the apoptosis of human OSE. Treatment with surge serum concentrations of gonadotropins reduced the amount of N-cadherin with a concomitant induction of apoptosis, and this effect was mediated by a cAMP/protein kinase A pathway but not the ERK1/2 and protein kinase C cascades. We further demonstrated that activation of the gonadotropins/cAMP signaling pathway in human OSE led to a rapid down-regulation of N-cadherin protein level followed by a reduction at the level of N-cadherin mRNA, indicating that expression of N-cadherin was regulated by post-translational and transcriptional mechanisms. The former mechanism was mediated by increased turnover of N-cadherin protein and could be reversed by inhibition of proteasomal or matrix metalloproteinase (MMP-2) activity. On the other hand, at the transcriptional level, the addition of actinomycin D abolished the cAMP-mediated decrease in N-cadherin mRNA but did not change its stability. Inhibition of protein kinase A or expressing a dominant negative mutant of cAMP-response element-binding protein blocked this decrease of N-cadherin mRNA. Together, the combined operation of post-translational and transcriptional mechanisms suggests that regulation of N-cadherin is a crucial event and emphasizes the important role that N-cadherin has in controlling the survival capability of human OSE.


Asunto(s)
Cadherinas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/química , Células Epiteliales/citología , Gonadotropinas/fisiología , Ovario/metabolismo , Anexina A5/farmacología , Apoptosis , Secuencia de Bases , Sitios de Unión , Western Blotting , Adhesión Celular , Supervivencia Celular , Colorantes/farmacología , AMP Cíclico/metabolismo , ADN Complementario/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Egtácico/química , Femenino , Humanos , Inmunoprecipitación , Etiquetado Corte-Fin in Situ , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Propidio/química , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Fracciones Subcelulares , Factores de Tiempo , Transfección , Azul de Tripano/farmacología
13.
Cienc. ginecol ; 9(1): 2-10, ene.-feb. 2005. ilus
Artículo en Es | IBECS | ID: ibc-037539

RESUMEN

El objetivo del presente artículo es el estudio de la fisiología de la pubertad femenina, con descripción del concepto de pubertad, su cronología, las etapas del desarrollo puberal y los cambios hormonales que acontecen desde la lactancia a la niñez, en la prepubertad y en la pubertad


The aim of this review is the study of female puberty physiology with the description of the puberty concept, its chronology, the several stages of puberty development, and the hormonal changes in the different stages


Asunto(s)
Femenino , Adolescente , Humanos , Pubertad/fisiología , Maduración Sexual/fisiología , Fertilidad/fisiología , Hormonas/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Mama/fisiología , Gonadotropinas/fisiología , Estrógenos/fisiología , Menarquia/fisiología , Pubertad Precoz/fisiopatología , Hipotálamo/fisiología , Hueso Púbico/crecimiento & desarrollo , Hueso Púbico/fisiología , Hormonas Glicoproteicas de Subunidad alfa/fisiología
14.
Semin Reprod Med ; 21(4): 339-51, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14724767

RESUMEN

Puberty is a complex developmental process culminating in sexual maturity. This transitional period begins in late childhood and is characterized by maturation of the hypothalamic-pituitary-gonadal axis, the appearance of secondary sexual characteristics, acceleration of growth, and, ultimately, the capacity for fertility. Significant endocrinologic changes accompany these developmental events. Disorders of pubertal development may occur at any of the steps of the maturational process leading to either precocious or delayed puberty. A thorough understanding of the normal pubertal process is important to the accurate diagnosis and treatment of pubertal disorders.


Asunto(s)
Pubertad Precoz , Adolescente , Animales , Niño , Femenino , Feminización/diagnóstico , Feminización/etiología , Gonadotropinas/fisiología , Humanos , Hipotálamo/fisiología , Masculino , Ovario/fisiología , Hipófisis/fisiología , Pubertad/fisiología , Pubertad Precoz/diagnóstico , Pubertad Precoz/tratamiento farmacológico , Pubertad Precoz/etiología , Testículo/fisiología , Virilismo/diagnóstico , Virilismo/etiología
15.
Hum Fertil (Camb) ; 5(1 Suppl): S46-52, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11897916

RESUMEN

Poor ovarian response to gonadotrophin stimulation represents a clinical problem in in vitro fertilization practice. Women showing poor ovarian response are a heterogeneous group, many of whom have a reduced ovarian reserve and consequently a lower pregnancy potential. Various management strategies have been proposed to improve ovarian response to gonadotrophins, but these have met with limited success. Adjuvant treatments aim to potentiate the effect of exogenous follicle-stimulating hormone. In separate, randomized, placebo-controlled trials low-dose dexamethasone and aspirin have been shown to reduce the incidence of poor response in an initial stimulation cycle. Preliminary studies using pyridostigmine and L-arginine in established poor responders are encouraging but require confirmation in adequately powered studies. Evidence from randomized controlled trials does not support the use of adjuvant growth hormone or growth hormone-releasing hormone in poor responders without overt growth hormone deficiency. The mechanisms of action of adjuvant treatments require further investigation.


Asunto(s)
Gonadotropinas/fisiología , Enfermedades del Ovario/tratamiento farmacológico , Ovario/efectos de los fármacos , Femenino , Gonadotropinas/uso terapéutico , Humanos , Pruebas de Función Ovárica/métodos , Ovario/fisiología , Ovario/fisiopatología
16.
Ann Endocrinol (Paris) ; 62(1 Pt 1): 19-32, 2001 Feb.
Artículo en Francés | MEDLINE | ID: mdl-11240404

RESUMEN

Muscular exercise has an impact on endocrine functions. A single bout of exercise (for example, running for 30 minutes) activates certain endocrine systems required to maintain body homeostasis. Moreover, the effects of exercise persist after the end of exercise, continuing during the recovery period. Training, i.e. regularly repeated exercise, can affect endocrine functions by modifying hormonal responses to exercise and/or by modifying endocrine functions in resting conditions. In other words, endocrine functions adapt to repeated muscular exercise. The understanding of such modifications should allow avoiding unwarranted hormonal substitution in sportsmen and sportswomen.


Asunto(s)
Glándulas Endocrinas/fisiología , Ejercicio Físico/fisiología , Hormona Adrenocorticotrópica/fisiología , Amenorrea/etiología , Femenino , Gonadotropinas/fisiología , Hormona de Crecimiento Humana/metabolismo , Humanos , Hipotálamo/fisiología , Factor I del Crecimiento Similar a la Insulina/análisis , Masculino , Resistencia Física/fisiología , Hipófisis/fisiología , Deportes , Testículo/fisiología , Testosterona/sangre
17.
Rev Reprod ; 4(1): 48-55, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10051102

RESUMEN

In the few years since leptin was identified as a satiety factor in rodents, it has been implicated in the regulation of various physiological processes. Leptin has been shown to promote sexual maturation in rodent species and a role in reproduction has been investigated at various sites within the hypothalamo-pituitary-gonadal axis. This review considers the evidence that leptin (or alteration in amount of body fat) can affect reproduction. There is evidence that leptin plays a permissive role in the onset of puberty, probably through action on the hypothalamus, where leptin receptors are found in cells that express appetite-regulating peptides. There is little evidence that leptin has a positive effect on the pituitary gonadotrophs and the gonads. There is also very little indication that leptin acts in an acute manner to regulate reproduction in the short term. It seems more likely that leptin is a 'barometer' of body condition that sends signals to the brain. Studies in vitro have shown negative effects on ovarian steroid production and there are no reports of effects on testicular function. Leptin concentrations in plasma increase in women during pregnancy, owing to production by the placenta but the functional significance of this is unknown. A number of factors that affect the production and action of leptin have yet to be studied in detail.


Asunto(s)
Ovario/fisiología , Proteínas/fisiología , Testículo/fisiología , Animales , Peso Corporal , Femenino , Gonadotropinas/metabolismo , Gonadotropinas/fisiología , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Leptina , Masculino , Estado Nutricional , Obesidad , Ovario/metabolismo , Hipófisis/metabolismo , Hipófisis/fisiología , Proteínas/metabolismo , Maduración Sexual/fisiología , Testículo/metabolismo
18.
J Nutr ; 125(3 Suppl): 771S-776S, 1995 03.
Artículo en Inglés | MEDLINE | ID: mdl-7884563

RESUMEN

Evaluation of the potential benefits and risks offered by naturally occurring plant estrogens requires investigation of their potency and sites of action when consumed at natural dietary concentrations. Our investigations have examined the effects of a range of natural dietary concentrations of the most potent plant isoflavonoid, coumestrol, using a rat model and a variety of estrogen-dependent tissues and endpoints. Treatments of immature females demonstrated agonistic action in the reproductive tract, brain, and pituitary at natural dietary concentrations. Experiments designed to test for estrogen antagonism demonstrated that coumestrol did not conform to the picture of a classic antiestrogen. However, coumestrol did suppress estrous cycles in adult females. Developmental actions were examined by neonatal exposure of pups through milk of rat dams fed a coumestrol, control, or commercial soy-based diet during the critical period of the first 10 postnatal days or throughout the 21 days of lactation. The 10-day treatment did not significantly alter adult estrous cyclicity, but the 21-day treatment produced in a persistent estrus state in coumestrol-treated females by 132 days of age. In contrast, the 10-day coumestrol treatments produced significant deficits in the sexual behavior of male offspring. These findings illustrate the broad range of actions of these natural estrogens and the variability in potency across endpoints. This variability argues for the importance of fully characterizing each phytoestrogen in terms of its sites of action, balance of agonistic and antagonistic properties, natural potency, and short-term and long-term effects.


Asunto(s)
Estrógenos no Esteroides , Estrógenos/efectos adversos , Animales , Cumestrol/efectos adversos , Cumestrol/farmacología , Dieta , Relación Dosis-Respuesta a Droga , Antagonistas de Estrógenos/efectos adversos , Antagonistas de Estrógenos/farmacología , Estrógenos/agonistas , Estrógenos/farmacología , Estrógenos/fisiología , Estro/efectos de los fármacos , Estro/fisiología , Femenino , Feminización/etiología , Gonadotropinas/fisiología , Isoflavonas/farmacología , Hormona Luteinizante/sangre , Masculino , Fitoestrógenos , Preparaciones de Plantas , Ratas , Ratas Sprague-Dawley , Conducta Sexual Animal/efectos de los fármacos , Conducta Sexual Animal/fisiología , Factores de Tiempo
19.
Proc Soc Exp Biol Med ; 208(1): 82-6, 1995 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-7892301

RESUMEN

The effect of phytoestrogens on the sexual differentiation of gonadotropin function was examined by neonatal exposure of pups through milk of rat dams fed a coumestrol (100 micrograms/g), control, or chow diet during the "critical period" of the first 10 postnatal days or throughout the 21 days of lactation. In females, exposure to coumestrol throughout the period of lactation produced growth suppression and an acyclic condition in early adulthood resembling the premature anovulatory syndrome. When the period of treatment was restricted to the first 10 postnatal days, however, no effects on vaginal cyclicity were seen. The 10-day exposure period produced more marked effects in males, resulting in transitory reductions in body weight in weanling males and reductions in mount and ejaculation frequency and a prolongation of the latencies to mount and ejaculate. Testicular weights and plasma testosterone levels did not differ among treatment groups, suggesting that the deficits in male sexual behavior were not due to deficits in adult gonadal function. Few effects of chow treatment were observed. However, significant differences from controls were apparent for weight at vaginal opening in females, and mount rate for chow-treated males was intermediate between that of controls and that of the coumestrol-treated group. These data provide evidence that lactational exposure to phytoestrogen diets can alter neuroendocrine development in both female and male rats.


Asunto(s)
Cumestrol/farmacología , Estrógenos no Esteroides/farmacología , Isoflavonas , Conducta Sexual Animal/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Alimentación Animal , Animales , Animales Recién Nacidos , Femenino , Gonadotropinas/fisiología , Masculino , Fitoestrógenos , Preparaciones de Plantas , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Vagina/efectos de los fármacos , Vagina/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA