Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.117
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Toxicol In Vitro ; 80: 105330, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35158046

RESUMEN

Silibinin is a natural polyphenolic flavonoid, isolated from the seeds of the milk thistle of Silybum marianum (L.) Gaertn. Silibinin has been widely used clinically as a traditional medicine for liver diseases. This study investigated the protective role of silibinin in ethanol- or acetaldehyde-induced apoptosis in human carcinomatous liver HepG2 cells and immortalized liver HL7702 cells, focusing on elucidation of the underlying mechanism in vitro. The toxicity of ethanol or acetaldehyde was evaluated by MTT assay. Apoptosis-related proteins, mitochondrial fission-associated proteins and mitochondrial fusion-associated proteins were analyzed by western blotting and immunofluorescence microscopy. Present experimental results demonstrated that silibinin improved cell viability, reduced the enzyme activities of AST/ALT and ALDH/ADH, inhibited apoptosis and recovered mitochondrial function in ethanol- or acetaldehyde-treated HepG2 or HL7702 cells. Silibinin reduced the expression of mitochondrial fission-associated proteins, dynamin-related protein 1 (DRP1), but increased mitochondrial fusion-associated proteins, optic atrophy 1 (OPA1) and mitofusin 1 (MFN1). Accordingly, inhibition of DRP1 activity with its pharmacological inhibitor or siDRP1 efficiently attenuated ethanol- or acetaldehyde-induced apoptosis, whereas activation of DRP1 by using staurosporine (STS) further increased apoptosis in ethanol- or acetaldehyde-treated HepG2 or HL7702 cells. The results show that silibinin protects cells against ethanol- or acetaldehyde-induced mitochondrial fission that results in apoptosis.


Asunto(s)
Acetaldehído/toxicidad , Etanol/toxicidad , Dinámicas Mitocondriales/efectos de los fármacos , Sustancias Protectoras/farmacología , Silibina/farmacología , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Humanos , Hígado/citología , Proteínas Mitocondriales/metabolismo
2.
Mol Med Rep ; 25(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34913065

RESUMEN

Hepatocellular carcinoma is a malignancy with poor clinical prognosis. Hepatic oval cells (HOCs) tend to differentiate into cancerous hepatocellular carcinoma cells (HCCs) in the tumor microenvironment. The purpose of the present study was to explore the role of kangxianruangan granule (KXRG)­containing serum in inhibiting the differentiation of HOCs into HCCs via the Wnt­1/ß­catenin signaling pathway. N­methyl­N'­nitro­N­nitrosoguanidine (MNNG) was applied to induce the transformation of the rat HOC cell line WB­F344 into HCCs. The overexpression plasmid, Wnt­1­up, was utilized to increase Wnt­1 expression. Subsequently, high, medium and low concentrations of KXRG were applied to MNNG­treated WB­F344 cells to assess the inhibitory effect of KXRG on cell differentiation. Flow cytometry was conducted to detect the cell cycle distribution, apoptotic rate and expression of cytokeratin­19 (CK­19) protein in cells. An immunofluorescence double staining protocol was used to detect the expression of Wnt­1 and ß­catenin. ELISAs were performed to detect α fetoprotein in the cell supernatants. Reverse transcription­quantitative PCR and western blotting were conducted to detect the mRNA and protein expression levels of Wnt­1, ß­catenin, Cyclin D1, C­myc, matrix metalloproteinase­7 (MMP­7), Axin2 and epithelial cell adhesion molecule (EpCAM) in cells. Compared with the normal group, the apoptotic rate, proportion of S phase cells, concentration of AFP in the cell supernatant, level of CK­19 protein, and mRNA and protein expression levels of Wnt­1, ß­catenin, Cyclin D1, C­myc, MMP­7, Axin2 and EpCAM were all significantly increased in the model group. Addition of KXRG significantly reduced the aforementioned indicators compared with the model group. Moreover, Wnt­1 overexpression further increased the aforementioned indicators compared with the model group, whereas KXRG significantly inhibited these effects. The results indicated that KXRG inhibited the differentiation of HOCs into HCCs via the Wnt­1/ß­catenin signaling pathway, which suggested the potential clinical application of KXRG for the prevention of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Transformación Celular Neoplásica/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Neoplasias Hepáticas Experimentales/prevención & control , Vía de Señalización Wnt/efectos de los fármacos , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Humanos , Hígado/citología , Hígado/patología , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/patología , Masculino , Metilnitronitrosoguanidina/toxicidad , Ratas , Microambiente Tumoral/efectos de los fármacos
3.
Chem Biol Interact ; 348: 109635, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506763

RESUMEN

Aflatoxin B1 (AFB1) is a mycotoxin highly toxic and carcinogenic to humans due to its potential to induce oxidative stress. The Beta-caryophyllene (BCP) have been highlighted for its broad spectrum of pharmacological effects. The present study aimed to investigate the beneficial effects of BCP against the susceptibility of hepatic and renal tissues to AFB1 toxicity, in biochemical parameters to assess organ function, tissue oxidation, and the immunocontent of oxidative and inflammatory proteins. Male Wistar rats was exposed to AFB1 (250 µg/kg, i.g.) and/or BCP (100 mg/kg, i.p.) for 14 successive days. It was found that exposure to AFB1 did not change the measured renal toxicity parameters. Also, AFB1 increased liver injury biomarkers (gamma glutamyl transferase and alkaline phosphatase) and reduced levels of non-enzymatic antioxidant defenses (ascorbic acid and non-protein thiol), however did not cause changes in the lipid peroxidation levels. Moreover, AFB1 interfered in oxidative pathway regulated by Kelch-like ECH-associated protein (Keap1)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2), overacting Glutathione-S-Transferase (GST) activity. Lastly, a main effect of AFB1 on the total interleukin 1 beta (IL-1ß) was observed. Remarkably, the associated treatment of AFB1 + BCP improved altered liver parameters. In addition, BCP and AFB1 + BCP groups showed an increase in the levels of inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß). Thus, these results indicated that BCP has potential protective effect against AFB1 induced hepatotoxicity.


Asunto(s)
Aflatoxina B1/toxicidad , Citoprotección/efectos de los fármacos , Hígado/efectos de los fármacos , Sesquiterpenos/farmacología , Animales , Antioxidantes/metabolismo , Glutatión/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/citología , Hígado/metabolismo , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
4.
J Pharm Pharmacol ; 73(12): 1663-1674, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34468764

RESUMEN

OBJECTIVES: Cadmium (Cd) induces reactive oxygen species (ROS)-mediated hepatocyte apoptosis and consequential liver disorders. This study aimed to investigate the effect of magnesium isoglycyrrhizinate (MgIG) on Cd-induced hepatotoxicity. METHODS: L02 and AML-12 cells were used to study MgIG hepatoprotective effects. Cd-evoked apoptosis, ROS and protein phosphatase 2A (PP2A)/c-Jun N-terminal kinase (JNK) cascade disruption were analysed by cell viability assay, 6-diamidino-2-phenylindole (DAPI) and TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, ROS imaging and Western blotting. Pharmacological and genetic approaches were used to explore the mechanisms. KEY FINDINGS: We show that MgIG attenuated Cd-evoked hepatocyte apoptosis by blocking JNK pathway. Pre-treatment with SP600125 or ectopic expression of dominant-negative c-Jun enhanced MgIG's anti-apoptotic effects. Further investigation found that MgIG rescued Cd-inactivated PP2A. Inhibition of PP2A activity by okadaic acid attenuated the MgIG's inhibition of the Cd-stimulated JNK pathway and apoptosis; in contrast, overexpression of PP2A strengthened the MgIG effects. In addition, MgIG blocked Cd-induced ROS generation. Eliminating ROS by N-acetyl-l-cysteine abrogated Cd-induced PP2A-JNK pathway disruption and concurrently reinforced MgIG-conferred protective effects, which could be further slightly strengthened by PP2A overexpression. CONCLUSIONS: Our findings indicate that MgIG is a promising hepatoprotective agent for the prevention of Cd-induced hepatic injury by mitigating ROS-inactivated PP2A, thus preventing JNK activation and hepatocyte apoptosis.


Asunto(s)
Cadmio/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología , Triterpenos/farmacología , Animales , Apoptosis , Línea Celular , Supervivencia Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Contaminantes Ambientales/toxicidad , Ácido Glicirrínico , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Hígado/citología , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Estrés Oxidativo/efectos de los fármacos , Saponinas/uso terapéutico , Transducción de Señal , Triterpenos/uso terapéutico
5.
Chem Biol Interact ; 347: 109619, 2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34364837

RESUMEN

Owing to the ineffectiveness of the currently used therapies against melanoma, there has been a shift in focus toward alternative therapies involving the use of natural compounds. This study assessed the anticancer effects of oleanolic acid (OA) and its ability to induce apoptosis in A375SM and A375P melanoma cells in vivo. Compared to the control group, viability of A375P and A375SM cells decreased following OA treatment. In OA-treated A375SM and A375P cells, 4',6-diamidino-2-phenylindole staining showed an increase in the apoptotic body, and flow cytometry revealed increased number of apoptotic cells compared to that in the control group. OA-treated A375SM cells exhibited an increased expression of the apoptotic proteins, cleaved poly (ADP-ribose) polymerase (PARP) and B-cell lymphoma (Bcl)-2-associated X protein (Bax) as well as decreased expression of the antiapoptotic protein Bcl-2 compared to that in the control group. In OA-treated A375P cells, expression patterns of cleaved PARP and Bcl-2 were similar to those in OA-treated A375SM cells; however, no difference was reported in the expression of Bax compared to that in the control group. Additionally, OA-treated melanoma cells showed decreased expression of phospho-nuclear factor-κB (p-NF-κB), phospho-inhibitor of nuclear factor-κBα (p-IκBα), and phospho-IκB kinase αß than that in the control group. Moreover, immunohistochemistry showed a comparatively decreased level of p-NF-κB in the OA-treated group than that in the control group. Xenograft analysis confirmed the in vivo anticancer effects of OA against A375SM cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay revealed an increased number of TUNEL-positive cells in the OA-treated group compared to that in the control group. In conclusion, the study results suggest that OA induces apoptosis of A375SM and A375P cells in vitro and apoptosis of A375SM cells in vivo. Furthermore, the in vitro and in vivo anticancer effects were mediated by the NF-κB pathway.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Ácido Oleanólico/uso terapéutico , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos BALB C , Subunidad p50 de NF-kappa B/metabolismo , Neoplasias/metabolismo , Ácido Oleanólico/farmacología , Ácido Oleanólico/toxicidad , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Molecules ; 26(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068164

RESUMEN

Astragaloside IV (AS-IV) is one of the major bio-active ingredients of huang qi which is the dried root of Astragalus membranaceus (a traditional Chinese medicinal plant). The pharmacological effects of AS-IV, including anti-oxidative, anti-cancer, and anti-diabetic effects have been actively studied, however, the effects of AS-IV on liver regeneration have not yet been fully described. Thus, the aim of this study was to explore the effects of AS-IV on regenerating liver after 70% partial hepatectomy (PHx) in rats. Differentially expressed mRNAs, proliferative marker and growth factors were analyzed. AS-IV (10 mg/kg) was administrated orally 2 h before surgery. We found 20 core genes showed effects of AS-IV, many of which were involved with functions related to DNA replication during cell division. AS-IV down-regulates MAPK signaling, PI3/Akt signaling, and cell cycle pathway. Hepatocyte growth factor (HGF) and cyclin D1 expression were also decreased by AS-IV administration. Transforming growth factor ß1 (TGFß1, growth regulation signal) was slightly increased. In short, AS-IV down-regulated proliferative signals and genes related to DNA replication. In conclusion, AS-IV showed anti-proliferative activity in regenerating liver tissue after 70% PHx.


Asunto(s)
Ciclo Celular , Replicación del ADN , Regulación hacia Abajo , Hepatectomía , Regeneración Hepática/efectos de los fármacos , Hígado/citología , Saponinas/farmacología , Triterpenos/farmacología , Animales , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Replicación del ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Factor de Crecimiento de Hepatocito/metabolismo , Hígado/efectos de los fármacos , Hígado/cirugía , Masculino , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Saponinas/química , Análisis de Secuencia de ARN , Factor de Crecimiento Transformador beta1/metabolismo , Triterpenos/química
7.
Chem Biodivers ; 18(8): e2100206, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34142430

RESUMEN

Chrysanthemum Flos is the prestigious traditional Chinese medicinal material and the popular health drink. This article comprehensively evaluated the chemical constituents, antioxidant activity, and hepatoprotective effects of 25 common chrysanthemum varieties in China. Firstly, we analyzed the chemical compositions of water extracts of chrysanthemum using UPLC/Q-TOF-MS, and identified 29 chemical components. The results displayed that chrysanthemum was rich in chemical constituents, but there were significant differences in the contents of four phenolic acids and five flavonoids among different varieties, and the coefficient of variation (CVs) ranged from 35.96 % to 114.62 %. Then, the antioxidant activities of different chrysanthemums were investigated, respectively via 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and Ferric Reducing Antioxidant Power (FRAP) assays. The spectrum-effect relationships between nine main components and antioxidant activities were investigated to identify the antioxidant constitutes in chrysanthemums. Meanwhile, H2 O2 -induced hepatocyte injury testing showed wide variation in cultivar antioxidant capacity, with Tongchengju (TCJ) producing the best effect (90.32 %), followed by Chuju (CJ; 85.78 %). In addition, the hepatoprotective effects of 8 mainstream varieties were determined by the model of acute alcoholic liver injury. They protected liver from injury by affecting relevant liver function and antioxidant indexes. Huangshangongju (HSG) could decrease aspartate aminotransferase (AST) activity by 39.27 % in liver tissue; Hangju-Fubaiju (HJ-FBJ), Jinsihuangju (JSH), and Chuju (CJ) significantly decreased the malondialdehyde (MDA) content of liver tissue, which reduced by more than 40 %; Jinsihuangju (JSH) of used for tea could double the content of glutathione (GSH) and had the similar effect on superoxide dismutase (SOD) as the positive group, showing significant antioxidant capacity. Therefore, this study confirmed that chrysanthemums are potential resources as antioxidants, functional foods, and medicinal materials. Importantly, it may provide a scientific support for further development and utilization of chrysanthemum, and screen excellent varieties for different demands.


Asunto(s)
Chrysanthemum/química , Extractos Vegetales/química , Animales , Antioxidantes/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , China , Chrysanthemum/metabolismo , Flores/química , Flores/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Malondialdehído/metabolismo , Medicina Tradicional China , Ratones , Fenoles/química , Fenoles/aislamiento & purificación , Fenoles/farmacología , Extractos Vegetales/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación , Sustancias Protectoras/farmacología
8.
J Vis Exp ; (171)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34096925

RESUMEN

Metabolic dysfunction-associated fatty liver disease (MAFLD), previously known as non-alcoholic fatty liver disease (NAFLD), is the most prevalent liver disease worldwide due to its relationship with obesity, diabetes type 2, and dyslipidemia. Hepatic steatosis, the accumulation of lipid droplets in the liver parenchyma, is a key feature of the disease preceding the inflammation observed in steatohepatitis, fibrosis, and end-stage liver disease. Lipid accumulation in hepatocytes might interfere with proper metabolism of xenobiotics and endogenous molecules, as well as to induce cellular processes leading to the advance of the disease. Although the experimental study of steatosis can be performed in vivo, in vitro approaches to the study of steatosis are complementary tools with different advantages. Hepatocyte culture in lipid overload-conditioned medium is an excellent reproducible option for the study of hepatic steatosis allowing the identification of cellular processes related to lipid accumulation, such as oxidative and reticular stresses, autophagia, proliferation, cell death, etcetera, as well as other testing including drug effectiveness, and toxicological testing, among many other possible applications. Here, it was aimed to describe the methodology of hepatocyte cell culture in lipid overload-conditioned medium. HepG2 cells were cultured in RMPI 1640 medium conditioned with sodium palmitate and sodium oleate. Importantly, the ratio of these two lipids is crucial to favor lipid droplet accumulation, while maintaining cell proliferation and a moderate mortality rate, as occurs in the liver during the disease. The methodology, from the preparation of the lipid solution stocks, mixture, addition to the medium, and hepatocyte culture is shown. With this approach, it is possible to identify lipid droplets in the hepatocytes that are readily observable by Oil-red O staining, as well as curves of proliferation/mortality rates.


Asunto(s)
Técnicas de Cultivo de Célula , Hepatocitos , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Medios de Cultivo Condicionados/metabolismo , Células Hep G2 , Humanos , Hígado/citología , Hígado/metabolismo , Ácido Palmítico/metabolismo
9.
Clin Transl Sci ; 14(5): 1659-1680, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33982436

RESUMEN

Nonclinical testing has served as a foundation for evaluating potential risks and effectiveness of investigational new drugs in humans. However, the current two-dimensional (2D) in vitro cell culture systems cannot accurately depict and simulate the rich environment and complex processes observed in vivo, whereas animal studies present significant drawbacks with inherited species-specific differences and low throughput for increased demands. To improve the nonclinical prediction of drug safety and efficacy, researchers continue to develop novel models to evaluate and promote the use of improved cell- and organ-based assays for more accurate representation of human susceptibility to drug response. Among others, the three-dimensional (3D) cell culture models present physiologically relevant cellular microenvironment and offer great promise for assessing drug disposition and pharmacokinetics (PKs) that influence drug safety and efficacy from an early stage of drug development. Currently, there are numerous different types of 3D culture systems, from simple spheroids to more complicated organoids and organs-on-chips, and from single-cell type static 3D models to cell co-culture 3D models equipped with microfluidic flow control as well as hybrid 3D systems that combine 2D culture with biomedical microelectromechanical systems. This article reviews the current application and challenges of 3D culture systems in drug PKs, safety, and efficacy assessment, and provides a focused discussion and regulatory perspectives on the liver-, intestine-, kidney-, and neuron-based 3D cellular models.


Asunto(s)
Alternativas al Uso de Animales/métodos , Técnicas de Cultivo Tridimensional de Células , Evaluación Preclínica de Medicamentos/métodos , Alternativas al Uso de Animales/normas , Células Cultivadas , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/normas , Humanos , Intestinos/citología , Riñón/citología , Hígado/citología , Neuronas , Esferoides Celulares , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Estados Unidos , United States Food and Drug Administration/normas
10.
Mol Pharm ; 18(4): 1792-1805, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33739838

RESUMEN

Human liver microsomes (HLM) and human hepatocytes (HH) are important in vitro systems for studies of intrinsic drug clearance (CLint) in the liver. However, the CLint values are often in disagreement for these two systems. Here, we investigated these differences in a side-by-side comparison of drug metabolism in HLM and HH prepared from 15 matched donors. Protein expression and intracellular unbound drug concentration (Kpuu) effects on the CLint were investigated for five prototypical probe substrates (bupropion-CYP2B6, diclofenac-CYP2C9, omeprazole-CYP2C19, bufuralol-CYP2D6, and midazolam-CYP3A4). The samples were donor-matched to compensate for inter-individual variability but still showed systematic differences in CLint. Global proteomics analysis outlined differences in HLM from HH and homogenates of human liver (HL), indicating variable enrichment of ER-localized cytochrome P450 (CYP) enzymes in the HLM preparation. This suggests that the HLM may not equally and accurately capture metabolic capacity for all CYPs. Scaling CLint with CYP amounts and Kpuu could only partly explain the discordance in absolute values of CLint for the five substrates. Nevertheless, scaling with CYP amounts improved the agreement in rank order for the majority of the substrates. Other factors, such as contribution of additional enzymes and variability in the proportions of active and inactive CYP enzymes in HLM and HH, may have to be considered to avoid the use of empirical scaling factors for prediction of drug metabolism.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/enzimología , Hígado/enzimología , Microsomas Hepáticos/enzimología , Bupropión/farmacocinética , Sistema Enzimático del Citocromo P-450/análisis , Diclofenaco/farmacocinética , Etanolaminas/farmacocinética , Eliminación Hepatobiliar , Humanos , Hígado/citología , Midazolam/farmacocinética , Omeprazol/farmacocinética , Proteoma/análisis , Proteómica
11.
Gastroenterology ; 160(3): 831-846.e10, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33039464

RESUMEN

BACKGROUND & AIMS: Preclinical identification of compounds at risk of causing drug induced liver injury (DILI) remains a significant challenge in drug development, highlighting a need for a predictive human system to study complicated DILI mechanism and susceptibility to individual drug. Here, we established a human liver organoid (HLO)-based screening model for analyzing DILI pathology at organoid resolution. METHODS: We first developed a reproducible method to generate HLO from storable foregut progenitors from pluripotent stem cell (PSC) lines with reproducible bile transport function. The qRT-PCR and single cell RNA-seq determined hepatocyte transcriptomic state in cells of HLO relative to primary hepatocytes. Histological and ultrastructural analyses were performed to evaluate micro-anatomical architecture. HLO based drug-induced liver injury assays were transformed into a 384 well based high-speed live imaging platform. RESULTS: HLO, generated from 10 different pluripotent stem cell lines, contain polarized immature hepatocytes with bile canaliculi-like architecture, establishing the unidirectional bile acid transport pathway. Single cell RNA-seq profiling identified diverse and zonal hepatocytic populations that in part emulate primary adult hepatocytes. The accumulation of fluorescent bile acid into organoid was impaired by CRISPR-Cas9-based gene editing and transporter inhibitor treatment with BSEP. Furthermore, we successfully developed an organoid based assay with multiplexed readouts measuring viability, cholestatic and/or mitochondrial toxicity with high predictive values for 238 marketed drugs at 4 different concentrations (Sensitivity: 88.7%, Specificity: 88.9%). LoT positively predicts genomic predisposition (CYP2C9∗2) for Bosentan-induced cholestasis. CONCLUSIONS: Liver organoid-based Toxicity screen (LoT) is a potential assay system for liver toxicology studies, facilitating compound optimization, mechanistic study, and precision medicine as well as drug screening applications.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hepatocitos/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento/métodos , Hígado/efectos de los fármacos , Organoides/efectos de los fármacos , Línea Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/patología , Humanos , Hígado/citología , Hígado/patología , Organoides/patología , Células Madre Pluripotentes/citología , Pruebas de Toxicidad Aguda/métodos
12.
Clin Transl Sci ; 14(3): 1049-1061, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33382907

RESUMEN

Liver microphysiological systems (MPSs) are promising models for predicting hepatic drug effects. Yet, after a decade since their introduction, MPSs are not routinely used in drug development due to lack of criteria for ensuring reproducibility of results. We characterized the feasibility of a liver MPS to yield reproducible outcomes of experiments assaying drug toxicity, metabolism, and intracellular accumulation. The ability of the liver MPS to reproduce hepatotoxic effects was assessed using trovafloxacin, which increased lactate dehydrogenase (LDH) release and reduced cytochrome P450 3A4 (CYP3A4) activity. These observations were made in two test sites and with different batches of Kupffer cells. Upon culturing equivalent hepatocytes in the MPS, spheroids, and sandwich cultures, differences between culture formats were detected in CYP3A4 activity and albumin production. Cells in all culture formats exhibited different sensitivities to hepatotoxicant exposure. Hepatocytes in the MPS were more functionally stable than those of other culture platforms, as CYP3A4 activity and albumin secretion remained prominent for greater than 18 days in culture, whereas functional decline occurred earlier in spheroids (12 days) and sandwich cultures (7 days). The MPS was also demonstrated to be suitable for metabolism studies, where CYP3A4 activity, troglitazone metabolites, diclofenac clearance, and intracellular accumulation of chloroquine were quantified. To ensure reproducibility between studies with the MPS, the combined use of LDH and CYP3A4 assays were implemented as quality control metrics. Overall results indicated that the liver MPS can be used reproducibly in general drug evaluation applications. Study outcomes led to general considerations and recommendations for using liver MPSs. Study Highlights WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? Microphysiological systems (MPSs) have been designed to recreate organ- or tissue-specific characteristics of extracellular microenvironments that enhance the physiological relevance of cells in culture. Liver MPSs enable long-lasting and stable culture of hepatic cells by culturing them in three-dimensions and exposing them to fluid flow. WHAT QUESTION DID THIS STUDY ADDRESS? What is the functional performance relative to other cell culture platforms and the reproducibility of a liver MPS for assessing drug development and evaluation questions, such as toxicity, metabolism, and pharmacokinetics? WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE? The liver MPS systematically detected the toxicity of trovafloxacin. When compared with spheroids and sandwich cultures, this system had a more stable function and different sensitivity to troglitazone, tamoxifen, and digoxin. Quantifying phase II metabolism of troglitazone and intracellular accumulation of chloroquine demonstrated the potential use of the liver MPS for studying drug metabolism and pharmacokinetics. Quality control criteria for assessing chip function were key for reliably using the liver MPS. HOW MIGHT THIS CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE? Due to its functional robustness and physiological relevance (3D culture, cells expose to fluid flow and co-culture of different cell types), the liver MPS can, in a reproducible manner: (i) detect inflammatory-induced drug toxicity, as demonstrated with trovafloxacin, (ii) detect the toxicity of other drugs, such as troglitazone, tamoxifen, and digoxin, with different effects than those detected in spheroids and sandwich cultures, (iii) enable studies of hepatic function that rely on prolonged cellular activity, and (iv) detect phase II metabolites and drug accumulation to potentially support the interpretation of clinical data. The integration of MPSs in drug development will be facilitated by careful evaluation of performance and reproducibility as performed in this study.


Asunto(s)
Hígado/efectos de los fármacos , Cultivo Primario de Células/métodos , Pruebas de Toxicidad/métodos , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Evaluación Preclínica de Medicamentos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Hígado/citología , Hígado/metabolismo , Modelos Biológicos , Cultivo Primario de Células/instrumentación , Reproducibilidad de los Resultados , Esferoides Celulares , Pruebas de Toxicidad/instrumentación
13.
Phytother Res ; 35(6): 2925-2944, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33368795

RESUMEN

Globally, one of the alarming problems is the prevalence and burden of liver diseases, which accounts for 2 million cases per year. Chronic liver aetiologies such as hepatitis infections, alcoholic or non-alcoholic liver disease, environmental agents, and drug-induced toxicity are invariably responsible for liver fibrosis progression to finally hepatocellular carcinoma. Current treatment options are unable to overwhelm and cure liver diseases. Emerging findings suggest researchers' interest in using evidence-based complementary medicine such as ellagic acid with extensive pharmacological properties. They include antioxidant, anti-inflammatory, anti-hyperlipidaemic, anti-viral, anti-angiogenic, and anticancer activity. The molecular functions elicited by ellagic acid include scavenging of free radicals, regulation of lipid metabolism, the prohibition of fibrogenesis response-mediating proteins, inhibits hepatic stellate cells and myofibroblasts, restrains hepatic viral replication, facilitates suppression of growth factors, regulates transcription factors, proinflammatory cytokines, augments the liver immune response, fosters apoptosis and inhibits cell proliferation in tumorigenic cells. This review will most notably focus on preclinical and clinical information based on currently available evidence to warrant ellagic acid's prospective role in preventing liver diseases.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antivirales/farmacología , Ácido Elágico/farmacología , Hepatopatías , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Antioxidantes/uso terapéutico , Antivirales/uso terapéutico , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Ácido Elágico/uso terapéutico , Células Estrelladas Hepáticas/efectos de los fármacos , Humanos , Hígado/citología , Hígado/patología , Cirrosis Hepática/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Magnoliopsida/química , Fitoterapia , Extractos Vegetales/uso terapéutico , Estudios Prospectivos
14.
Int J Biol Macromol ; 167: 1587-1597, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33217459

RESUMEN

Undaria pinnatifida was shown to reduce serum lipids and fat accumulation and produce beneficial effect on type 2 diabetes, but its effect on intestinal micro-ecology remains unclear. This study showed that sulfated polysaccharides from U. pinnatifida (UPSP) reduced weight gain, fat accumulation and metabolic disorders in mice fed with high fat diet (HFD). UPSP not only alleviated HFD-induced microbiota dysbiosis indicated as increased abundances of some Bacteroidales members that had positive correlations with the improvement of physiological indexes, but also maintained gut barrier integrity and reduced metabolic endotoxemia. A dose-effect relationship was observed between the dose of UPSP and its effect on some physiological indexes, gut microbiota community and nutrient utilization. The in vitro result showed that the use of Bacteroides species within Bacteroidales on UPSP was species-dependent, and the dose of UPSP affected the growth properties of some Bacteroides species. It implied that UPSP can be considered as prebiotic agent to prevent gut dysbiosis and obesity-related diseases in obese individuals.


Asunto(s)
Disbiosis/prevención & control , Microbioma Gastrointestinal/efectos de los fármacos , Inflamación/dietoterapia , Síndrome Metabólico/dietoterapia , Polisacáridos/farmacología , Sulfatos/farmacología , Undaria/química , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/patología , Animales , Fármacos Antiobesidad/farmacología , Bacteroides/efectos de los fármacos , Colon/citología , Colon/efectos de los fármacos , Colon/patología , Dieta Alta en Grasa/efectos adversos , Disbiosis/dietoterapia , Disbiosis/metabolismo , Endotoxemia/dietoterapia , Ácidos Grasos Volátiles/análisis , Heces/microbiología , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Imagen por Resonancia Magnética , Masculino , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos BALB C , Extractos Vegetales/farmacología , Polisacáridos/análisis , Polisacáridos/aislamiento & purificación , Prebióticos
15.
Viruses ; 12(11)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182673

RESUMEN

Dengue is an acute viral disease caused by Dengue virus (DENV) and is considered to be the most common arbovirus worldwide. The clinical characteristics of dengue may vary from asymptomatic to severe complications and severe organ impairment, particularly affecting the liver. Dengue treatment is palliative with acetaminophen (APAP), usually known as Paracetamol, being the most used drug aiming to relieve the mild symptoms of dengue. APAP is a safe and effective drug but, like dengue, can trigger the development of liver disorders. Given this scenario, it is necessary to investigate the effects of combining these two factors on hepatocyte homeostasis. Therefore, this study aimed to evaluate the molecular changes in hepatocytes resulting from the association between DENV infection and treatment with sub-toxic APAP concentrations. Using an in vitro experimental model of DENV-2 infected hepatocytes (AML-12 cells) treated with APAP, we evaluated the influence of the virus and drug association on the transcriptome of these hepatocytes by RNA sequencing (RNAseq). The virus-drug association was able to induce changes in the gene expression profile of AML-12 cells and here we highlight and explore these changes and its putative influence on biological processes for cellular homeostasis.


Asunto(s)
Acetaminofén/farmacología , Analgésicos no Narcóticos/farmacología , Virus del Dengue/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Interacciones Microbiota-Huesped , Transcriptoma , Animales , Línea Celular , Homeostasis/efectos de los fármacos , Interacciones Microbiota-Huesped/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Hígado/citología , Hígado/efectos de los fármacos , Hígado/virología , Ratones , Análisis de Secuencia de ARN , Replicación Viral/efectos de los fármacos
16.
Adv Biosyst ; 4(11): e2000079, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33073544

RESUMEN

Drug-drug interactions (DDIs) occur when the pharmacological activity of one drug is altered by a second drug. As multimorbidity and polypharmacotherapy are becoming more common due to the increasing age of the population, the risk of DDIs is massively increasing. Therefore, in vitro testing methods are needed to capture such multiorgan events. Here, a scalable, gravity-driven microfluidic system featuring 3D microtissues (MTs) that represent different organs for the prediction of drug-drug interactions is used. Human liver microtissues (hLiMTs) are combined with tumor microtissues (TuMTs) and treated with drug combinations that are known to cause DDIs in vivo. The testing system is able to capture and quantify DDIs upon co-administration of the anticancer prodrugs cyclophosphamide or ifosfamide with the antiretroviral drug ritonavir. Dosage of ritonavir inhibits hepatic metabolization of the two prodrugs to different extents and decreases their efficacy in acting on TuMTs. The flexible MT compartment design of the system, the use of polystyrene as chip material, and the assembly of several chips in stackable plates offer the potential to significantly advance preclinical substance testing. The possibility of testing a broad variety of drug combinations to identify possible DDIs will improve the drug development process and increase patient safety.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Interacciones Farmacológicas , Técnicas Analíticas Microfluídicas , Análisis de Matrices Tisulares/métodos , Técnicas de Cultivo de Tejidos/métodos , Supervivencia Celular/efectos de los fármacos , Células HCT116 , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Hígado/citología , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Ritonavir/farmacología
17.
Drug Metab Dispos ; 48(12): 1283-1292, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037043

RESUMEN

It is well documented that human hepatic clearance based on in vitro metabolism or transporter assays systematically resulted in underprediction; therefore, large empirical scalars are often needed in either static or physiologically based pharmacokinetic (PBPK) models to accurately predict human pharmacokinetics (PK). In our current investigation, we assessed hepatic uptake in hepatocyte suspension in Krebs-Henseleit buffer in the presence and absence of serum. The results showed that the unbound intrinsic active clearance (CLu,int,active) values obtained by normalizing the unbound fraction in the buffer containing 10% serum were generally higher than the CLu,int,active obtained directly from protein free buffer, suggesting "protein-facilitated" uptake. The differences of CLu,int,active in the buffer with and without protein ranged from 1- to 925-fold and negatively correlated to the unbound serum binding of organic anion transporting polypeptide substrates. When using the uptake values obtained from buffer containing serum versus serum-free buffer, the median of scaling factors (SFs) for CLu,int,active reduced from 24.2-4.6 to 22.7-7.1 for human and monkey, respectively, demonstrating the improvement of in vitro to in vivo extrapolation in a PBPK model. Furthermore, values of CLu,int,active were significantly higher in monkey hepatocytes than that in human, and the species differences appeared to be compound dependent. Scaling up in vitro uptake values derived in assays containing species-specific serum can compensate for the species-specific variabilities when using cynomolgus monkey as a probe animal model. Incorporating SFs calibrated in monkey and together with scaled in vitro data can be a reliable approach for the prospective human PK prediction in early drug discovery. SIGNIFICANCE STATEMENT: We investigated the protein effect on hepatic uptake in human and monkey hepatocytes and improved the in vitro to in vivo extrapolation using parameters obtained from the incubation in the present of serum protein. In addition, significantly higher active uptake clearances were observed in monkey hepatocytes than in human, and the species differences appeared to be compound dependent. The physiologically based pharmacokinetic model that incorporates scaling factors calibrated in monkey and together with scaled in vitro human data can be a reliable approach for the prospective human pharmacokinetics prediction.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Eliminación Hepatobiliar/fisiología , Hígado/metabolismo , Especificidad de la Especie , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos , Humanos , Infusiones Intravenosas , Hígado/citología , Macaca fascicularis , Masculino , Modelos Animales , Modelos Biológicos , Transportadores de Anión Orgánico/metabolismo , Quinolinas/administración & dosificación , Quinolinas/farmacocinética
18.
Food Funct ; 11(10): 8659-8669, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32936195

RESUMEN

We aimed to evaluate the anti-fatigue effects of the oyster polypeptide (OP) fraction and its regulatory effect on the gut microbiota in mice. Our exhaustive swimming experiment showed that the swimming time of the low-, middle- and high-dose groups of the OP fraction was increased by 1.82, 2.18 and 2.44 times compared with the control group, respectively. Besides, the liver glycogen levels of the three groups were increased by 19.3%, 42.02% and 65.07%, while the lactate levels were decreased by 18.85%, 21.18% and 28.74%, respectively. Moreover, administration of the OP fraction upregulated the expressions of PEPCK and AMPK, but downregulated the TNF-α expression. Correlation analysis between the gut microbiota and fatigue-related biochemical indicators showed that Faecalibacterium, Desulfovibri and Intestinibacter were negatively correlated with the swimming time, blood lactate, blood urea nitrogen, liver glycogen and muscle glycogen, while Yaniella and Romboutsia were positively correlated. Therefore, the OP fraction had anti-fatigue effects, and could regulate the abundance of gut microbiota and maintain its balance.


Asunto(s)
Fatiga , Microbioma Gastrointestinal/efectos de los fármacos , Ostreidae/química , Péptidos/farmacología , Animales , Nitrógeno de la Urea Sanguínea , Peso Corporal/efectos de los fármacos , Fatiga/genética , Fatiga/metabolismo , Fatiga/microbiología , Fatiga/patología , Expresión Génica , Glutatión Peroxidasa/sangre , Glucógeno/metabolismo , Ácido Láctico/sangre , Hígado/citología , Hígado/efectos de los fármacos , Glucógeno Hepático/metabolismo , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Péptidos/química , Esfuerzo Físico , Superóxido Dismutasa/sangre , Natación
19.
Genes (Basel) ; 11(9)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32961898

RESUMEN

Animal fats are considered to be unhealthy, in contrast to vegetable fats, which are rich in unsaturated fatty acids. However, the use of some fats, such as coconut oil, is still controversial. In our experiment, we divided experimental animals (domestic pigs) into three groups differing only in the type of fat used in the diet: group R: rapeseed oil (n = 5); group B: beef tallow (n = 5); group C: coconut oil (n = 6). After transcriptomic analysis of liver samples, we identified 188, 93, and 53 DEGs (differentially expressed genes) in R vs. B, R vs. C, and B vs. C comparisons, respectively. Next, we performed a functional analysis of identified DEGs with String and IPA software. We observed the enrichment of genes engaged in the unfolded protein response (UPR) and the acute phase response among genes upregulated in B compared to R. In contrast, cholesterol biosynthesis and cholesterol efflux enrichments were observed among genes downregulated in B when compared to R. Moreover, activation of the UPR and inhibition of the sirtuin signaling pathway were noted in C when compared to R. The most striking difference in liver transcriptomic response between C and B was the activation of the acute phase response and inhibition of bile acid synthesis in the latest group. Our results suggest that excessive consumption of animal fats leads to the activation of a cascade of mutually propelling processes harmful to the liver: inflammation, UPR, and imbalances in the biosynthesis of cholesterol and bile acids via altered organelle membrane composition. Nevertheless, these studies should be extended with analysis at the level of proteins and their function.


Asunto(s)
Reacción de Fase Aguda/genética , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Grasas de la Dieta/administración & dosificación , Regulación de la Expresión Génica , Hígado/metabolismo , Respuesta de Proteína Desplegada/genética , Animales , Femenino , Hígado/citología , Hígado/efectos de los fármacos , Masculino , RNA-Seq , Porcinos , Respuesta de Proteína Desplegada/efectos de los fármacos
20.
Biol Pharm Bull ; 43(9): 1382-1392, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879213

RESUMEN

The effects of different dietary fats on hepatic fatty acid oxidation were compared in male ICR mice and Sprague-Dawley rats. Animals were fed diets containing 100 g/kg of either palm oil (saturated fat), safflower oil (rich in linoleic acid), an oil of evening primrose origin (γ-linolenic acid, GLA oil), perilla oil (α-linolenic acid) or fish oil (eicosapentaenoic and doxosahexaenoic acids) for 21 d. GLA, perilla and fish oils, compared with palm and safflower oils, increased the activity of fatty acid oxidation enzymes in both mice and rats, with some exceptions. In mice, GLA and fish oils greatly increased the peroxisomal palmitoyl-CoA oxidation rate, and the activity of acyl-CoA oxidase and enoyl-CoA hydratase to the same degree. The effects were much smaller with perilla oil. In rats, enhancing effects were more notable with fish oil than with GLA and perilla oils, excluding the activity of enoyl-CoA hydratase, and were comparable between GLA and perilla oils. In mice, strong enhancing effects of GLA oil, which were greater than with perilla oil and comparable to those of fish oil, were confirmed on mRNA levels of peroxisomal but not mitochondrial fatty acid oxidation enzymes. In rats, the effects of GLA and perilla oils on mRNA levels of peroxisomal and mitochondrial enzymes were indistinguishable, and lower than those observed with fish oil. Therefore, considerable diversity in the response to dietary polyunsaturated fats, especially the oil rich in γ-linolenic acid and fish oil, of hepatic fatty acid oxidation pathway exists between mice and rats.


Asunto(s)
Grasas de la Dieta/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Ácido gammalinolénico/administración & dosificación , Acil-CoA Oxidasa/metabolismo , Alimentación Animal , Animales , Enoil-CoA Hidratasa/metabolismo , Aceites de Pescado/administración & dosificación , Aceites de Pescado/química , Hígado/citología , Hígado/enzimología , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Oxidación-Reducción/efectos de los fármacos , Peroxisomas/efectos de los fármacos , Peroxisomas/enzimología , Aceites de Plantas/administración & dosificación , Aceites de Plantas/química , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA