Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Phytomedicine ; 127: 155466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461764

RESUMEN

BACKGROUND: The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY: We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS: Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION: In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.


Asunto(s)
Hemo-Oxigenasa 1 , Enfermedades Neuroinflamatorias , Humanos , Hemo-Oxigenasa 1/metabolismo , Depresión/tratamiento farmacológico , Hemo Oxigenasa (Desciclizante)/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo
2.
Phytomedicine ; 128: 155376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503152

RESUMEN

BACKGROUND: The apoptosis of pulmonary artery endothelial cells (PAECs) is an important factor contributing to the development of pulmonary hypertension (PH), a serious cardio-pulmonary vascular disorder. Salidroside (SAL) is a bioactive compound derived from an herb Rhodiola, but the potential protective effects of SAL on PAECs and the underlying mechanisms remain elusive. PURPOSE: The objective of this study was to determine the role of SAL in the hypoxia-induced apoptosis of PAECs and to dissect the underlying mechanisms. STUDY DESIGN: Male Sprague-Dawley (SD) rats were subjected to hypoxia (10% O2) for 4 weeks to establish a model of PH. Rats were intraperitoneally injected daily with SAL (2, 8, and 32 mg/kg/d) or vehicle. To define the molecular mechanisms of SAL in PAECs, an in vitro model of hypoxic cell injury was also generated by exposed PAECs to 1% O2 for 48 h. METHODS: Various techniques including hematoxylin and eosin (HE) staining, immunofluorescence, flow cytometry, CCK-8, Western blot, qPCR, molecular docking, and surface plasmon resonance (SPR) were used to determine the role of SAL in rats and in PAECs in vitro. RESULTS: Hypoxia stimulation increases AhR nuclear translocation and activates the NF-κB signaling pathway, as evidenced by upregulated expression of CYP1A1, CYP1B1, IL-1ß, and IL-6, resulting in oxidative stress and inflammatory response and ultimately apoptosis of PAECs. SAL inhibited the activation of AhR and NF-κB, while promoted the nuclear translocation of Nrf2 and increased the expression of its downstream antioxidant proteins HO-1 and NQO1 in PAECs, ameliorating the hypoxia-induced oxidative stress in PAECs. Furthermore, SAL lowered right ventricular systolic pressure, and decreased pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-exposed rats. CONCLUSIONS: SAL may attenuate the apoptosis of PAECs by suppressing NF-κB and activating Nrf2/HO-1 pathways, thereby delaying the progressive pathology of PH.


Asunto(s)
Apoptosis , Células Endoteliales , Hemo Oxigenasa (Desciclizante) , Arteria Pulmonar , Transducción de Señal , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Glucósidos/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Arteria Pulmonar/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Hidrocarburo de Aril/metabolismo , Rhodiola/química , Transducción de Señal/efectos de los fármacos
3.
Biomolecules ; 14(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38254662

RESUMEN

The crucial physiological process of heme breakdown yields biliverdin (BV) and bilirubin (BR) as byproducts. BV, BR, and the enzymes involved in their production (the "yellow players-YP") are increasingly documented as endogenous modulators of human health. Mildly elevated serum bilirubin concentration has been correlated with a reduced risk of multiple chronic pro-oxidant and pro-inflammatory diseases, especially in the elderly. BR and BV per se have been demonstrated to protect against neurodegenerative diseases, in which heme oxygenase (HMOX), the main enzyme in the production of pigments, is almost always altered. HMOX upregulation has been interpreted as a tentative defense against the ongoing pathologic mechanisms. With the demonstration that multiple cells possess YP, their propensity to be modulated, and their broad spectrum of activity on multiple signaling pathways, the YP have assumed the role of an adjustable system that can promote health in adults. Based on that, there is an ongoing effort to induce their activity as a therapeutic option, and natural compounds are an attractive alternative to the goal, possibly requiring only minimal changes in the life style. We review the most recent evidence of the potential of natural compounds in targeting the YP in the context of the most common pathologic condition of adult and elderly life.


Asunto(s)
Encefalopatías , Promoción de la Salud , Adulto , Anciano , Humanos , Hígado , Bilirrubina , Biliverdina , Hemo , Hemo Oxigenasa (Desciclizante)
4.
Biomed Pharmacother ; 153: 113437, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36076489

RESUMEN

BACKGROUND: Anxiety is a common comorbidity of cardiovascular diseases, which deteriorated cardiac function. Chaihujialonggumulitang (BFG) was reported to have antioxidant properties, alleviate myocardial ischemia injury and improve anxiety-like behavior. The Nuclear factor erythroid 2-related factor 2 (Nrf2) /heme oxygenase-1 (HO-1) pathway is the main mechanism to defend against oxidative stress, and improve cardiac function. This study was to investigate the possible mechanism of BFG in the treatment of psycho-cardiology. METHODS: AMI with comorbid anxiety rat model was established by ligation of the left anterior descending coronary artery combined with uncertain empty bottle stimulation, followed by the administration of BFG (1 mL/100 g/d by gavage) or Dimethyl fumarate (DMF, 10 mg/kg/d by intraperitoneal injection) for 6 days. Echocardiography, myocardial injury markers, H&E, and Masson staining were employed to evaluate cardiac function. Behavioral tests and hippocampus neurotransmitters were applied to record anxiety-like behavior. We employed immunohistochemistry, RT-PCR, western blotting, and biochemical analysis to detect the protein and gene expression of Nrf2/HO-1 pathway-related factors, and oxidative stress and apoptosis parameters. RESULTS: Rats in the AMI and complex groups showed cardiac function deterioration, as well as anxiety-like behavior. BFG improved echocardiography indicators, reduced myocardial injury markers, and attenuated myocardial pathological changes. BFG also ameliorated anxiety-like behaviors and elevated neurotransmitters levels. BFG promoted the activation of Nrf2/HO-1 pathway, increased antioxidant enzyme activities, reduced lipid peroxidation levels, and alleviated oxidative damage and apoptosis. DMF showed therapeutic effects and molecular mechanisms similar to BFG. CONCLUSION: BFG may possess a psycho-cardiology therapeutic effect on AMI with comorbid anxiety by the activation of the Nrf2/HO-1 pathway and suppression of oxidative stress and apoptosis.


Asunto(s)
Ansiedad , Infarto del Miocardio , Animales , Ratas , Antioxidantes/metabolismo , Ansiedad/etiología , Apoptosis , Comorbilidad , Hemo Oxigenasa (Desciclizante) , Hemo-Oxigenasa 1/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/psicología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal
5.
Oxid Med Cell Longev ; 2022: 9266178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35693699

RESUMEN

Clinical outcomes for doxorubicin (Dox) are limited by its cardiotoxicity but a combination of Dox and agents with cardioprotective activities is an effective strategy to improve its therapeutic outcome. Natural products provide abundant resources to search for novel cardioprotective agents. Ganoderma lucidum (GL) is the most well-known edible mushroom within the Ganodermataceae family. It is commonly used in traditional Chinese medicine or as a healthcare product. Amauroderma rugosum (AR) is another genus of mushroom from the Ganodermataceae family, but its pharmacological activity and medicinal value have rarely been reported. In the present study, the cardioprotective effects of the AR water extract against Dox-induced cardiotoxicity were studied in vitro and in vivo. Results showed that both the AR and GL extracts could potentiate the anticancer effect of Dox. The AR extract significantly decreased the oxidative stress, mitochondrial dysfunction, and apoptosis seen in Dox-treated H9c2 rat cardiomyocytes. However, knockdown of Nrf2 by siRNA abolished the protective effects of AR in these cells. In addition, Dox upregulated the expression of proapoptotic proteins and downregulated the Akt/mTOR and Nrf2/HO-1 signaling pathways, and these effects could be reversed by the AR extract. Consistently, the AR extract significantly prolonged survival time, reversed weight loss, and reduced cardiac dysfunction in Dox-treated mice. In addition, oxidative stress and apoptosis were suppressed, while Nrf2 and HO-1 expressions were elevated in the heart tissues of Dox-treated mice after treatment with the AR extract. However, the GL extract had less cardioprotective effect against Dox in both the cell and animal models. In conclusion, the AR water extract demonstrated a remarkable cardioprotective effect against Dox-induced cardiotoxicity. One of the possible mechanisms for this effect was the upregulation of the mTOR/Akt and Nrf2/HO-1-dependent pathways, which may reduce oxidative stress, mitochondrial dysfunction, and cardiomyocyte apoptosis. These findings suggested that AR may be beneficial for the heart, especially in patients receiving Dox-based chemotherapy.


Asunto(s)
Cardiotoxicidad , Factor 2 Relacionado con NF-E2 , Animales , Ratones , Ratas , Apoptosis , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/genética , Cardiotoxicidad/prevención & control , Doxorrubicina/toxicidad , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Polyporaceae , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
6.
Molecules ; 27(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35566389

RESUMEN

Beta-carotene (BC) is a well-known antioxidant. However, increasing evidence shows that under severe oxidative conditions, BC can become pro-oxidant, an effect that may be enhanced in the presence of iron (II). In our earlier studies, we observed that despite increasing heme oxygenase-1 (HO-1) levels in the heart, the protective effects of BC have been lost when it was used at a high concentration. Since iron releases from heme as a consequence of HO-1 activity, we hypothesized that the application of an iron-chelator (IC) would reverse the lost cardiac protection associated with an elevated HO-1 level. Thus, in the present study, we investigated the effects of desferrioxiamine (DFO) in isolated, ischemic/reperfused rat hearts after long-term treatment with vehicle or high-dose (HD) BC. Vehicle or 150 mg/bw kg daily doses of BC were administered to the rats for 4 weeks, and then their hearts were removed and subjected to 30 min of global ischemia (ISA) followed by 120 min of reperfusion (REP). During the experiments, cardiac function was registered, and at the end of the REP period, infarct size (IS) and HO-1 expression were measured. The results show that DFO treatment alone during REP significantly ameliorated postischemic cardiac function and decreased IS, although HO-1 expression was not increased significantly. In hearts isolated from BC-treated rats, no cardioprotective effects, despite an elevated HO-1 level, were observed, while DFO administration after ISA resulted in a mild improvement in heart function and IS. Our results suggest that iron could have a role whether BC exerts antioxidant or pro-oxidant effects in ISA/REP-injured hearts.


Asunto(s)
Hemo-Oxigenasa 1 , Daño por Reperfusión Miocárdica , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Hierro/metabolismo , Isquemia/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , beta Caroteno/metabolismo , beta Caroteno/farmacología
7.
Oxid Med Cell Longev ; 2022: 2152746, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222793

RESUMEN

Geraniin, a polyphenol isolated from Phyllanthus amarus, possesses extensive biological and pharmaceutical activities. In this study, we investigated the protective effect against cerebral ischemia/reperfusion (I/R) injury of geraniin and explored its potential mechanism. Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to simulate cerebral I/R injury in vivo, and oxygen-glucose deprivation/reoxygenation (OGD/R) was applied to establish an in vitro model of cerebral I/R injury. In this study, we performed TTC and HE staining and adopted a neurological score method to evaluate the neuroprotective effect of geraniin in vivo and used the CCK-8 assay to assess this effect in vitro. Indices of reactive oxidation capacity were measured in vivo and in vitro to verify the antioxidant capacity of geraniin. TUNEL staining and flow cytometry were applied to measure the apoptosis rate, and Western blotting was performed to assess the expression of apoptosis-related proteins. Finally, the expression of Nrf2 and HO-1 was evaluated in vivo and in vitro by Western blotting. Geraniin significantly reduced the infarct volume, decreased neurological deficit scores, alleviated pathological changes in neurons, and increased the cell survival rate. Geraniin increased the activity of superoxide dismutase (SOD) and decreased the activity of lactate dehydrogenase (LDH) and the contents of malondialdehyde (MDA), nitric oxide (NO), and neuronal nitric oxide synthase (nNOS) in vivo and in vitro. In addition, geraniin significantly reduced the apoptosis. Furthermore, geraniin also evidently increased Nrf2 (total and nuclear) and HO-1 protein expression in vivo and in vitro. Collectively, these results imply that geraniin may exert a protective effect against cerebral I/R injury by suppressing oxidative stress and neuronal apoptosis. The mechanism underlying the protective effect of geraniin is associated with activation of the Nrf2/HO-1 pathway. Our results indicate that geraniin may be a potential drug candidate for the treatment of ischemic stroke.


Asunto(s)
Apoptosis/efectos de los fármacos , Glucósidos/uso terapéutico , Hemo Oxigenasa (Desciclizante)/metabolismo , Taninos Hidrolizables/uso terapéutico , Factor 2 Relacionado con NF-E2/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Animales , Antioxidantes/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Glucósidos/farmacología , Taninos Hidrolizables/farmacología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Células PC12 , Ratas , Transducción de Señal/efectos de los fármacos
8.
J Perinatol ; 42(1): 110-115, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34635771

RESUMEN

OBJECTIVE: To evaluate the efficacy and safety of tin mesoporphyrin (SnMP) in neonates with hyperbilirubinemia (HB) due to hemolysis. STUDY DESIGN: This multicenter, placebo-controlled phase 2b study (NCT01887327) randomized newborns (35-42 weeks) with hemolysis started on phototherapy (PT) to placebo (Ctrl), SnMP 3.0 mg/kg, or SnMP 4.5 mg/kg given once IM within 30 min of initiation of PT. RESULTS: In all, 91 patients were randomized (Ctrl: n = 30; 3 mg/kg SnMP: n = 30; 4.5 mg/kg SnMP: n = 31). At 48 h TSB significantly increased in Ctrl by 17.5% (95% CI 5.6-30.7; p = 0.004) and significantly decreased by -13% (95% CI -21.7 to -3.2; p = 0.013) in the 3.0 mg/kg and by -10.5% (95% CI -19.4 to -0.6; p = 0.041) in the 4.5 mg/kg group. Decreases in SnMP groups were significant (p < 0.0001) vs Ctrl. CONCLUSION: SnMP with PT significantly reduced TSB by 48 h. SnMP may be useful as a treatment for HB in neonates with hemolysis.


Asunto(s)
Eritroblastosis Fetal , Hiperbilirrubinemia Neonatal , Eritroblastosis Fetal/terapia , Femenino , Hemo Oxigenasa (Desciclizante) , Hemólisis , Humanos , Hiperbilirrubinemia/terapia , Hiperbilirrubinemia Neonatal/terapia , Recién Nacido , Metaloporfirinas , Fototerapia
9.
J Cardiovasc Pharmacol ; 79(1): e75-e86, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34740211

RESUMEN

ABSTRACT: The present study was intended to evaluate the effect of polyherbal formulation (PHF) made with 3 nutraceuticals, such as Piper nigrum, Terminalia paniculata, and Bauhinia purpurea on inflammation and oxidative stress in diabetic cardiomyopathy (DCM), which is induced by streptozotocin and nicotinamide administration in rats. We supplemented DCM rats with PHF (250 and 500 mg/kg/BW) for 45 days and evaluated their effects on oxidative stress markers, proinflammatory cytokines, and messenger RNA expressions of the nuclear factor erythroid 2-related factor-2 (Nrf-2) and its linked genes [heme oxygenase-1 (HO-1), superoxide dismutase, catalase] along with inflammatory genes [tumour necrosis factor α and nuclear factor kappa B (NF-κB)]. Our study demonstrated that PHF successfully attenuated inflammation and oxidative stress via messenger RNA upregulation of Nrf-2, HO-1, superoxide dismutase, and catalase and concomitantly with downregulation of tumour necrosis factor α and NF-κB. Conversely, PHF also protected hyperglycemia-mediated cardiac damage, which was confirmed with histopathological and scanning electron microscopy analysis. In conclusion, our results suggested that PHF successfully ameliorated hyperglycemia-mediated inflammation and oxidative stress via regulation of NF-κB/Nrf-2/HO-1 pathway. Therefore, these results recommend that PHF may be a prospective therapeutic agent for DCM.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Cardiomiopatías Diabéticas/prevención & control , Hemo Oxigenasa (Desciclizante)/metabolismo , Hipoglucemiantes/farmacología , Mediadores de Inflamación/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Preparaciones de Plantas/farmacología , Animales , Glucemia/metabolismo , Citocinas/genética , Citocinas/metabolismo , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Hemo Oxigenasa (Desciclizante)/genética , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/ultraestructura , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , Ratas Wistar , Transducción de Señal
10.
J Ethnopharmacol ; 284: 114772, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34688801

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cyclocarya paliurus (CP) is a traditional Chinese herb and possesses a variety of biological activities including anti-hyperglycemia, anti-hyperlipidemia, antioxidant and anti-inflammation. Arjunolic acid (AA) is an abundant and bioactive ingredient in CP that shows significant protection against many metabolic diseases such as diabetic complication. Diabetic retinopathy (DR) is a serious complication of diabetes and may lead to vision loss. However, the protective effects and underlying mechanisms of AA against DR is not still understood. AIM OF THE STUDY: We aimed to investigate whether AA activates AMPK/mTOR/HO-1 regulated autophagy pathway to alleviate DR. MATERIALS AND METHODS: In the study, the STZ-induced diabetic model of rats was established, and AA with 10 and 30 mg/kg dosages was given orally for ten weeks to investigate their effect on retinal injury of DR. H2O2-induced ARPE-19 cells were applied to evaluate anti-apoptosis and anti-oxidant effect of AA. RESULTS: The results revealed that AA could prevent STZ-induced weight loss and increase the retinal thickness and nuclei counts. The level of HO-1 protein was upregulated both in vivo and in vitro. In addition, AA prevented retinal damage and cell apoptosis through the AMPK-mTOR-regulated autophagy pathway. Furthermore, anti-apoptosis capacity, as well as the expression of HO-1 and LC3 protein, were effectively locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C). CONCLUSIONS: This finding implies that AA may be a promising candidate drug by protecting retinal cells from STZ-induced oxidative stress and inflammation through the AMPK/mTOR/HO-1 regulated autophagy pathway.


Asunto(s)
Adenilato Quinasa/metabolismo , Retinopatía Diabética/tratamiento farmacológico , Hemo Oxigenasa (Desciclizante)/metabolismo , Juglandaceae/química , Serina-Treonina Quinasas TOR/metabolismo , Triterpenos/uso terapéutico , Adenilato Quinasa/genética , Animales , Autofagia/efectos de los fármacos , Diabetes Mellitus Experimental , Retinopatía Diabética/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hemo Oxigenasa (Desciclizante)/genética , Masculino , Estructura Molecular , Fitoterapia , Extractos Vegetales , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Triterpenos/química
11.
Environ Sci Pollut Res Int ; 29(2): 2214-2226, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34363578

RESUMEN

Epilepsy is characterized by recurrent epileptic seizures, and its effective management continues to be a therapeutic challenge. Oxidative stress and local inflammatory response accompany the status epilepticus (SE). This study evaluated the effect of Melissa officinalis extract (MOE) on oxidative stress, inflammation, and neurotransmitters in the hippocampus of pilocarpine (PILO)-administered rats, pointing to the involvement of Nrf2/HO-1 signaling. Rats received PILO via intraperitoneal administration and were treated with MOE for 2 weeks. MOE prevented neuronal loss; decreased lipid peroxidation, Cox-2, PGE2, and BDNF; and downregulated glial fibrillary acidic protein in the hippocampus of PILO-treated rats. In addition, MOE enhanced GSH and antioxidant enzymes, upregulated Nrf2 and HO-1 mRNA abundance, and increased the nuclear translocation of Nrf2 in the hippocampus of epileptic rats. Na+/K+-ATPase activity and GABA were increased, and glutamate and acetylcholine were decreased in the hippocampus of epileptic rats treated with MOE. In conclusion, MOE attenuated neuronal loss, oxidative stress, and inflammation; activated Nrf2/HO-1 signaling; and modulated neurotransmitters, GFAP, and Na+/K+-ATPase in the hippocampus of epileptic rats. These findings suggest that M. officinalis can mitigate epileptogenesis, pending further studies to explore the exact underlying mechanisms.


Asunto(s)
Hipocampo , Inflamación , Melissa , Estrés Oxidativo , Pilocarpina , Extractos Vegetales , Animales , Ratas , Hemo Oxigenasa (Desciclizante) , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Melissa/química , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Ratas Wistar , Transducción de Señal
12.
Zhonghua Nan Ke Xue ; 27(3): 240-248, 2021 Mar.
Artículo en Chino | MEDLINE | ID: mdl-34914307

RESUMEN

OBJECTIVE: To investigate the effects of modified Dahuang Zhechong Granule (DZG) on the epididymal tissue of varicocele (VC) rats and the expressions of the nuclear factor erythroid 2 (NF-E2)-related factor (Nrf2) and heme oxygenase-1 (HO-1) protein. METHODS: Sixty SD rats were randomly divided into six groups of an equal number: sham operation, VC model control, aescuven forte (AF) and low-, medium- and high-dose DZG. The VC model was established by ligation of the left renal vein with the Turner's method, followed by intragastrical administration of normal saline to the rats in the sham operation and VC model control groups, AF Tablets at 54 mg/kg to those in the AF group, and modified DZG at 0.6, 1.2 and 2.4 g/ml to those in the low-, medium- and high-dose DZG groups respectively, all once daily for 8 weeks. Then, all the animals were sacrificed and their left epididymides harvested for examination of semen quality, observation of local ultrastructural changes, measurement of the apoptosis of spermatogenic cells by Annexin V-FITC, and determination of the expressions of Nrf2 and HO-1 in the epididymal tissue by immunohistochemistry. RESULTS: Evident pathological damage was observed in the left epididymal tissue of the VC model controls, with significantly reduced numbers of spermatogenic cells and sperm at all levels, partially destroyed cellular structure, and disappearance of some subcellular structures such as the lysosome, mitochondrion, endoplasmic reticulum, nucleus and cell membrane, which were all improved to some extent in the DZG and AF group. Sperm concentration and motility in the left epididymis were significantly higher in the medium- and high-dose DZG and AF groups than in the VC model controls (P < 0.05), even more significantly in the high-dose DZG than in the AF group (P < 0.05). The apoptosis rate of spermatogenic cells was markedly higher in the VC model control than in the sham operation group (P < 0.05), but lower in the medium- and high-dose DZG and AF groups than in the VC model controls (P < 0.05). Immunohistochemistry showed positive expressions of Nrf2 and HO-1 proteins, brown, scattered and with a low luminance of the cells, in the left epididymis tissue of the VC model control rats, but with a significantly higher cell luminance in the high-dose DZG and AF groups. CONCLUSIONS: Modified Dahuang Zhechong Granule can effectively repair pathological damage to the epididymis of varicocele rats, increase the expressions of Nrf2 and HO-1 proteins, antagonize the apoptosis of spermatogenic cells and provide a favorable condition for sperm maturation.


Asunto(s)
Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Epidídimo , Hemo Oxigenasa (Desciclizante)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Varicocele , Animales , Epidídimo/citología , Epidídimo/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Análisis de Semen
13.
Oxid Med Cell Longev ; 2021: 5147069, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630849

RESUMEN

Intestinal ischemia-reperfusion (I/R) may induce cell/tissue injuries, leading to multiple organ failure. Based on our preexperiments, we proposed that sesamin could protect against and ameliorate intestinal I/R injuries and related disorders with involvement of activating Nrf2 signaling pathway. This proposal was evaluated using SD intestinal I/R injury rats in vivo and hypoxia/reoxygenation- (H/R-) injured rat small intestinal crypt epithelial cell line (IEC-6 cells) in vitro. Sesamin significantly alleviated I/R-induced intestinal histopathological injuries and significantly reduced serum biochemical indicators ALT and AST, alleviating I/R-induced intestinal injury in rats. Sesamin also significantly reversed I/R-increased TNF-α, IL-6, IL-1ß, and MPO activity in serum and MDA in tissues and I/R-decreased GSH in tissues and SOD in both tissues and IEC-6 cells, indicating its anti-inflammatory and antioxidative stress effects. Further, sesamin significantly decreased TUNEL-positive cells, downregulated the increased Bax and caspase-3 protein expression, upregulated the decreased protein expression of Bcl-2 in I/R-injured intestinal tissues, and significantly reversed H/R-reduced IEC-6 cell viability as well as reduced the number of apoptotic cells among H/R-injured IEC-6 cell, showing antiapoptotic effects. Activation of Nrf2 is known to ameliorate tissue/cell injuries. Consistent with sesamin-induced ameliorations of both intestinal I/R injuries and H/R injuries, transfection of Nrf2 cDNA significantly upregulated the expression of Nrf2, HO-1, and NQO1, respectively. On the contrary, either Nrf2 inhibitor (ML385) or Nrf2 siRNA transfection significantly decreased the expression of these proteins. Our results suggest that activation of the Nrf2/HO-1/NQO1 signaling pathway is involved in sesamin-induced anti-inflammatory, antioxidative, and antiapoptotic effects in protection against and amelioration of intestinal I/R injuries.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Dioxoles/administración & dosificación , Hemo Oxigenasa (Desciclizante)/metabolismo , Enfermedades Intestinales/tratamiento farmacológico , Enfermedades Intestinales/metabolismo , Lignanos/administración & dosificación , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fitoterapia/métodos , Extractos Vegetales/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Sesamum/química , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Mucosa Intestinal/citología , Masculino , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Transfección , Resultado del Tratamiento
14.
Biomed Res Int ; 2021: 9490162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34485528

RESUMEN

Stahlianthus involucratus (S. involucratus) has anti-inflammatory, antinociceptive, and antipyretic activities; however, there are no literature reports on its antioxidant capacity. This study presents a comparative assessment of the polyphenols contents, flavonoids contents, and antioxidant activity of the aqueous and methanol extracts of S. involucratus (ASI and MSI). Moreover, the expression of oxidative stress-related genes in H2O2-induced H9c2 cells pretreated with the MSI was measured by RT-qPCR, and furthermore, MSI were characterized by UHPLC-Q-Orbitrap-MS/MS. The results indicated that the MSI had higher antioxidant contents and antioxidant capacity, and MSI could inhibit H2O2-induced oxidative stress in H9c2 cells by activating the Nrf2/HO-1 pathway. UHPLC-Q-Orbitrap-MS/MS characterized 15 phenolic compounds from the MSI. In conclusion, S. involucratus has the potential antioxidant capacity.


Asunto(s)
Antioxidantes/metabolismo , Peróxido de Hidrógeno/farmacología , Miocitos Cardíacos/efectos de los fármacos , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Zingiberaceae/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión/métodos , Hemo Oxigenasa (Desciclizante)/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Factor 2 Relacionado con NF-E2/metabolismo , Oxidantes/toxicidad , Ratas , Espectrometría de Masas en Tándem/métodos
15.
Eur J Pharmacol ; 909: 174396, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34332921

RESUMEN

Catalpol is a major compound in Rehmanniae Radix with outstanding medicinal and nutritional values. Our previous studies have demonstrated catalpol's antidepressant effect, but its mechanisms remain unclear. This study aimed to explore the antidepressant mechanisms of catalpol via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1 (HO-1) pathway. Results demonstrated that chronic unpredictable mild stress (CUMS) for 5 consecutive weeks caused significant decreases in the sucrose preference and the horizontal and vertical scores of open-field test, as well as a significant increase in the swimming-immobility time of rats; catalpol administration significantly reversed the abnormality of these indicators. Further real-time fluorescent quantitative polymerase chain reaction and Western blotting results together showed that CUMS significantly downregulated the expression levels of hippocampal genes and proteins, including PI3K, Akt, Nrf2, HO-1, tropomyosin-related kinase B (TrkB), and brain-derived neurotrophic factor; catalpol administration significantly reversed the abnormal expression of these genes and proteins. CUMS also caused a significant decrease in the hippocampal superoxide dismutase, catalase, glutathione peroxidase, glutathione-s transferase, and reduced glutathione levels, as well as a significant increase in thiobarbituric acid reactive substances level in rats; catalpol administration significantly reversed the abnormality of these indicators. Taken together, this study confirmed for the first time that the antidepressant effect of catalpol on CUMS-induced depression involved the upregulation of the PI3K/Akt/Nrf2/HO-1 signaling pathway, thereby improving the hippocampal neurotrophic, neuroprotective, and antioxidant levels. The PI3K/Akt/Nrf2/HO-1 pathway-related molecules may serve as potential new biomarkers and candidate molecular targets for catalpol's antidepressant effects.


Asunto(s)
Antidepresivos/farmacología , Depresión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Hipocampo/efectos de los fármacos , Glucósidos Iridoides/farmacología , Animales , Antidepresivos/uso terapéutico , Depresión/diagnóstico , Depresión/etiología , Depresión/patología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/uso terapéutico , Hemo Oxigenasa (Desciclizante)/metabolismo , Hipocampo/patología , Humanos , Glucósidos Iridoides/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/complicaciones
16.
Sci Rep ; 11(1): 14511, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267240

RESUMEN

Sepsis survivors present long-term cognitive deficits. The present study was to investigate the effect of early administration of high-dose vitamin C on cognitive function in septic rats and explore its possible cerebral protective mechanism. Rat sepsis models were established by cecal ligation and puncture (CLP). Ten days after surgery, the Morris water maze test was performed to evaluate the behavior and cognitive function. Histopathologic changes in the hippocampus were evaluated by nissl staining. The inflammatory cytokines, activities of antioxidant enzymes (superoxide dismutase or SOD) and oxidative products (malondialdehyde or MDA) in the serum and hippocampus were tested 24 h after surgery. The activity of matrix metalloproteinase-9 (MMP-9) and expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1(HO-1) in the hippocampus were measured 24 h after surgery. Compared with the sham group in the Morris water maze test, the escape latency of sepsis rats was significantly (P = 0.001) prolonged in the navigation test, whereas the frequency to cross the platform and the time spent in the target quadrant were significantly (P = 0.003) reduced. High-dose vitamin C significantly decreased the escape latency (P = 0.01), but increased the time spent in the target quadrant (P = 0.04) and the frequency to cross the platform (P = 0.19). In the CLP+ saline group, the pyramidal neurons were reduced and distributed sparsely and disorderly, the levels of inflammatory cytokines of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in the serum and hippocampus were significantly increased (P = 0.000), the blood brain barrier (BBB) permeability in the hippocampus was significantly (P = 0.000) increased, the activities of SOD in the serum and hippocampus were significantly (P = 0.000 and P = 0.03, respectively) diminished while the levels of MDA in the serum and hippocampus were significantly (P = 0.007) increased. High-dose vitamin C mitigated hippocampus histopathologic changes, reduced systemic inflammation and neuroinflammation, attenuated BBB disruption, inhibited oxidative stress in brain tissue, and up-regulated the expression of nuclear and total Nrf2 and HO-1. High-dose vitamin C significantly (P < 0.05) decreased the levels of tumor necrosis factor- (TNF)-α, interleukin-6 (IL-6), MDA in the serum and hippocampus, and the activity of MMP-9 in the hippocampus, but significantly (P < 0.05) increased the levels of SOD, the anti-inflammatory cytokine (IL-10) in the serum and hippocampus, and nuclear and total Nrf2, and HO-1 in the hippocampus. In conclusion, high-dose vitamin C can improve cognition impairment in septic rats, and the possible protective mechanism may be related to inhibition of inflammatory factors, alleviation of oxidative stress, and activation of the Nrf2/HO-1 pathway.


Asunto(s)
Ácido Ascórbico/farmacología , Disfunción Cognitiva/prevención & control , Sepsis/complicaciones , Animales , Ácido Ascórbico/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiología , Disfunción Cognitiva/etiología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hemo Oxigenasa (Desciclizante)/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inflamación/tratamiento farmacológico , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/farmacología , Ratas Sprague-Dawley , Sepsis/tratamiento farmacológico , Sepsis/etiología
17.
Neuropharmacology ; 196: 108654, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119518

RESUMEN

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates redox homeostasis of the cell through regulation of the antioxidant response element genes transcription. Nrf2 also regulates the antiapoptotic Bcl-2 gene. Nrf2 degradation and nuclear translocation is regulated by upstream kinases Akt and GSK3ß. Glutamate excitotoxicity is a process of neuronal cells death due to excessive activation of glutamate receptors. Glutamate excitotoxicity participates in the pathophysiology of several acute and chronic neurological conditions. In addition, glutamate excitotoxicity interrupts the PI3K/Akt prosurvival pathway so GSK3ß remains active. Active GSK3ß increases Nrf2 degradation, decreases Nrf2 nuclear translocation and increases Nrf2 nuclear export which decreases the ARE genes transcription such as, SOD, GSH synthesis enzyme and HO-1. Also, Bcl-2 transcription decreases. Flurbiprofen is a COX inhibitor. Previous studies showed that it has a neuroprotective effect in neurodegeneration and in focal cerebral ischemia/reperfusion model. In our research we aimed to test the hypothesis that flurbiprofen may have a neuroprotective effect in a rat model of glutamate-induced excitotoxicity and this neuroprotection may occur through modulation of (Akt/GSK3ß/Nrf2/HO-1) pathway. Rats were divided into 4 groups; control, MSG (2.5 g/Kg, i.p), low dose FB (5 mg/kg, i.p) and high dose FB (10 mg/kg, i.p). We found that low and high doses FB decreased COX-2, PGE2, NO and MDA and increased SOD and GSH in brain compared to MSG group. High dose was more effective than low dose. Western blotting analysis in hippocampus tissue showed that high dose FB increased p-Akt, p-GSK3ß, nuclear Nrf2 and HO-1 and decreased cytosolic Nrf2 level in comparison with MSG group. Immunohistochemical analysis in hippocampus and cerebral cortex showed that high dose FB increased Bcl-2 and decreased Bax compared to MSG group. In addition, FB increased the number of intact neurons in hippocampus areas and cerebral cortex neurons and showed an anxiolytic-like action in OF and EPM tests. These findings suggest that FB has a neuroprotective effect in glutamate-induced excitotoxicity model through reduction of the glutamate excitotoxicity damage and activation of the survival pathway. These may occur due to modulation the survival pathway (Akt/GSK3ß/Nrf2/HO-1) and inhibition of COX-2.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Apoptosis/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/toxicidad , Flurbiprofeno/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Glutamato de Sodio/toxicidad , Animales , Antioxidantes/farmacología , Ansiedad , Modelos Animales de Enfermedad , Prueba de Laberinto Elevado , Ácido Glutámico , Glucógeno Sintasa Quinasa 3 beta , Hemo Oxigenasa (Desciclizante) , Hipocampo/metabolismo , Factor 2 Relacionado con NF-E2 , Neuronas/metabolismo , Prueba de Campo Abierto , Proteínas Proto-Oncogénicas c-akt , Ratas , Transducción de Señal
18.
PLoS One ; 16(4): e0250261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33878116

RESUMEN

Obesity is an enduring medical issue that has raised concerns around the world. Natural plant extracts have shown therapeutic potential in preventing oxidative stress and inflammation related to obesity complications. In this study, Senna alexandrina Mill. leaves were utilized to treat high-fat diet-related metabolic disorders and non-alcoholic fatty liver diseases. Plasma biochemical assays were conducted to determine the lipid profiles and oxidative stress parameters, and the gene expression of antioxidant enzymes and inflammatory mediators was measured. Histological stained livers of high-fat diet-fed rats were observed. S. alexandrina leaf powder supplementation prevented the increase in cholesterol and triglyceride levels in high-fat diet-fed rats. Moreover, S. alexandrina leaves also reduced lipid peroxidation and nitric oxide production in these rats. Prevention of oxidative stress by S. alexandrina leaf supplementation in high-fat diet-fed rats is regulated by enhancing the antioxidant enzyme activity, followed by the restoration of corresponding gene expressions, such as NRF-2, HO-1, SOD, and CAT. Histological staining provides further evidence that S. alexandrina leaf supplementation prevents inflammatory cell infiltration, lipid droplet deposition, and fibrosis in the liver of high-fat diet-fed rats. Furthermore, this investigation revealed that S. alexandrina leaf supplementation controlled non-alcoholic fatty liver disease by modulating the expression of fat metabolizing enzymes in high-fat diet-fed rats. Therefore, S. alexandrina leaf supplementation inhibits fatty liver inflammation and fibrosis, suggesting its usefulness in treating non-alcoholic steatohepatitis. Thus, this natural leaf extract has potential in treatment of obesity related liver dysfunction.


Asunto(s)
Fármacos Antiobesidad/farmacología , Hígado Graso/dietoterapia , Obesidad/dietoterapia , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/química , Senna/química , Animales , Fármacos Antiobesidad/química , Catalasa/genética , Catalasa/metabolismo , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Dieta Alta en Grasa/efectos adversos , Hígado Graso/etiología , Hígado Graso/metabolismo , Hígado Graso/patología , Regulación de la Expresión Génica , Hemo Oxigenasa (Desciclizante)/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Gotas Lipídicas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Polvos/administración & dosificación , Ratas , Ratas Wistar , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Triglicéridos/sangre
19.
Can J Physiol Pharmacol ; 99(10): 1069-1078, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33887167

RESUMEN

The present study aimed to evaluate the protective effects of selenium (Sel) administration against tacrolimus (Tac) - induced lung toxicity and to assess the relation between heme oxygenase 1 (HO-1) and these effects. The study was conducted on 36 Wistar male albino rats equally divided into four groups: (i) normal control; (ii) Sel (0.1 mg/kg per day p.o. for four weeks); (iii) TAC 3 mg/mL as single oral dose on 27th day; and (iv) Tac + Sel. Lung tissues, lung homogenate, and bronchoalveolar lavage of the sacrificed animals were investigated biochemically and histopathologically, by immunohistochemistry or by PCR. The Tac group showed significantly lower expression of HO-1. Administration of Sel was associated with increased HO-1 expression. Oxidative (malondialdehyde, reduced glutathione, superoxide dismutase, myeloperoxidase, and glutathione peroxidase activity) and nitrosative stress (nitric oxide) markers and markers of inflammation (interleukin 1ß (IL-1ß), IL-6, and IL-10) showed changes corresponding to HO-1 levels in rat groups. Tac group showed the highest expression of caspase-3. Sel exerted a protective role against Tac-induced lung toxicity.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antioxidantes/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Selenio/farmacología , Tacrolimus/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Interacciones Farmacológicas , Hemo Oxigenasa (Desciclizante)/genética , Inmunosupresores/toxicidad , Interleucina-10/metabolismo , Masculino , Malondialdehído/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Sustancias Protectoras/farmacología , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo
20.
J Ethnopharmacol ; 277: 114141, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33905819

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ashwagandha (ASH) is one of the medicinal plants used in traditional Indian, Ayurvedic, and Unani medicines for their broad range of pharmacological activities including, tonic, aphrodisiac, energy stimulant, and counteracting chronic fatigue. Besides, it is used in the treatment of nervous exhaustion, memory-related conditions, insomnia, as well as improving learning ability and memory capacity. ASH is preclinically proven to be efficient in hepatoprotection and improving cognitive impairment, however, its beneficial effects against hepatic encephalopathy (HE) is still unclear. Therefore, this study aimed at investigating the protective effects of ASH root extract against thioacetamide (TAA)-induced HE and delineate the underlying behavioral and pharmacological mechanisms. MATERIALS AND METHODS: ASH metabolites were identified using UPLC-HRMS. Rats were pretreated with ASH (200 and 400 mg/kg) for 29 days and administrated TAA (i.p, 350 mg/kg) in a single dose. Then, behavioral (open field test, Y-maze, modified elevated plus maze and novel object recognition test), and biochemical (ammonia and hepatic toxicity indices) assessments, as well as oxidative stress markers (MDA and GSH) were evaluated. The hepatic and brain levels of glutamine synthetase (GS), nuclear factor erythroid 2-related factor 2 (Nrf2), heme-oxygenase (HO)-1, inducible nitric oxide synthase (iNOS) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of p38/ERK½ were determined using real-time polymerase chain reaction (PCR). Moreover, histopathological investigations and immunohistochemical (NF-κB and TNF-α immunohistochemical expressions) examinations were performed. RESULTS: Metabolite profiling of ASH revealed more than 45 identified metabolites including phenolic acids, flavonoids and steroidal lactone triterpenoids. Compared to the TAA-intoxicated group, ASH improved the locomotor and cognitive deficits, serum hepatotoxicity indices and ammonia levels, as well as brain and hepatic histopathological alterations. ASH reduced hepatic and brain levels of MDA, GS, and iNOS, and increased their GSH, Nrf2, and HO-1 levels. Also, ASH downregulated p38 and ERK½ mRNA expressions, and NF-κB and TNF-α immunohistochemical expressions in brain and hepatic tissues. CONCLUSIONS: Our results provided insights into the promising hepato- and neuroprotective effects of ASH, with superiority to 400 mg/kg ASH, to ameliorate HE with its sequential hyperammonemia and liver/brain injuries. This could be attributed to the recorded increase in the spontaneous alternation % and recognition index, antioxidant and anti-inflammatory activities, as well as upregulation of Nrf2 and downregualtion of MAPK signaling pathways.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Encefalopatía Hepática/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Hemo Oxigenasa (Desciclizante)/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Ratas , Ratas Wistar , Tioacetamida/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA