Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2021: 9013280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712389

RESUMEN

Maternal severe zinc (Zn) deficiency resulted in growth retardation and high mortality during embryonic development in human. Therefore, this study is aimed at evaluating the effect of maternal marginal Zn deficiency on the development and redox status to avoid severe Zn deficiency using an avian model. A total of 324 laying duck breeders at 214 days old were randomly allotted into 3 dietary Zn levels with 6 replicates of 18 ducks per replicate. The birds were fed experimental diets including 3 dietary supplemental Zn levels of 0 mg/kg (maternal Zn-deficient group, 29.2 mg Zn/kg diet), 60 mg/kg (maternal Zn-adequate group), and 120 mg/kg (maternal Zn-high group) for 6 weeks. Dietary Zn levels had on effect on egg production and fertility (P > 0.05), whereas dietary Zn deficiency decreased breeder plasma Zn concentration and erythrocytic alkaline phosphatase activity at week 6 and inhibited erythrocytic 5'-nucleotidase (5'-NT) activity at weeks 2, 4, and 6 (P < 0.05), indicating that marginal Zn-deficient status occurred after Zn depletion. Maternal marginal Zn deficiency increased embryonic mortality and contents of superoxide anion radical, MDA, and PPC and reduced MT content and CuZnSOD activity in duck embryonic livers on E29. The MDA content was positively correlated with embryonic mortality. Maternal marginal Zn deficiency increased BCL2-associated X protein and Caspase-9 mRNA expressions as well as decreased B-cell lymphoma-2 and MT1 mRNA and signal AKT1 and ERK1 protein expressions (P < 0.05). Breeder plasma Zn concentration and erythrocytic 5'-NT activities at week 6 were positively correlated with GSH-Px activity and GPx, MT1, and BCL2 mRNA expressions in embryonic livers on E29. In conclusion, erythrocytic 5'-NT activity could be more rapid and reliable to monitor marginal Zn-deficient status. Marginal Zn deficiency impaired hatchability and antioxidant defense system and then induced oxidative damage and apoptosis in the embryonic liver, contributing to the greater loss of duck embryonic death.


Asunto(s)
Apoptosis , Enfermedades Carenciales/metabolismo , Patos/embriología , Embrión no Mamífero/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Estrés Oxidativo , Zinc/deficiencia , 5'-Nucleotidasa/sangre , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Enfermedades Carenciales/genética , Enfermedades Carenciales/patología , Enfermedades Carenciales/fisiopatología , Modelos Animales de Enfermedad , Embrión no Mamífero/patología , Eritrocitos/enzimología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hígado/embriología , Hígado/enzimología , Estado Nutricional , Oxidación-Reducción , Estrés Oxidativo/genética
2.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360631

RESUMEN

Gestational diabetes mellitus (GDM) is defined as an impairment of glucose tolerance, manifested by hyperglycemia, which occurs at any stage of pregnancy. GDM is more common in the third trimester of pregnancy and usually disappears after birth. It was hypothesized that the glycemic status of the mother can modulate liver development and growth early during the pregnancy. The simplest modality to monitor the evolution of GDM employs noninvasive techniques. In this category, routinely obstetrical ultrasound (OUS) examinations (simple or 2D/3D) can be employed for specific fetal measurements, such as fetal liver length (FLL) or volume (FLV). FLL and FLV may emerge as possible predictors of GDM as they positively relate to the maternal glycated hemoglobin (HbA1c) levels and to the results of the oral glucose tolerance test. The aim of this review is to offer insight into the relationship between GDM and fetal nutritional status. Risk factors for GDM and the short- and long-term outcomes of GDM pregnancies are also discussed, as well as the significance of different dietary patterns. Moreover, the review aims to fill one gap in the literature, investigating whether fetal liver growth can be used as a predictor of GDM evolution. To conclude, although studies pointed out a connection between fetal indices and GDM as useful tools in the early detection of GDM (before 23 weeks of gestation), additional research is needed to properly manage GDM and offspring health.


Asunto(s)
Diabetes Gestacional/etiología , Hígado/embriología , Diabetes Gestacional/diagnóstico por imagen , Diabetes Gestacional/dietoterapia , Dieta/efectos adversos , Diagnóstico Precoz , Femenino , Humanos , Hígado/diagnóstico por imagen , Fenómenos Fisiologicos Nutricionales Maternos , Terapia Nutricional , Tamaño de los Órganos , Embarazo , Ultrasonografía Prenatal
3.
Alcohol Clin Exp Res ; 45(10): 2130-2146, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34342027

RESUMEN

BACKGROUND: Maternal choline supplementation in rats can ameliorate specific neurological and behavioral abnormalities caused by alcohol exposure during pregnancy. We tested whether choline supplementation ameliorates fetal growth restriction and molecular changes in the placenta associated with periconceptional ethanol exposure (PCE) in the rat. METHODS: Sprague Dawley dams were given either 12.5% ethanol (PCE) or 0% ethanol (Con) in a liquid diet from 4 days prior to 4 days after conception. At day 5 of pregnancy, dams were either placed on a standard chow (1.6 g choline/kg chow) or an intermediate chow (2.6 g choline/kg chow). On day 10 of pregnancy, a subset of the intermediate dams were placed on a chow further supplemented with choline (7.2 g choline/kg chow), resulting in 6 groups. Fetuses and placentas were collected on day 20 of pregnancy for analysis. RESULTS: Choline supplementation resulted in increased fetal weight at late gestation, ameliorating the deficits due to PCE. This was most pronounced in litters on a standard chow during pregnancy. Choline also increased fetal liver weight and decreased fetal brain:liver ratio, independent of alcohol exposure. Placental weight was reduced as choline levels in the chow increased, particularly in female placentas. This resulted in a greater ratio of fetal:placental weight, suggesting increased placental efficiency. Global DNA methylation in the placenta was altered in a sex-specific manner by both PCE and choline. However, the increased glycogen deposition in female placentas, previously reported in this PCE model, was not prevented by choline supplementation. CONCLUSIONS: Our results suggest that choline has the potential to ameliorate fetal growth restriction associated with PCE and improve placental efficiency following prenatal alcohol exposure. Our study highlights the importance of maternal nutrition in moderating the severity of adverse fetal and placental outcomes that may arise from prenatal alcohol exposure around the time of conception.


Asunto(s)
Colina/administración & dosificación , Etanol/efectos adversos , Fertilización , Retardo del Crecimiento Fetal/prevención & control , Feto/efectos de los fármacos , Placenta/efectos de los fármacos , Animales , Encéfalo/embriología , Colina/sangre , Metilación de ADN , Suplementos Dietéticos , Femenino , Desarrollo Fetal/efectos de los fármacos , Retardo del Crecimiento Fetal/inducido químicamente , Glucógeno/análisis , Hígado/embriología , Tamaño de los Órganos/efectos de los fármacos , Placenta/química , Placenta/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
4.
Biomed Pharmacother ; 138: 111521, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34311525

RESUMEN

Euphorbiae pekinensis Radix (EP) is effective in treating various diseases, but it's toxicity is a major obstacle in use in clinical. Although EP was processed with vinegar to reduce it's toxicity, the detailed mechanism of toxicity in EP have not been clearly delineated. This study investigate the toxicity attenuation-mechanism of Euphorbiae pekinensis after being processed with vinegar (VEP) and the toxic mechanism of four compounds from EP on zebrafish embryos. The contents of four compounds decreased obviously in VEP. Correspondingly, slower development on embryos can be seen as some symptoms like reduction of heart rate, liver area and gastrointestinal peristalsis after exposed to the compounds. Some obvious pathological signals such as pericardial edema and yolk sac edema were observed. Furthermore, the compounds could increase the contents of MDA and GSH-PX and induce oxidative damage by inhibiting the activity of SOD. Also, four compounds could provoke apoptosis by up-regulating the expression level of p53, MDM2, Bax, Bcl-2 and activating the activity of caspase-3, caspase-9. In conclusion, the four compounds play an important role in the toxicity attenuation effects of VEP, which may be related to the apoptosis induction and oxidative damage. This would contribute to the clinical application and further toxicity-reduction mechanism research.


Asunto(s)
Euphorbia/toxicidad , Tracto Gastrointestinal/efectos de los fármacos , Corazón/efectos de los fármacos , Hígado/efectos de los fármacos , Fitoquímicos/toxicidad , Extractos Vegetales/toxicidad , Pez Cebra/embriología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiotoxicidad , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Euphorbia/química , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Corazón/embriología , Hígado/embriología , Hígado/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Mol Reprod Dev ; 88(6): 437-458, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34008284

RESUMEN

Genomic imprinting is important for mammalian development and its dysregulation can cause various developmental defects and diseases. The study evaluated the effects of different dietary combinations of folic acid and B12 on epigenetic regulation of IGF2R and KCNQ1OT1 ncRNA in C57BL/6 mice model. Female mice were fed diets with nine combinations of folic acid and B12 for 4 weeks. They were mated and off-springs born (F1) were continued on the same diet for 6 weeks postweaning and were allowed to mate. The placenta and fetal (F2) tissues were collected at day 20 of gestation. Dietary deficiency of folate (BNFD and BOFD) and B12 (BDFN) with either state of other vitamin or combined deficiency of both vitamins (BDFD) in comparison to BNFN, were overall responsible for reduced expression of IGF2R in the placenta (F1) and the fetal liver (F2) whereas a combination of folate deficiency with different levels of B12 revealed sex-specific differences in kidney and brain. The alterations in the expression of IGF2R caused by folate-deficient conditions (BNFD and BOFD) and both deficient condition (BDFD) was found to be associated with an increase in suppressive histone modifications. Over-supplementation of either folate or B12 or both vitamins in comparison to BNFN, led to increase in expression of IGF2R and KCNQ1OT1 in the placenta and fetal tissues. The increase in the expression of IGF2R caused by folate over-supplementation (BNFO) was associated with decreased DNA methylation in fetal tissues. KCNQ1OT1 noncoding RNA (ncRNA), however, showed upregulation under deficient conditions of folate and B12 only in female fetal tissues which correlated well with hypomethylation observed under these conditions. An epigenetic reprograming of IGF2R and KCNQ1OT1 ncRNA in the offspring was evident upon different dietary combinations of folic acid and B12 in the mice.


Asunto(s)
Dieta , Epigénesis Genética/efectos de los fármacos , Feto/efectos de los fármacos , Ácido Fólico/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Placenta/efectos de los fármacos , ARN Largo no Codificante/genética , Receptor IGF Tipo 2/genética , Vitamina B 12/farmacología , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/embriología , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Feto/metabolismo , Ácido Fólico/administración & dosificación , Ácido Fólico/sangre , Deficiencia de Ácido Fólico/genética , Deficiencia de Ácido Fólico/metabolismo , Impresión Genómica , Homocisteína/sangre , Riñón/embriología , Riñón/metabolismo , Hígado/embriología , Hígado/metabolismo , Masculino , Ratones , Placenta/metabolismo , Embarazo , Complicaciones del Embarazo/genética , Complicaciones del Embarazo/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Receptor IGF Tipo 2/metabolismo , Vitamina B 12/administración & dosificación , Vitamina B 12/sangre , Deficiencia de Vitamina B 12/genética , Deficiencia de Vitamina B 12/metabolismo
6.
Cold Spring Harb Protoc ; 2020(11)2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32404313

RESUMEN

Failure to predict drug-induced toxicity reactions is a major problem contributing to a high attrition rate and tremendous cost in drug development. Drug screening in X. laevis embryos is high-throughput relative to screening in rodents, potentially making them ideal for this use. Xenopus embryos have been used as a toxicity model in the frog embryo teratogenesis assay on Xenopus (FETAX) for the early stages of drug safety evaluation. We previously developed compound-screening methods using Xenopus embryos and believe they could be used for in vitro drug-induced toxicity safety assessment before expensive preclinical trials in mammals. Specifically, Xenopus embryos could help predict drug-induced hepatotoxicity and consequently aid lead candidate prioritization. Here we present methods, which we have modified for use on Xenopus embryos, to help measure the potential for a drug to induce liver toxicity. One such method examines the release of the liver-specific microRNA (miRNA) miR-122 from the liver into the vasculature as a result of hepatocellular damage, which could be due to drug-induced acute liver injury. Paracetamol, a known hepatotoxin at high doses, can be used as a positive control. We previously showed that some of the phenotypes of mammalian paracetamol overdose are reflected in Xenopus embryos. Consequently, we have also included here a method that measures the concentration of free glutathione (GSH), which is an indicator of paracetamol-induced liver injury. These methods can be used as part of a panel of protocols to help predict the hepatoxicity of a drug at an early stage in drug development.


Asunto(s)
Anomalías Inducidas por Medicamentos/diagnóstico , Bioensayo/métodos , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Embrión no Mamífero/efectos de los fármacos , Xenopus laevis/embriología , Anomalías Inducidas por Medicamentos/genética , Anomalías Inducidas por Medicamentos/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero/metabolismo , Hígado/efectos de los fármacos , Hígado/embriología , Hígado/metabolismo , MicroARNs/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Pruebas de Toxicidad/métodos , Xenopus laevis/genética , Xenopus laevis/metabolismo
7.
J Nutr Biochem ; 78: 108334, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32004928

RESUMEN

In a rat model of gestational diabetes mellitus (GDM) programmed in the offspring of neonatal streptozotocin-induced (nSTZ) diabetic rats, lipids are accumulated in the fetal liver in a sex-dependent way. Here, we evaluated whether maternal diets enriched in olive oil in rats that will develop GDM ameliorate lipid metabolic impairments in the fetal livers. Pregnant offspring of control and nSTZ diabetic rats (F0) were fed a 6% olive oil-supplemented diet throughout the F1 gestation. We evaluated maternal metabolic parameters as well as lipid content, expression of lipid metabolizing enzymes and protein expression of PLIN2, PPARs and PPAR coactivators in the fetal livers. The offspring of nSTZ diabetic rats developed GDM regardless of the maternal treatment. Hypertriglyceridemia in GDM rats was prevented by the olive oil-enriched maternal treatment. In the livers of male fetuses of GDM rats, the maternal olive oil-supplemented diet prevented lipid overaccumulation and prevented the increase in PPARγ and PPARδ levels. In the livers of female fetuses of GDM rats, the maternal olive oil supplementation prevented the increase in PPARδ levels and the reduction in PGC1α levels, but did not prevent the reduced lipid content. Control and GDM rats showed a reduction of lipid metabolic enzymes in the fetal livers, which was associated with reduced levels of the PPAR coactivators PGC-1α and SRC-1 in males and of SRC-1 in females. These results suggest powerful effects of a maternal olive oil-supplemented diet in the fetal liver, possibly providing benefits in the fetuses and offspring from GDM rats.


Asunto(s)
Diabetes Mellitus Experimental/dietoterapia , Diabetes Gestacional/dietoterapia , Dieta , Metabolismo de los Lípidos , Hígado/embriología , Aceite de Oliva/administración & dosificación , PPAR gamma/metabolismo , Animales , Suplementos Dietéticos , Femenino , Ligandos , Lípidos/química , Hígado/metabolismo , Masculino , Perilipina-2/metabolismo , Embarazo , Preñez , Ratas , Ratas Wistar , Factores Sexuales
8.
Hum Reprod ; 34(11): 2129-2143, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31713610

RESUMEN

STUDY QUESTION: Does maternal smoking in early pregnancy affect metallothionein 1 and 2 (MT1 and MT2) mRNA and protein expression in first trimester placenta or embryonic/fetal liver? SUMMARY ANSWER: In the first trimester, MT protein expression is seen only in liver, where smoking is associated with a significantly reduced expression. WHAT IS KNOWN ALREADY: Zinc homeostasis is altered by smoking. Smoking induces MT in the blood of smokers properly as a result of the cadmium binding capacities of MT. In term placenta MT is present and smoking induces gene and protein expression (MT2 in particular), but the MT presence and response to smoking have never been examined in first trimester placenta or embryonic/fetal tissues. STUDY DESIGN, SIZE, DURATION: Cross sectional study where the presence of MT mRNA and protein was examined at the time of the abortion. The material was collected with informed consent after surgical intervention and frozen immediately. For protein expression analysis, liver tissue originating from smoking exposed n = 10 and unexposed n = 12 pregnancies was used. For mRNA expression analyses, placental tissue originating from smokers n = 19 and non-smokers n = 23 and fetal liver tissue from smoking exposed n = 16 and smoking unexposed pregnancies n = 13, respectively, were used. PARTICIPANTS/MATERIALS, SETTING, METHODS: Tissues were obtained from women who voluntarily and legally chose to terminate their pregnancy between gestational week 6 and 12. Western blot was used to determine the protein expression of MT, and real-time PCR was used to quantify the mRNA expression of MT2A and eight MT1 genes alongside the expression of key placental zinc transporters: zinc transporter protein-1 (ZNT1), Zrt-, Irt-related protein-8 and -14 (ZIP8 and ZIP14). MAIN RESULTS AND THE ROLE OF CHANCE: A significant reduction in the protein expression of MT1/2 in liver tissue (P = 0.023) was found by western blot using antibodies detecting both MT forms. Overall, a similar tendency was observed on the mRNA level although not statistically significant. Protein expression was not present in placenta, but the mRNA regulation suggested a down regulation of MT as well. A suggested mechanism based on the known role of MT in zinc homeostasis could be that the findings reflect reduced levels of easily accessible zinc in the blood of pregnant smokers and hence a reduced MT response in smoking exposed fetal/embryonic tissues. LIMITATIONS AND REASONS FOR CAUTION: Smoking was based on self-reports; however, our previous studies have shown high consistency regarding cotinine residues and smoking status. Passive smoking could interfere but was found mainly among smokers. The number of fetuses was limited, and other factors such as medication and alcohol might affect the findings. Information on alcohol was not consistently obtained, and we cannot exclude that it was more readily obtained from non-users. In the study, alcohol consumption was reported by a limited number (less than 1 out of 5) of women but with more smokers consuming alcohol. However, the alcohol consumption reported was typically limited to one or few times low doses. The interaction between alcohol and smoking is discussed in the paper. Notably we would have liked to measure zinc status to test our hypothesis, but maternal blood samples were not available. WIDER IMPLICATIONS OF THE FINDINGS: Zinc deficiency-in particular severe zinc deficiency-can affect pregnancy outcome and growth. Our findings indicate that zinc homeostasis is also affected in early pregnancy of smokers, and we know from pilot studies that even among women who want to keep their babies, the zinc status is low. Our findings support that zinc supplements should be considered in particular to women who smoke. STUDY FUNDING/COMPETING INTEREST(S): We thank the Department of Biomedicine for providing laboratory facilities and laboratory technicians and the Lundbeck Foundation and Læge Sofus Carl Emil Friis og Hustru Olga Doris Friis Legat for financial support. The authors have no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Hígado/enzimología , Exposición Materna , Metalotioneína/metabolismo , Fumar/efectos adversos , Zinc/sangre , Aborto Inducido , Estudios Transversales , Dinamarca , Suplementos Dietéticos , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Hígado/embriología , Placenta/metabolismo , Embarazo , Primer Trimestre del Embarazo
9.
J Physiol ; 597(23): 5597-5617, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31562642

RESUMEN

KEY POINTS: Inappropriate intake of key micronutrients in pregnancy is known to alter maternal endocrine status, impair placental development and induce fetal growth restriction. Selenium is an essential micronutrient required for the function of approximately 25 important proteins. However, the specific effects of selenium deficiency during pregnancy on maternal, placental and fetal outcomes are poorly understood. The present study demonstrates that maternal selenium deficiency increases maternal triiodothyronine and tetraiodothyronine concentrations, reduces fetal blood glucose concentrations, and induces fetal growth restriction. Placental expression of key selenium-dependent thyroid hormone converting enzymes were reduced, whereas the expression of key placental nutrient transporters was dysregulated. Selenium deficiency had minimal impact on selenium-dependent anti-oxidants but increased placental copper concentrations and expression of superoxide dismutase 1. These results highlight the idea that selenium deficiency during pregnancy may contribute to thyroid dysfunction, causing reduced fetal growth, that may precede programmed disease outcomes in offspring. ABSTRACT: Selenium is a trace element fundamental to diverse homeostatic processes, including anti-oxidant regulation and thyroid hormone metabolism. Selenium deficiency in pregnancy is common and increases the risk of pregnancy complications including fetal growth restriction. Although altered placental formation may contribute to these poor outcomes, the mechanism by which selenium deficiency contributes to complications in pregnancy is poorly understood. Female C57BL/6 mice were randomly allocated to control (>190 µg kg-1 , n = 8) or low selenium (<50 µg kg-1 , n = 8) diets 4 weeks prior to mating and throughout gestation. Pregnant mice were killed at embryonic day 18.5 followed by collection of maternal and fetal tissue. Maternal and fetal plasma thyroid hormone concentrations were analysed, as was placental expression of key selenoproteins involved in thyroid metabolism and anti-oxidant defences. Selenium deficiency increased plasma tetraiodothyronine and triiodothyronine concentrations. This was associated with a reduction in placental expression of key selenodependent deiodinases, DIO2 and DIO3. Placental expression of selenium-dependent anti-oxidants was unaffected by selenium deficiency. Selenium deficiency reduced fetal glucose concentrations, leading to reduced fetal weight. Placental glycogen content was increased within the placenta, as was Slc2a3 mRNA expression. This is the first study to demonstrate that selenium deficiency may reduce fetal weight through increased maternal thyroid hormone concentrations, impaired placental thyroid hormone metabolism and dysregulated placental nutrient transporter expression. The study suggests that the magnitude of selenium deficiency commonly reported in pregnant women may be sufficient to impair thyroid metabolism but not placental anti-oxidant concentrations.


Asunto(s)
Desarrollo Fetal , Placenta/metabolismo , Selenio/deficiencia , Hormonas Tiroideas/metabolismo , Animales , Cobre/metabolismo , Femenino , Yoduro Peroxidasa/genética , Hígado/embriología , Hígado/metabolismo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones Endogámicos C57BL , Embarazo , Yodotironina Deyodinasa Tipo II
10.
Exp Hematol ; 76: 49-59, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31381950

RESUMEN

T(4;11) MLL-AF4 acute leukemia is one of the most aggressive malignancies in infant and pediatric populations. Epidemiological and functional studies have highlighted the influence of an overstimulation of the immune system on leukemia development. This study aimed at assessing if the cell-of-origin of t(4;11) MLL-AF4 acute leukemia is sensitive to a viral or bacterial mimic and if maternal immune activation can lead to a full-blown leukemia. To answer this, we used the Mll-AF4 pre-leukemia mouse model that initiates the expression of Mll-AF4 in the first definitive hematopoietic cells formed during embryonic development. We observed an increase in proliferation upon hematopoietic differentiation of fetal liver Mll-AF4+ Lineage-Sca1+ckit+ (LSK) cells exposed to the immune stimulants, poly(I:C) or LPS/lipopolysaccharide. This was accompanied by increased expression of a subset of MLL-AF4 signature genes and members of the Toll-like receptor signaling pathways in fetal liver Mll-AF4+ LSK exposed to poly(I:C), suggesting that the cell-of-origin responds to inflammatory stimuli. Maternal immune activation using a single dose of poly(I:C) did not lead to the development of leukemia in Mll-AF4+ and control offspring. Instead, aging MLL-AF4+ mice showed an increased proportion of T-lymphoid cells in the spleen, lost their B-lymphoid bias, and had decreased frequencies of hematopoietic stem and multipotent progenitor cells. Overall, this study suggests that the fetal liver Mll-AF4+ LSK cells are sensitive to direct exposure to inflammatory stimuli, especially poly(I:C); however, maternal immune activation induced by a single exposure to poly(I:C) is not sufficient to initiate MLL-AF4 leukemogenesis.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Inflamación/genética , Proteína de la Leucemia Mieloide-Linfoide/análisis , Proteínas de Fusión Oncogénica/análisis , Poli I-C/farmacología , Preleucemia/patología , Efectos Tardíos de la Exposición Prenatal , Adyuvantes Inmunológicos/toxicidad , Animales , Apoptosis/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Endotoxinas/farmacología , Femenino , Células Madre Hematopoyéticas/inmunología , Inflamación/inducido químicamente , Hígado/citología , Hígado/embriología , Linfocitos/citología , Linfocitos/efectos de los fármacos , Ratones , Ratones Transgénicos , Células Mieloides/citología , Células Mieloides/efectos de los fármacos , Poli I-C/toxicidad , Embarazo , Transcriptoma
11.
Epigenetics ; 14(10): 1019-1029, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31179819

RESUMEN

5-Hydroxymethylcytosine (5hmC), a distinct epigenetic marker that plays a role in DNA active demethylation, has been reported to be important for embryonic development and may respond to environmental exposure. No studies have evaluated the association between DNA hydroxymethylation and the risk for fetal neural tube defects (NTDs), with consideration of prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), a risk factor for NTDs. We measured the global levels of 5hmC% in neural tissue from 92 terminated NTD cases and 33 terminated non-malformed fetuses. A lower level of 5hmC% was found in the NTD cases (median [interquartile range]: 0.25 [0.12-0.39]) compared to the controls (0.45 [0.19-1.00]). After adjusting for periconceptional folate supplementation, risk for NTDs increased with decreasing tertiles of 5hmC% (odds ratio: 7.89, 95% confidence interval: 2.32, 26.86, for the lowest tertile relative to the top tertile; pfor trend = 0.002). Linear regression revealed that concentrations of high-molecular-weight PAHs (H_PAHs) in fetal liver tissue were negatively associated with log2-transformed 5hmC%. Superoxide dismutase activity and 5hmC% were positively correlated in fetal neural tissue (rs = 0.64; p < 0.05). A mouse whole-embryo culture model was used for further validation. Decreased levels of 5hmC% and increased levels of reactive oxygen species were found in mouse embryos treated with BaP, a well-studied PAH. Taken together, levels of 5hmC% in fetal neural tissue were inversely associated with the risk for NTDs, and this association may be related to oxidative stress induced by exposure to PAHs.


Asunto(s)
5-Metilcitosina/análogos & derivados , Exposición Materna/efectos adversos , Defectos del Tubo Neural/genética , Hidrocarburos Policíclicos Aromáticos/efectos adversos , 5-Metilcitosina/metabolismo , Animales , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Técnicas de Cultivo de Embriones , Femenino , Humanos , Modelos Lineales , Hígado/química , Hígado/embriología , Masculino , Ratones , Defectos del Tubo Neural/inducido químicamente , Defectos del Tubo Neural/metabolismo , Embarazo , Superóxido Dismutasa/metabolismo
12.
Am J Clin Nutr ; 109(3): 674-683, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30848279

RESUMEN

BACKGROUND: The risk of neural tube defects (NTDs) is influenced by nutritional factors and genetic determinants of one-carbon metabolism. A key pathway of this metabolism is the vitamin B-12- and folate-dependent remethylation of homocysteine, which depends on methionine synthase (MS, encoded by MTR), methionine synthase reductase, and methylenetetrahydrofolate reductase. Methionine, the product of this pathway, is the direct precursor of S-adenosylmethionine (SAM), the universal methyl donor needed for epigenetic mechanisms. OBJECTIVES: This study aimed to evaluate whether the availability of vitamin B-12 and folate and the expression or activity of the target enzymes of the remethylation pathway are involved in NTD risk. METHODS: We studied folate and vitamin B-12 concentrations and activity, expression, and gene variants of the 3 enzymes in liver from 14 NTD and 16 non-NTD fetuses. We replicated the main findings in cord blood from pregnancies of 41 NTD fetuses compared with 21 fetuses with polymalformations (metabolic and genetic findings) and 375 control pregnancies (genetic findings). RESULTS: The tissue concentration of vitamin B-12 (P = 0.003), but not folate, and the activity (P = 0.001), transcriptional level (P = 0.016), and protein expression (P = 0.003) of MS were decreased and the truncated inactive isoforms of MS were increased in NTD livers. SAM was significantly correlated with MS activity and vitamin B-12. A gene variant in exon 1 of GIF (Gastric Intrinsic Factor gene) was associated with a dramatic decrease of liver vitamin B-12 in 2 cases. We confirmed the decreased vitamin B-12 in cord blood from NTD pregnancies. A gene variant of GIF exon 3 was associated with NTD risk. CONCLUSIONS: The decreased vitamin B-12 in liver and cord blood and decreased expression and activity of MS in liver point out the impaired remethylation pathway as hallmarks associated with NTD risk. We suggest evaluating vitamin B-12 in the nutritional recommendations for prevention of NTD risk beside folate fortification or supplementation.


Asunto(s)
5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , Enfermedades Fetales/enzimología , Hígado/metabolismo , Defectos del Tubo Neural/enzimología , Vitamina B 12/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Estudios de Casos y Controles , Femenino , Ferredoxina-NADP Reductasa/genética , Ferredoxina-NADP Reductasa/metabolismo , Enfermedades Fetales/genética , Enfermedades Fetales/metabolismo , Ácido Fólico/análisis , Ácido Fólico/metabolismo , Edad Gestacional , Humanos , Hígado/química , Hígado/embriología , Hígado/enzimología , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Defectos del Tubo Neural/embriología , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Embarazo , Vitamina B 12/análisis
13.
Artículo en Inglés | MEDLINE | ID: mdl-30103937

RESUMEN

This study addresses the effects of n-3 and n-6 fatty acids in maternal dyslipidemia induced inflammation over three generation in rats. The detailed protocol for animal feeding and mating is described in the methodology. Placenta and fetal liver were isolated on the eighteenth day of gestation and delivered pups after lactation were kept on their maternal diets. Compared to control and experimental groups, high-fat fed rats (HFL) had a higher level of cytokines and eicosanoids in serum (p < 0.05). Liver and uterine expression of cPLA-2, Cox-2, 5-Lox, EP-1, BLT-1, and ICAM-1 were higher (p < 0.05) in HFL group. NF-kB and Nrf-2 levels in placenta and fetal liver were beneficially modulated by n-3 but not n-6 fatty acids. Offspring of dyslipidemic mothers' exhibit amplified inflammatory markers when continued on diets of their mothers. Incorporation of n-3 but not n-6 fatty acids down-regulated maternal dyslipidemia induced inflammatory markers.


Asunto(s)
Biomarcadores/metabolismo , Citocinas/metabolismo , Dislipidemias/dietoterapia , Ácidos Grasos Omega-3/administración & dosificación , Hígado/embriología , Placenta/química , Alimentación Animal/análisis , Animales , Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo , Dislipidemias/sangre , Dislipidemias/inducido químicamente , Dislipidemias/metabolismo , Eicosanoides/sangre , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/administración & dosificación , Ácidos Grasos Omega-6/farmacología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hígado/química , Madres , Embarazo , Ratas
14.
Artículo en Inglés | MEDLINE | ID: mdl-29969680

RESUMEN

Zebrafish has become a popular model organism in several lines of biological research sharing physiological, morphological and histological similarities with mammals. In fact, many human cytochrome P450 (CYP) enzymes have direct orthologs in zebrafish, suggesting that zebrafish xenobiotic metabolic profiles may be similar to those in mammals. The focus of the review is to analyse the studies that have evaluated the metabolite production in zebrafish over the years, either of the drugs themselves or xenobiotics in general (environmental pollutants, natural products, etc.), bringing a vision of how these works were performed and comparing, where possible, with human metabolism. Early studies that observed metabolic production by zebrafish focused on environmental toxicology, and in recent years the main focus has been on toxicity screening of pharmaceuticals and drug candidates. Nevertheless, there is still a lack of standardization of the model and the knowledge of the extent of similarity with human metabolism. Zebrafish screenings are performed at different life stages, typically being carried out in adult fish through in vivo assays, followed by early larval stages and embryos. Studies comparing metabolism at the different zebrafish life stages are also common. As with any non-human model, the zebrafish presents similarities and differences in relation to the profile of generated metabolites compared to that observed in humans. Although more studies are still needed to assess the degree to which zebrafish metabolism can be compared to human metabolism, the facts presented indicate that the zebrafish is an excellent potential model for assessing xenobiotic metabolism.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Hígado/efectos de los fármacos , Pruebas de Toxicidad/métodos , Xenobióticos/farmacocinética , Pez Cebra/fisiología , Animales , Productos Biológicos/farmacocinética , Biotransformación , Drogas en Investigación/farmacocinética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Larva/metabolismo , Hígado/embriología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Especificidad de Órganos , Especificidad de la Especie , Toxicocinética , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
15.
Diabetologia ; 61(8): 1862-1876, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29777263

RESUMEN

AIMS/HYPOTHESIS: Paternal high-fat diet prior to mating programmes impaired glucose tolerance in female offspring. We examined whether the metabolic consequences in offspring could be abolished by folate treatment of either the male rats before mating or the corresponding female rats during pregnancy. METHODS: Male F0 rats were fed either control diet or high-fat, high-sucrose and high-salt diet (HFSSD), with or without folate, before mating. Male rats were mated with control-diet-fed dams. After mating, the F0 dams were fed control diet with or without folate during pregnancy. RESULTS: Male, but not female offspring of HFSSD-fed founders were heavier than those of control-diet-fed counterparts (p < 0.05 and p = 0.066 in males and females, respectively). Both male and female offspring of HFSSD-fed founders were longer compared with control (p < 0.01 for both sexes). Folate treatment of the pregnant dams abolished the effect of the paternal diet on the offspring's body length (p Ë‚ 0.05). Female offspring of HFSSD-fed founders developed impaired glucose tolerance, which was restored by folate treatment of the dams during pregnancy. The beta cell density per pancreatic islet was decreased in offspring of HFSSD-fed rats (-20% in male and -15% in female F1 offspring, p Ë‚ 0.001 vs controls). Folate treatment significantly increased the beta cell density (4.3% and 3.3% after folate supplementation given to dams and founders, respectively, p Ë‚ 0.05 vs the offspring of HFSSD-fed male rats). Changes in liver connective tissue of female offspring of HFSSD-fed founders were ameliorated by treatment of dams with folate (p Ë‚ 0.01). Hepatic Ppara gene expression was upregulated in female offspring only (1.51-fold, p Ë‚ 0.05) and was restored in the female offspring by folate treatment (p Ë‚ 0.05). We observed an increase in hepatic Lcn2 and Tmcc2 expression in female offspring born to male rats exposed to an unhealthy diet during spermatogenesis before mating (p Ë‚ 0.05 vs controls). Folate treatment of the corresponding dams during pregnancy abolished this effect (p Ë‚ 0.05). Analysis of DNA methylation levels of CpG islands in the Ppara, Lcn2 and Tmcc2 promoter regions revealed that the paternal unhealthy diet induced alterations in the methylation pattern. These patterns were also affected by folate treatment. Total liver DNA methylation was increased by 1.52-fold in female offspring born to male rats on an unhealthy diet prior to mating (p Ë‚ 0.05). This effect was abolished by folate treatment during pregnancy (p Ë‚ 0.05 vs the offspring of HFSSD-fed male rats). CONCLUSIONS/INTERPRETATION: Folate treatment of pregnant dams restores effects on female offspring's glucose metabolism induced by pre-conception male founder HFSSD.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Dieta Alta en Grasa/efectos adversos , Ácido Fólico/uso terapéutico , Preñez , Alimentación Animal , Animales , Metilación de ADN , Femenino , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Hígado/embriología , Hígado/metabolismo , Masculino , Páncreas/metabolismo , Embarazo , ARN/análisis , Ratas , Ratas Sprague-Dawley , Cloruro de Sodio/química , Espermatogénesis , Sacarosa/química , Triglicéridos/metabolismo , Regulación hacia Arriba
16.
Environ Toxicol Pharmacol ; 58: 163-169, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29408758

RESUMEN

Oil spills on birds and other organisms have focused primarily on direct effects of oil exposure through ingestion or direct body fouling. Little is known of indirect effects of airborne volatiles from spilled oil, especially on vulnerable developing embryos within the bird egg. Here a technique is described for exposing bird embryos in the egg to quantifiable amounts of airborne volatile toxicants from Deepwater Horizon crude oil. A novel membrane inlet mass spectrometry system was used to measure major classes of airborne oil-derived toxicants and correlate these exposures with biological endpoints. Exposure induced a reduction in platelet number and increase in osmolality of the blood of embryos of the chicken (Gallus gallus). Additionally, expression of cytochrome P4501A, a protein biomarker of oil exposure, occurred in renal, pulmonary, hepatic and vascular tissues. These data confirm that this system for generating and measuring airborne volatiles can be used for future in-depth analysis of the toxicity of volatile organic compounds in birds and potentially other terrestrial organisms.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Embrión de Pollo/efectos de los fármacos , Contaminación por Petróleo , Compuestos Orgánicos Volátiles/toxicidad , Contaminantes Químicos del Agua , Animales , Biomarcadores/metabolismo , Embrión de Pollo/metabolismo , Pollos , Citocromo P-450 CYP1A1/metabolismo , Hematócrito , Riñón/efectos de los fármacos , Riñón/embriología , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/embriología , Hígado/metabolismo , Pulmón/efectos de los fármacos , Pulmón/embriología , Pulmón/metabolismo , Espectrometría de Masas/métodos , Concentración Osmolar , Petróleo , Recuento de Plaquetas
17.
Poult Sci ; 96(6): 1884-1890, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28339753

RESUMEN

Previous studies demonstrated that in ovo photostimulation with monochromatic green light increases body weight and accelerates muscle development in broilers. The mechanism in which in ovo photostimulation accelerates growth and muscle development is not clearly understood. The objective of the current study was to define development of the somatotropic axis in the broiler embryo associated with in ovo green light photostimulation. Two-hundred-forty fertile broiler eggs were divided into 2 groups. The first group was incubated under intermittent monochromatic green light using light-emitting diode (LED) lamps with an intensity of 0.1 W\m2 at shell level, and the second group was incubated under dark conditions and served as control. In ovo green light photostimulation increased plasma growth hormone (GH) and prolactin (PRL) levels, as well as hypothalamic growth hormone releasing hormone (GHRH), liver growth hormone receptor (GHR), and insulin-like growth factor-1 (IGF-1) mRNA levels. The in ovo photostimulation did not, however, increase embryo's body weight, breast muscle weight, or liver weight. The results of this study suggest that stimulation with monochromatic green light during incubation increases somatotropic axis expression, as well as plasma prolactin levels, during embryonic development.


Asunto(s)
Embrión de Pollo/crecimiento & desarrollo , Embrión de Pollo/efectos de la radiación , Luz , Animales , Peso Corporal/efectos de la radiación , Hormona del Crecimiento/sangre , Hormona del Crecimiento/efectos de la radiación , Hormona Liberadora de Hormona del Crecimiento/análisis , Hormona Liberadora de Hormona del Crecimiento/efectos de la radiación , Hipotálamo/metabolismo , Hipotálamo/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/efectos de la radiación , Hígado/embriología , Hígado/efectos de la radiación , Óvulo/efectos de la radiación , Músculos Pectorales/embriología , Músculos Pectorales/efectos de la radiación , Prolactina/sangre , Prolactina/efectos de la radiación , ARN Mensajero , Receptores de Somatotropina/efectos de la radiación
18.
Am J Physiol Regul Integr Comp Physiol ; 312(5): R654-R663, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179229

RESUMEN

Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because the fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3 h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and the glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly twofold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of the lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism.


Asunto(s)
Aminoácidos/administración & dosificación , Glucosa/metabolismo , Hígado/embriología , Hígado/metabolismo , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Animales , Femenino , Feto/efectos de los fármacos , Feto/metabolismo , Edad Gestacional , Infusiones Intravenosas , Hígado/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Embarazo , Ovinos , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
19.
Oncotarget ; 8(12): 19814-19824, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28177898

RESUMEN

The role of maternal dietary zinc supplementation in protecting the embryos from maternal hyperthermia-induced negative effects via epigenetic mechanisms was examined using an avian model (Gallus gallus). Broiler breeder hens were exposed to two maternal temperatures (21°C and 32°C) × three maternal dietary zinc treatments (zinc-unsupplemented control diet, the control diet + 110 mg zinc/kg inorganic or organic zinc) for 8 weeks. Maternal hyperthermia increased the embryonic mortality and induced oxidative damage evidenced by the elevated mRNA expressions of heat shock protein genes. Maternal dietary zinc deficiency damaged the embryonic development associated with the global DNA hypomethylation and histone 3 lysine 9 hyperacetylation in the embryonic liver. Supplementation of zinc in maternal diets effectively eliminated the embryonic mortality induced by maternal hyperthermia and enhanced antioxidant ability with the increased mRNA and protein expressions of metallothionein IV in the embryonic liver. The increased metallothionein IV mRNA expression was due to the reduced DNA methylation and increased histone 3 lysine 9 acetylation of the metallothionein IV promoter regardless of zinc source. These data demonstrate that maternal dietary zinc addition as an epigenetic modifier could protect the offspring embryonic development against maternal heat stress via enhancing the epigenetic-activated antioxidant ability.


Asunto(s)
Antioxidantes/metabolismo , Suplementos Dietéticos , Calor , Zinc/farmacología , Acetilación/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Western Blotting , Embrión de Pollo , Pollos , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Hígado/efectos de los fármacos , Hígado/embriología , Hígado/metabolismo , Lisina/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Zinc/administración & dosificación
20.
Dev Biol ; 420(2): 221-229, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27364470

RESUMEN

The self-organizing tissue-based approach coupled with induced pluripotent stem (iPS) cell technology is evolving as a promising field for designing organoids in culture and is expected to achieve valuable practical outcomes in regenerative medicine and drug development. Organoids show properties of functional organs and represent an alternative to cell models in conventional two-dimensional differentiation platforms; moreover, organoids can be used to investigate mechanisms of development and disease, drug discovery and toxicity assessment. Towards a more complex and advanced organoid model, it is essential to incorporate multiple cell lineages including developing vessels. Using a self-condensation method, we recently demonstrated self-organizing "organ buds" of diverse systems together with human mesenchymal and endothelial progenitors, proposing a new reverse engineering method to generate a more complex organoid structure. In this section, we review characters of organ bud technology based on two important principles: self-condensation and self-organization focusing on liver bud as an example, and discuss their practicality in regenerative medicine and potential as research tools for developmental biology and drug discovery.


Asunto(s)
Hígado/embriología , Organoides/embriología , Fenómenos Biofísicos , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/citología , Hígado/citología , Modelos Biológicos , Organogénesis , Organoides/citología , Medicina Regenerativa , Ingeniería de Tejidos/métodos , Ingeniería de Tejidos/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA