Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Pharmacol ; 174: 113834, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32027884

RESUMEN

Acid-sensing ion channels (ASICs) are voltage-independent cation channels that detect decreases in extracellular pH. Dysregulation of ASICs underpins a number of pathologies. Of particular interest is ASIC3, which is recognised as a key sensor of acid-induced pain and is important in the establishment of pain arising from inflammatory conditions, such as rheumatoid arthritis. Thus, the identification of new ASIC3 modulators and the mechanistic understanding of how these compounds modulate ASIC3 could be important for the development of new strategies to counteract the detrimental effects of dysregulated ASIC3 activity in inflammation. Here, we report the identification of novel ASIC3 modulators based on the ASIC3 agonist, 2-guanidine-4-methylquinazoline (GMQ). Through a GMQ-guided in silico screening of Food and Drug administration (FDA)-approved drugs, 5 compounds were selected and tested for their modulation of rat ASIC3 (rASIC3) using whole-cell patch-clamp electrophysiology. Of the chosen drugs, guanabenz (GBZ), an α2-adrenoceptor agonist, produced similar effects to GMQ on rASIC3, activating the channel at physiological pH (pH 7.4) and potentiating its response to mild acidic (pH 7) stimuli. Sephin1, a GBZ derivative that lacks α2-adrenoceptor activity, has been proposed to act as a selective inhibitor of a regulatory subunit of the stress-induced protein phosphatase 1 (PPP1R15A) with promising therapeutic potential for the treatment of multiple sclerosis. However, we found that like GBZ, sephin1 activates rASIC3 at pH 7.4 and potentiates its response to acidic stimulation (pH 7), i.e. sephin1 is a novel modulator of rASIC3. Furthermore, docking experiments showed that, like GMQ, GBZ and sephin1 likely interact with the nonproton ligand sensor domain of rASIC3. Overall, these data demonstrate the utility of computational analysis for identifying novel ASIC3 modulators, which can be validated with electrophysiological analysis and may lead to the development of better compounds for targeting ASIC3 in the treatment of inflammatory conditions.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Simulación por Computador , Guanabenzo/análogos & derivados , Guanabenzo/metabolismo , Guanidinas/metabolismo , Quinazolinas/metabolismo , Canales Iónicos Sensibles al Ácido/química , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Guanabenzo/química , Guanabenzo/farmacología , Guanidinas/química , Guanidinas/farmacología , Estructura Secundaria de Proteína , Quinazolinas/química , Quinazolinas/farmacología
2.
Mol Neurobiol ; 57(5): 2206-2219, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31981074

RESUMEN

Prion diseases are fatal infectious neurodegenerative disorders in human and animals caused by misfolding of the cellular prion protein (PrPC) into the infectious isoform PrPSc. These diseases have the potential to transmit within or between species, and no cure is available to date. Targeting the unfolded protein response (UPR) as an anti-prion therapeutic approach has been widely reported for prion diseases. Here, we describe the anti-prion effect of the chemical compound Sephin1 which has been shown to protect in mouse models of protein misfolding diseases including amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) by selectively inhibiting the stress-induced regulatory subunit of protein phosphatase 1, thus prolonging eIF2α phosphorylation. We show here that Sephin1 dose and time dependently reduced PrPSc in different neuronal cell lines which were persistently infected with various prion strains. In addition, prion seeding activity was reduced in Sephin1-treated cells. Importantly, we found that Sephin1 significantly overcame the endoplasmic reticulum (ER) stress induced in treated cells, as measured by lower expression of stress-induced aberrant prion protein. In a mouse model of prion infection, intraperitoneal treatment with Sephin1 significantly prolonged survival of prion-infected mice. When combining Sephin1 with the neuroprotective drug metformin, the survival of prion-infected mice was also prolonged. These results suggest that Sephin1 could be a potential anti-prion drug selectively targeting one component of the UPR pathway.


Asunto(s)
Guanabenzo/análogos & derivados , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Priones/efectos de los fármacos , Scrapie/tratamiento farmacológico , Respuesta de Proteína Desplegada/efectos de los fármacos , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Factor 2 Eucariótico de Iniciación/metabolismo , Guanabenzo/administración & dosificación , Guanabenzo/farmacología , Guanabenzo/uso terapéutico , Metformina/administración & dosificación , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Neuroblastoma/patología , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosforilación/efectos de los fármacos , Proteína Fosfatasa 1/antagonistas & inhibidores , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Scrapie/patología
3.
Biochem Pharmacol ; 56(9): 1111-9, 1998 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-9802320

RESUMEN

The mechanism for formation of high-affinity binding of 1-(2,6-dichlorobenzylidene-amino)-3-hydroxyguanidine (guanoxabenz) to alpha2-adrenoceptors was studied in particulate fractions from the rat spleen. The proportion of apparent high versus low-affinity alpha2-adrenoceptor binding sites increased with increasing incubation time and was also augmented by Mg2+ ions. The formation of high-affinity guanoxabenz binding seemed to be inhibited by a series of N-hydroxyguanidine analogs to guanoxabenz, as well as by a series of metabolic inhibitors that included allopurinol, 1-chloro-2,4-dinitrobenzene, 5,5'-dithiobis-(2-nitrobenzoic acid), cibacron blue, phenyl-p-benzoquinone, didox, and trimidox. The formation of guanoxabenz high-affinity binding was also inhibited in a time- and concentration-dependent fashion by preincubating the membranes with the LW03 N-hydroxyguanidine analogue of guanoxabenz. Moreover, when the spleen membranes were extensively washed for 30 min with buffers at 25 degrees, the guanoxabenz high-affinity binding disappeared. However, when these washed membranes were supplemented with xanthine, the apparent affinity of guanoxabenz increased four to five-fold. Taken together, all data were compatible with the theory that the formation of high-affinity binding was dependent on the generation of a guanoxabenz metabolite that showed an approximate 100-fold greater affinity for the alpha2-adrenoceptors than guanoxabenz itself. Because the most potent blocker of the formation of high-affinity binding was allopurinol (apart from some N-hydroxyguanidine analogs to guanoxabenz) and since the activity could be restored with xanthine, a likely candidate responsible for the metabolic activation is xanthine oxidase.


Asunto(s)
Antihipertensivos/metabolismo , Guanabenzo/análogos & derivados , Receptores Adrenérgicos alfa 2/metabolismo , Bazo/enzimología , Animales , Unión Competitiva , Corteza Cerebral/metabolismo , Guanabenzo/metabolismo , Idazoxan/análogos & derivados , Idazoxan/metabolismo , Magnesio/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Xantina Oxidasa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA