RESUMEN
BACKGROUND: Polycystic ovary syndrome (PCOS) is a heterogeneous metabolic and endocrine disorder that causes anovulatory infertility and abnormal folliculogenesis in women of reproductive age. Several studies have revealed inflammation in PCOS follicles, and recent evidence suggests that Berberine (BBR) effectively reduces inflammatory responses in PCOS, however, the underlying mechanisms remain unclear. PURPOSE: To determine the underlying mechanisms by which BBR alleviates inflammation in PCOS. STUDY DESIGN: Primary human GCs from healthy women and women with PCOS, and KGN cells were used for in vitro studies. ICR mice were used for in vivo studies. METHODS: Gene expression was measured using RT-qPCR. HAS2, inflammatory cytokines, and serum hormones were assayed by ELISA. Protein expression profiles were assayed by Western blot. Chronic low-grade inflammatory mouse models were developed by intraperitoneal injection with LPS, and PCOS mouse models were established by subcutaneous intraperitoneal injection of DHEA. BBR and 4-MU were administered by gavage. Ovarian morphologic changes were evaluated using H&E staining. HAS2 expression in the ovary was assayed using Western blot and immunohistochemistry. RESULTS: Our results confirmed that HAS2 expression and hyaluronan (HA) accumulation are closely associated with inflammatory responses in PCOS. Data obtained from in vitro studies showed that HAS2 and inflammatory genes (e.g., MCP-1, IL-1ß, and IL-6) are significantly upregulated in PCOS samples and LPS-induced KGN cells compared to their control groups. In addition, these effects were reversed by blocking HAS2 expression or HA synthesis using BBR or 4-MU, respectively. Furthermore, HAS2 overexpression induces the expression of inflammatory genes in PCOS. These results were further confirmed in LPS- and DHEA-induced mouse models, where inflammatory genes were reduced by BBR or 4-MU, and ovarian morphology was restored. CONCLUSIONS: Our results define previously unknown links between HAS2 and chronic low-grade inflammation in the follicles of women with PCOS. BBR exerts its anti-inflammatory effects by down-regulating HAS2. This study provides a novel therapeutic target for alleviating ovarian inflammation in women with PCOS.
Asunto(s)
Berberina , Modelos Animales de Enfermedad , Hialuronano Sintasas , Inflamación , Ratones Endogámicos ICR , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Berberina/farmacología , Femenino , Animales , Humanos , Hialuronano Sintasas/metabolismo , Inflamación/tratamiento farmacológico , Ratones , Ácido Hialurónico , Adulto , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Deshidroepiandrosterona/farmacología , Ovario/efectos de los fármacos , Lipopolisacáridos , Citocinas/metabolismoRESUMEN
Pulmonary hypertension (PH) comprises a diverse group of disorders that share a common pathway of pulmonary vascular remodeling leading to right ventricular failure. Development of anti-remodeling strategies is an emerging frontier in PH therapeutics that requires a greater understanding of the interactions between vascular wall cells and their extracellular matrices. The ubiquitous matrix glycan, hyaluronan (HA), is markedly elevated in lungs from patients and experimental models with PH. Herein, we identified HA synthase-2 (HAS2) in the pulmonary artery smooth muscle cell (PASMC) layer as a predominant locus of HA dysregulation. HA upregulation involves depletion of NUDT21, a master regulator of alternative polyadenylation, resulting in 3'UTR shortening and hyper-expression of HAS2. The ensuing increase of HAS2 and hyper-synthesis of HA promoted bioenergetic dysfunction of PASMC characterized by impaired mitochondrial oxidative capacity and a glycolytic shift. The resulting HA accumulation stimulated pro-remodeling phenotypes such as cell proliferation, migration, apoptosis-resistance, and stimulated pulmonary artery contractility. Transgenic mice, mimicking HAS2 hyper-synthesis in smooth muscle cells, developed spontaneous PH, whereas targeted deletion of HAS2 prevented experimental PH. Pharmacological blockade of HAS2 restored normal bioenergetics in PASMC, ameliorated cell remodeling phenotypes, and reversed experimental PH in vivo. In summary, our results uncover a novel mechanism of HA hyper-synthesis and downstream effects on pulmonary vascular cell metabolism and remodeling.
Asunto(s)
Metabolismo Energético , Hialuronano Sintasas , Ácido Hialurónico , Hipertensión Pulmonar , Regiones no Traducidas 3'/genética , Animales , Proliferación Celular , Metabolismo Energético/genética , Humanos , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/biosíntesis , Hipertensión Pulmonar/enzimología , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/enzimologíaRESUMEN
Skin barrier damage is present in the patients with hereditary disorders of the magnesium channel, but the molecular mechanism has not been fully understood. We found that the expressions of hyaluronan synthase (HAS), HAS2 and HAS3 are influenced by MgCl2 concentration in human keratinocyte-derived HaCaT cells. The exposure of cells to a high concentration (5.8 mM) of MgCl2 induced the elevation of HAS2/3 expression, which was inhibited by mRNA knockdown of nonimprinted in Prader-Willi/Angelman syndrome-like domain containing 4 (NIPAL4). Similarly, the content of hyaluronic acid (HA) was changed according to MgCl2 concentration and the expression of NIPAL4. The MgCl2 supplementation increased the reporter activities of HAS2/3, which were inhibited by NIPAL4 knockdown, indicating that the expressions of HAS2/3 are up-regulated at the transcriptional level. The reporter activities and mRNA levels of HAS2/3, and the production of HA were inhibited by CHIR-99021, a glycogen synthase kinase-3 (GSK3) inhibitor, and naphthol AS-E, a cyclic AMP-response element binding protein (CREB) inhibitor. Furthermore, the mutation in putative CREB-binding sites of promoter region in HAS2/3 genes inhibited the MgCl2 supplementation-induced elevation of promoter activity. Our results indicate that the expressions of HAS2/3 are up-regulated by MgCl2 supplementation in HaCaT cells mediated through the activation of GSK3 and CREB. Magnesium may play a pivotal role in maintaining the skin barrier function and magnesium supplementation may be useful to enhance moisturization and wound repair in the skin.
Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Hialuronano Sintasas/metabolismo , Queratinocitos/efectos de los fármacos , Magnesio/farmacología , Línea Celular , Suplementos Dietéticos , Células HaCaT , Humanos , Ácido Hialurónico/metabolismo , Queratinocitos/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Piel/efectos de los fármacos , Piel/metabolismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Gintonin is a newly discovered component of ginseng and acts as a ligand for G protein-coupled lysophosphatidic acid (LPA) receptors. It is currently unclear whether gintonin has skin-related effects. Here, we examined the effects of a gintonin-enriched fraction (GEF) on [Ca2+]i transient induction in human dermal fibroblasts (HDFs). We found that GEF treatment transiently induced [Ca2+]i in a dose-dependent manner. GEF also increased cell viability and proliferation, which could be blocked by Ki16425, an LPA1/3 receptor antagonist, or 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), a calcium chelator. We further found that GEF stimulated hyaluronic acid (HA) release from HDFs in a dose- and time-dependent manner, which could be attenuated by Ki16425, U73122, a phospholipase C inhibitor, 2-Aminoethoxydiphenyl borate (2-APB), an IP3 receptor antagonist, and BAPTA-AM. Moreover, we found that GEF increased HA synthase 1 (HAS1) expression in a time-dependent manner. We also found that GEF stimulates collagen release and the expression of collagen 1, 3, and 7 synthases in a time-dependent manner. GEF-mediated collagen synthesis could be blocked by Ki16425, U73122, 2-APB, and BAPTA-AM. GEF treatment also increased the mRNA levels of LPA1-6 receptor subtypes at 8 h and increased the protein levels of LPA1-6 receptor subtypes at 8 h. Overall, these results indicate that the GEF-mediated transient induction of [Ca2+]i is coupled to HA and collagen release from HDFs via LPA receptor regulations. We can, thus, conclude that GEF might exert a beneficial effect on human skin physiology via LPA receptors.
Asunto(s)
Colágeno/metabolismo , Dermis/citología , Fibroblastos/metabolismo , Ácido Hialurónico/metabolismo , Panax/química , Extractos Vegetales/farmacología , Receptores del Ácido Lisofosfatídico/metabolismo , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Hialuronano Sintasas/metabolismoRESUMEN
Osteoarthritis (OA) is a common joint degenerative disease that causes pain, joint damage, and dysfunction. External hyaluronic acid (HA) supplement is a common method for the management of osteoarthritis which requires multi-injections. It is demonstrated that biodegradable mesoporous silica nanoparticles successfully deliver an enzyme, hyaluronan synthase type 2 (HAS2), into synoviocytes from the temporomandibular joint (TMJ) and generate endogenous HA with high molecular weights. In a rat TMJ osteoarthritis inflammation model, this strategy promotes endogenous HA production and inhibits the synovial inflammation of OA for more than 3 weeks with one-shot administration. Such nanotherapy also helps repairing the bone defects in a rat OA bone defect model.
Asunto(s)
Hialuronano Sintasas/farmacología , Ácido Hialurónico/biosíntesis , Articulaciones/efectos de los fármacos , Articulaciones/metabolismo , Nanomedicina/métodos , Osteoartritis/tratamiento farmacológico , Animales , Línea Celular , Humanos , Hialuronano Sintasas/química , Hialuronano Sintasas/metabolismo , Hialuronano Sintasas/uso terapéutico , Ácido Hialurónico/química , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Peso Molecular , Nanopartículas/química , Osteoartritis/metabolismo , Osteoartritis/patología , Porosidad , Ratas , Dióxido de Silicio/química , Sinoviocitos/efectos de los fármacos , Sinoviocitos/metabolismo , Sinoviocitos/patologíaRESUMEN
BACKGROUND: We have reported that a single intra-articular injection of diclofenac etalhyaluronate (SI-613) exerted a potent and long-lasting analgesic effect in experimental arthritis models. In the present study, we investigated the effect of SI-613 on the production of high molecular weight hyaluronic acid (HMW-HA) in synoviocytes from osteoarthritis (OA) patients and compared its efficacy with that of hyaluronic acid (HA). METHODS: We compared the effect of SI-613, HA, and diclofenac sodium (DF-Na) on high molecular weight HA production by human synoviocytes. RESULTS: SI-613 and exogenous HA induced the production of high molecular weight HA in synoviocytes from OA patients, whereas DF-Na had no effect. The molecular weight of newly produced HA was about 1000 kDa in the HA-treated synoviocytes and much higher than 2400 kDa in the SI-613-treated cells. The effect of the mixture of HA and DF-Na was similar to that of HA alone in that the molecular weight of newly produced HA was around 1000 kDa. SI-613 significantly suppressed hyaluronidase 2 (HYAL2) mRNA expression and significantly enhanced hyaluronan synthase 2 (HAS2) mRNA expression. HA had no effect on the expression levels of HYAL and HAS. CONCLUSION: The present results clearly demonstrate that SI-613 induces the production of high molecular weight HA in synoviocytes from OA patients, suggesting the long-lasting analgesic and disease modifying effect of SI-613 for OA. Taken together with the anti-inflammatory and analgesic effects we recently reported for the intra-articular administration of SI-613 to experimental animal models, SI-613 holds great promise for the treatment of knee osteoarthritis.