Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
New Phytol ; 241(2): 747-763, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37964509

RESUMEN

Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant-water relations.


Asunto(s)
Arabidopsis , Fucosa , Fucosa/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Boro/metabolismo , Arabidopsis/metabolismo , Polisacáridos/metabolismo
2.
PLoS One ; 12(9): e0184820, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28961242

RESUMEN

In the plant cell wall, boron links two pectic domain rhamnogalacturonan II (RG-II) chains together to form a dimer and thus contributes to the reinforcement of cell adhesion. We studied the mur1-1 mutant of Arabidopsis thaliana which has lost the ability to form GDP-fucose in the shoots and show that the extent of RG-II cross-linking is reduced in the lignified stem of this mutant. Surprisingly, MUR1 mutation induced an enrichment of resistant interunit bonds in lignin and triggered the overexpression of many genes involved in lignified tissue formation and in jasmonic acid signaling. The defect in GDP-fucose synthesis induced a loss of cell adhesion at the interface between stele and cortex, as well as between interfascicular fibers. This led to the formation of regenerative xylem, where tissue detachment occurred, and underlined a loss of resistance to mechanical forces. Similar observations were also made on bor1-3 mutant stems which are altered in boron xylem loading, leading us to suggest that diminished RG-II dimerization is responsible for regenerative xylem formation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Lignina/metabolismo , Mutación , Pectinas/metabolismo , Arabidopsis/genética , Pectinas/química
3.
Nat Commun ; 7: 12119, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27381418

RESUMEN

Nucleotide sugar transport across Golgi membranes is essential for the luminal biosynthesis of glycan structures. Here we identify GDP-fucose transporter 1 (GFT1), an Arabidopsis nucleotide sugar transporter that translocates GDP-L-fucose into the Golgi lumen. Using proteo-liposome-based transport assays, we show that GFT preferentially transports GDP-L-fucose over other nucleotide sugars in vitro, while GFT1-silenced plants are almost devoid of L-fucose in cell wall-derived xyloglucan and rhamnogalacturonan II. Furthermore, these lines display reduced L-fucose content in N-glycan structures accompanied by severe developmental growth defects. We conclude that GFT1 is the major nucleotide sugar transporter for import of GDP-L-fucose into the Golgi and is required for proper plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Aparato de Golgi/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Arabidopsis/clasificación , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Pared Celular/química , Pared Celular/metabolismo , Clonación Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucanos/biosíntesis , Aparato de Golgi/química , Proteínas de Transporte de Monosacáridos/metabolismo , Pectinas/biosíntesis , Filogenia , Células Vegetales/química , Células Vegetales/metabolismo , Proteolípidos/química , Proteolípidos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xilanos/biosíntesis
6.
J Biol Chem ; 274(31): 21830-9, 1999 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-10419500

RESUMEN

Substitution of the asparagine-linked GlcNAc by alpha1,3-linked fucose is a widespread feature of plant as well as of insect glycoproteins, which renders the N-glycan immunogenic. We have purified from mung bean seedlings the GDP-L-Fuc:Asn-linked GlcNAc alpha1,3-fucosyltransferase (core alpha1,3-fucosyltransferase) that is responsible for the synthesis of this linkage. The major isoform had an apparent mass of 54 kDa and isoelectric points ranging from 6. 8 to 8.2. From that protein, four tryptic peptides were isolated and sequenced. Based on an approach involving reverse transcriptase-polymerase chain reaction with degenerate primers and rapid amplification of cDNA ends, core alpha1,3-fucosyltransferase cDNA was cloned from mung bean mRNA. The 2200-base pair cDNA contained an open reading frame of 1530 base pairs that encoded a 510-amino acid protein with a predicted molecular mass of 56.8 kDa. Analysis of cDNA derived from genomic DNA revealed the presence of three introns within the open reading frame. Remarkably, from the four exons, only exon II exhibited significant homology to animal and bacterial alpha1,3/4-fucosyltransferases which, though, are responsible for the biosynthesis of Lewis determinants. The recombinant fucosyltransferase was expressed in Sf21 insect cells using a baculovirus vector. The enzyme acted on glycopeptides having the glycan structures GlcNAcbeta1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1- 6)Manbeta1-4GlcNAcbet a1-4GlcNAcbeta1-Asn, GlcNAcbeta1-2Manalpha1-3(GlcNAcbeta1-2Manalpha1- 6)Manbeta1-4GlcNAcbet a1-4(Fucalpha1-6)GlcNAcbeta1-Asn, and GlcNAcbeta1-2Manalpha1-3[Manalpha1-3(Manalpha1-6 )Manalpha1-6]Manbeta1 -4GlcNAcbeta1-4GlcNAcbeta1-Asn but not on, e.g. N-acetyllactosamine. The structure of the core alpha1,3-fucosylated product was verified by high performance liquid chromatography of the pyridylaminated glycan and by its insensitivity to N-glycosidase F as revealed by matrix-assisted laser desorption/ionization time of flight mass spectrometry.


Asunto(s)
Fabaceae/enzimología , Fucosiltransferasas/aislamiento & purificación , Fucosiltransferasas/metabolismo , Plantas Medicinales , Secuencia de Aminoácidos , Animales , Asparagina , Secuencia de Bases , Secuencia de Carbohidratos , Cromatografía de Afinidad , Cromatografía DEAE-Celulosa , Cromatografía por Intercambio Iónico , Clonación Molecular , ADN Complementario , Fabaceae/genética , Fucosiltransferasas/genética , Guanosina Difosfato Fucosa/metabolismo , Humanos , Intrones , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Polisacáridos/química , Polisacáridos/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
7.
Arch Biochem Biophys ; 294(1): 200-5, 1992 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-1550346

RESUMEN

GDP-fucose:xyloglucan (XG) fucosyltransferase from growing Pisum epicotyl tissue was solubilized in detergent and used to examine the capacity of intact XG from Tamarindus seeds, and its partial hydrolysis products, to act as fucose acceptors with GDP-[14C]fucose as donor. Native seed XG (Mr greater than 10(6) Da) was partially depolymerized by incubation with Trichoderma cellulase for various periods of time. Cellulase was inactivated and reaction mixtures were incubated with GDP-[14C]fucose plus solubilized pea fucosyltransferase and then fractionated on columns of Sepharose CL-6B or Bio-Gel P4. Specific activities (Bq/microgram carbohydrate) of fragments with Mr ranging from 10(6) to 10(4) Da were constant throughout the size ranges, indicating that all stretches of the XG chains were available for fucosylation. More complete cellulase hydrolysis yielded subunit oligosaccharides that chromatographed in a cluster of hepta-, octa-, and nonasaccharides, none of which acted as fucosyl acceptors when incubated with pea fucosyltransferase. However, a substantial amount (up to half of hydrolysate) of larger transient oligosaccharides was also formed with a size equivalent to three of the oligosaccharide subunits. Octasaccharide subunits in this trimer were readily fucosylated. This fucosyltransfer was inhibited by uncombined (free) subunit oligosaccharides, which implies that the latter could bind to the transferase and displace at least part of the trimer, even though they could not themselves be fucosylated. Reduction of the trimer oligosaccharide with NaB3H4, followed by further hydrolysis with cellulase, resulted in tritiated nonasaccharide and unlabeled octasaccharide in a concentration ratio of 1:2. The tamarind XG trimer which accepts fucose is therefore composed mainly of the subunit sequence: octa-octa-nonasaccharide (reducing). One of the terminal oligosaccharide subunits in this trimer, probably the nonasaccharide, appears to be required as a recognition (binding) site in fucosyltransferase in order for adjacent octasaccharide(s) to be fucosylated by the active (catalytic) enzyme site.


Asunto(s)
Fucosiltransferasas/metabolismo , Glucanos , Plantas/enzimología , Xilanos , Membrana Celular/enzimología , Celulasa/metabolismo , Fabaceae , Fucosa/metabolismo , Fucosiltransferasas/aislamiento & purificación , Guanosina Difosfato Fucosa/metabolismo , Oligosacáridos/metabolismo , Oxidación-Reducción , Plantas Medicinales , Polisacáridos/metabolismo , Solubilidad , Trichoderma/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA