Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 18(8): e0285430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37552681

RESUMEN

Heteroplasmy, the coexistence of multiple mitochondrial DNA (mtDNA) sequences in a cell, is well documented in plants. Next-generation sequencing technology (NGS) has made it feasible to sequence entire genomes. Thus, NGS has the potential to detect heteroplasmy; however, the methods and pitfalls in heteroplasmy detection have not been fully investigated and identified. One obstacle for heteroplasmy detection is the sequence homology between mitochondrial-, plastid-, and nuclear DNA, of which the influence of nuclear DNA segments homologous to mtDNA (numt) need to be minimized. To detect heteroplasmy, we first excluded nuclear DNA sequences of sugar beet (Beta vulgaris) line EL10 from the sugar beet mtDNA sequence. NGS reads were obtained from single plants of sugar beet lines NK-195BRmm-O and NK-291BRmm-O and mapped to the unexcluded mtDNA regions. More than 1000 sites exhibited intra-individual polymorphism as detected by genome browsing analysis. We focused on a 309-bp region where 12 intra-individual polymorphic sites were closely linked to each other. Although the existence of DNA molecules having variant alleles at the 12 sites was confirmed by PCR amplification from NK-195BRmm-O and NK-291BRmm-O, these variants were not always called by six variant-calling programs, suggesting that these programs are inappropriate for intra-individual polymorphism detection. When we changed the nuclear DNA reference, a numt absent from EL10 was found to include the 309-bp region. Genetic segregation of an F2 population from NK-195BRmm-O x NK-291BRmm-O supported the numt origin of the variant alleles. Using four references, we found that numt detection exhibited reference dependency, and extreme polymorphism of numts exists among sugar beet lines. One of the identified numts absent from EL10 is also associated with another intra-individual polymorphic site in NK-195mm-O. Our data suggest that polymorphism among numts is unexpectedly high within sugar beets, leading to confusion about the true degree of heteroplasmy.


Asunto(s)
Beta vulgaris , Genoma Mitocondrial , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Beta vulgaris/genética , Beta vulgaris/metabolismo , Heteroplasmia , Análisis de Secuencia de ADN/métodos , Azúcares , Genoma Mitocondrial/genética
2.
PLoS One ; 18(8): e0289984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37590309

RESUMEN

Thrips are a serious pest in many crops. In onion cultivation, Thrips tabaci is the most important, but not the only thrips species causing damage. We investigated which thrips species affects onion and related species worldwide, how much genetic variation there is within T. tabaci populations, and how this evolves. Furthermore, we determined the reproductive mode and the correlation between the genetic and geographic distances. Thrips samples from infested onions or related species were obtained from 14 different locations worldwide. Species and haplotypes were determined through DNA barcoding with the mitochondrial Cytochrome Oxidase subunit I (COI) gene. Thrips tabaci was the most commonly observed species, but Scirtothrips dorsalis, Thrips palmi, Frankliniella intonsa, Frankliniella occidentalis and Frankliniella tenuicornis were also found, especially at the beginning of the growing seasons and depending on the location. The Nei's genetic distance within T. tabaci was less than 5% and the haplotypes were clustered into two phylogenetic groups, each linked to a specific mode of reproduction, thelytokous or arrhenotokous. Thelytokous thrips were more common and more widely distributed than arrhenotokous thrips. A high percentage of heteroplasmy was detected in the arrhenotokous group. Heteroplasmic thrips were only found in populations where thelytokous and arrhenotokous were present in sympatry. Some T. tabaci haplotypes were present in high frequency at several sampled locations. No correlation was found between the genetic and geographic distances, which points to anthropic activities spreading thrips haplotypes throughout the world.


Asunto(s)
Allium , Thysanoptera , Animales , Thysanoptera/genética , Filogenia , Cebollas , Heteroplasmia
3.
Aging Cell ; 20(11): e13487, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34612579

RESUMEN

The association between blood-based estimates of mitochondrial DNA parameters, mitochondrial DNA copy number (mtDNA-CN) and heteroplasmy load, with skeletal muscle bioenergetic capacity was evaluated in 230 participants of the Baltimore Longitudinal Study of Aging (mean age:74.7 years, 53% women). Participants in the study sample had concurrent data on muscle oxidative capacity (τPCr ) assessed by 31 P magnetic resonance spectroscopy, and mitochondrial DNA parameters estimated from whole-genome sequencing data. In multivariable linear regression models, adjusted for age, sex, extent of phosphocreatine (PCr) depletion, autosomal sequencing coverage, white blood cell total, and differential count, as well as platelet count, mtDNA-CN and heteroplasmy load were not significantly associated with τPCr (both p > 0.05). However, in models evaluating whether the association between mtDNA-CN and τPCr varied by heteroplasmy load, there was a significant interaction between mtDNA-CN and heteroplasmy load (p = 0.037). In stratified analysis, higher mtDNA-CN was significantly associated with lower τPCr among participants with high heteroplasmy load (n = 84, ß (SE) = -0.236 (0.115), p-value = 0.044), but not in those with low heteroplasmy load (n = 146, ß (SE) = 0.046 (0.119), p-value = 0.702). Taken together, mtDNA-CN and heteroplasmy load provide information on muscle bioenergetics. Thus, mitochondrial DNA parameters may be considered proxy measures of mitochondrial function that can be used in large epidemiological studies, especially when comparing subgroups.


Asunto(s)
Envejecimiento/genética , Envejecimiento/metabolismo , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Heteroplasmia , Espectroscopía de Resonancia Magnética/métodos , Mitocondrias/genética , Músculo Esquelético/metabolismo , Estrés Oxidativo/genética , Anciano , Anciano de 80 o más Años , Baltimore , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Fósforo
4.
J Intern Med ; 287(6): 685-697, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32176378

RESUMEN

Mutations in the mitochondrial genome are the cause of many debilitating neuromuscular disorders. Currently, there is no cure or treatment for these diseases, and symptom management is the only relief doctors can provide. Although supplements and vitamins are commonly used in treatment, they provide little benefit to the patient and are only palliative. This is why gene therapy is a promising research topic to potentially treat and, in theory, even cure diseases caused by mutations in the mitochondrial DNA (mtDNA). Mammalian cells contain approximately a thousand copies of mtDNA, which can lead to a phenomenon called heteroplasmy, where both wild-type and mutant mtDNA molecules co-exist within the cell. Disease only manifests once the per cent of mutant mtDNA reaches a high threshold (usually >80%), which causes mitochondrial dysfunction and reduced ATP production. This is a useful feature to take advantage of for gene therapy applications, as not every mutant copy of mtDNA needs to be eliminated, but only enough to shift the heteroplasmic ratio below the disease threshold. Several DNA-editing enzymes have been used to shift heteroplasmy in cell culture and mice. This review provides an overview of these enzymes and discusses roadblocks of applying these to gene therapy in humans.


Asunto(s)
Enzimas Reparadoras del ADN/genética , ADN Mitocondrial/genética , Terapia Genética , Heteroplasmia/genética , Animales , Reparación del ADN/genética , Enzimas Reparadoras del ADN/uso terapéutico , Terapia Genética/métodos , Humanos , Enfermedades Mitocondriales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA