Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 827
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(15): 22759-22773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38409383

RESUMEN

Petroleum hydrocarbon (PHC) contamination is a widespread and severe environmental issue affecting many countries' resource sectors. PHCs are mixtures of hydrocarbon compounds with varying molar masses that naturally attenuate at different rates. Lighter fractions attenuate first, followed by medium-molar-mass constituents, while larger molecules remain for longer periods. This results in significant regulatory challenges concerning residual hydrocarbons in long-term contaminated soils. This study examined the potential risks associated with residual PHC and its implications for risk-based management of heavily contaminated soils (23,000-26,000 mg PHC/kg). Ecotoxicological properties, such as seedling emergence and growth of two native plant species-small Flinders grass (Iseilema membranaceum) and ruby saltbush (Enchylaena tomentosa)-and earthworm survival tests in PHC-contaminated soils, were assessed. Additionally, the effects of aging on the attenuation of PHC in contaminated soils were evaluated. Toxicity responses of plant growth parameters were determined as no-observed-effect concentrations: 75%-100% for seedling emergence, < 25%-75% for plant shoot height, and 75%-100% for earthworm survival. After 42 weeks of aging, the total PHC levels in weathered soils decreased by 14% to 30% and by 67% in diesel-spiked soil due to natural attenuation. Dehydrogenase enzyme activity in soils increased during the initial aging period. Furthermore, a clear shift of bacterial communities was observed in the soils following aging, including enrichment of PHC-resistant and -utilizing bacteria-for example, Nocardia sp. This study underscores the potential of natural attenuation for eco-friendly and cost-effective soil management, underlining that its success depends on site-specific factors like water content and nutrient availability. Therefore, we recommend detailed soil assessments to evaluate these conditions prior to adopting a risk-based management approach.


Asunto(s)
Petróleo , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Hidrocarburos/análisis , Contaminación Ambiental , Suelo , Monitoreo del Ambiente/métodos , Petróleo/análisis , Bacterias , Biodegradación Ambiental , Microbiología del Suelo
2.
J Environ Manage ; 353: 120196, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290259

RESUMEN

The introduction of EPS recovered from waste sludge may have an impact on the process of microbial remediation of oil-contaminated seawater. This study investigated the effect of EPS on the self-remediation capacity of diesel-polluted seawater in Jiaozhou Bay. Hydrocarbon attenuation and microbial activity were monitored in seawater collected from five islands after diesel and N, P addition, with and without EPS, incubated under aerobic conditions. Compared to seawater without EPS, degradation of TPH (total petroleum hydrocarbon) doubled and improved degradation of non-volatile (C16-C24) hydrocarbons to some extent in EPS-added seawater. The introduction of EPS led to changes in microbiota richness and diversity, significantly stimulating the growth of Proteobacteria and Firmicutes phyla or Bacillus and Pseudomonas genera. RT-qPCR analysis indicated EPS caused higher increases in cytochrome P450 gene copies than alkB. Prediction of alkane decay genes from 16S rRNA sequencing data revealed that EPS addition obviously promoted genes related to ethanol dehydrogenation function in the microbial community. Additionally, EPS enhanced the enzymatic activities of alkane hydroxylase, ethanol dehydrogenase, phosphatase and lipase, but increased protease and catalase inconspicuously. The above outlook that environmental sustainability of EPS from waste sludge for diesel-contaminated seawater remediation may provide new perspectives for oil spill bioremediation.


Asunto(s)
Petróleo , Contaminantes del Suelo , Aguas del Alcantarillado , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , ARN Ribosómico 16S/genética , Bahías , Agua de Mar/química , Agua de Mar/microbiología , Biodegradación Ambiental , Hidrocarburos/análisis , Etanol/análisis , Petróleo/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis
3.
Environ Geochem Health ; 46(1): 22, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38169010

RESUMEN

The levels, spatial distribution, and sources of petroleum hydrocarbons and phthalates were assessed in surface sediment samples from the urban lagoon of Obhur near Jeddah, the largest city on the Red Sea coast of Saudi Arabia. The lagoon was divided into the inner zone, middle zone, and outer zone based on its geomorphological features and developmental activities. n-Alkanes, hopane and sterane biomarkers, and unresolved complex mixture were the major petroleum hydrocarbon compounds of the total extractable organic matter. Phthalates were also measured in the sediment samples. In the three zones, n-alkanes ranged from 89.3 ± 88.5 to 103.2 ± 114.9 ng/g, whereas the hopane and sterane biomarkers varied from 69.4 ± 75.3 to 77.7 ± 69.9 ng/g and 72.5 ± 77.9-89.5 ± 82.2 ng/g, respectively. The UCM concentrations ranged from 821 ± 1119 to 1297 ± 1684 ng/g and phthalates from 37.4 ± 34.5 65 ± 68 ng/g. The primary origins of these anthropogenic hydrocarbons in the lagoon sediments were petroleum products (boat engine discharges, boat washing, lubricants, and wastewater flows) and plasticizers (plastic waste and litter). The proportions of anthropogenic hydrocarbons derived from petroleum products in the sediment's TEOM ranged from 43 ± 33 to 62 ± 15%, while the percentages for plasticizers varied from 2.9 ± 1.2 to 4.0 ± 1.6%. The presence and inputs of these contaminants from petroleum and plastic wastes in the lagoon's sediments will eventually have an impact on its habitats, including the benthic nursery and spawning areas.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Petróleo/análisis , Océano Índico , Arabia Saudita , Plastificantes , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Hidrocarburos/análisis , Alcanos/análisis , Biomarcadores , Triterpenos Pentacíclicos , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis
4.
Mar Pollut Bull ; 199: 115990, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176163

RESUMEN

One year after the emergency diesel fuel spill in Norilsk, hydrocarbon concentrations in bottom sediments of the Norilsk-Pyasina water system decreased. However the average concentrations of hydrocarbons in surface sediments decreased in the same sequence (µg/g) as in 2020: the mouth of the Ambarnaya R. (835, σ = 1788) > Bezymyanny Cr.-the Daldykan R.-the Ambarnaya R. (306, σ = 273) > the Pyasina R. (23, σ = 20) > the Pyasino Lake (12, σ = 8). Concentrations decreased due to degradation of low molecular weight hydrocarbons. The content of polycyclic aromatic hydrocarbons in 2021 also changed in a smaller range (0-1027 ng/g) than in 2020 (0-3865 ng/g). Petroleum origin of polycyclic aromatic hydrocarbons in the sediments of the Ambarnaya R. (including the mouth), Bezymyanny Cr. and the Daldykan R. is confirmed by the dominance of alkylated naphthalene homologues in their composition. Hydrocarbons accumulation in some layers of the sedimentary column is caused not only by the spill of diesel fuel, but also by the organic matter from the surrounding swamps, from wetlands and floodplain lakes, as well as by the burial of the surface layer by the 2021 flood.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Gasolina , Agua , Sedimentos Geológicos , Hidrocarburos/análisis , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
5.
Sci Total Environ ; 912: 168972, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043822

RESUMEN

The response of the microbes to total petroleum hydrocarbons (TPHs) in three types of oilfield soils was researched using metagenomic analysis. The ranges of TPH concentrations in the grassland, abandoned well, working well soils were 1.16 × 102-3.50 × 102 mg/kg, 1.14 × 103-1.62 × 104 mg/kg, and 5.57 × 103-3.33 × 104 mg/kg, respectively. The highest concentration of n-alkanes and 16 PAHs were found in the working well soil of Shengli (SL) oilfield compared with those in Nanyang (NY) and Yanchang (YC) oilfields. The abandoned well soils showed a greater extent of petroleum biodegradation than the grassland and working well soils. Α-diversity indexes based on metagenomic taxonomy showed higher microbial diversity in grassland soils, whereas petroleum-degrading microbes Actinobacteria and Proteobacteria were more abundant in working and abandoned well soils. RDA demonstrated that low moisture content (MOI) in YC oilfield inhibited the accumulation of the petroleum-degrading microbes. Synergistic networks of functional genes and Spearman's correlation analysis showed that heavy petroleum contamination (over 2.10 × 104 mg/kg) negatively correlated with the abundance of the nitrogen fixation genes nifHK, however, in grassland soils, low petroleum content facilitated the accumulation of nitrogen fixation genes. A positive correlation was observed between the abundance of petroleum-degrading genes and denitrification genes (bphAa vs. nirD, todC vs. nirS, and nahB vs. nosZ), whereas a negative correlation was observed between alkB (alkane- degrading genes) and amo (ammonia oxidation), hao (nitrification). The ecotoxicity of petroleum contamination, coupled with petroleum hydrocarbons (PH) degradation competing with nitrifiers for ammonia inhibited ammonia oxidation and nitrification, whereas PH metabolism promoted the denitrification process. Moreover, positive correlations were observed between the abundance of amo gene and MOI, as well as between the abundance of the dissimilatory nitrate reduction gene nirA and clay content. Thus, improving the soil physicochemical properties is a promising approach for decreasing nitrogen loss and alleviating petroleum contamination in oilfield soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Petróleo/análisis , Yacimiento de Petróleo y Gas , Suelo/química , Amoníaco/análisis , Biodegradación Ambiental , Hidrocarburos/análisis , Alcanos , Microbiología del Suelo , Contaminantes del Suelo/análisis
6.
Mar Pollut Bull ; 198: 115836, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007871

RESUMEN

Identifying the sources of environmental oil contamination can be challenging, especially for oil in motile organisms such as fish. Lipophilic hydrocarbons from oil can bioaccumulate in fish adipose tissue and potentially provide a forensic "fingerprint" of the original oil. Herein, diamondoid hydrocarbon distributions were employed to provide such fingerprints. Indices produced from diamondoids were used to compare extracts from fish adipose tissues and the crude and fuel oils to which the fish were exposed under laboratory conditions. A suite of 20 diamondoids was found to have bioaccumulated in the dietary-exposed fish. Cross-plots of indices between fish and exposure oils were close to the ideal 1:1 relationship. Comparisons with diamondoid distributions of non-exposure oils produced overall, but not exclusively, weaker correlations. Linear Discriminatory Analysis on a combined set of 15 diamondoid and bicyclane molecular ratios was able to identify the exposure oils, so a use of both compound classes is preferable.


Asunto(s)
Aceites Combustibles , Petróleo , Animales , Aceites , Hidrocarburos/análisis , Aceites Combustibles/análisis , Peces , Alimentos Marinos/análisis , Petróleo/análisis
7.
Mar Pollut Bull ; 199: 115928, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141581

RESUMEN

Anthropogenic inputs of petroleum hydrocarbons into the marine environment can have long lasting impacts on benthic communities. Sponges form an abundant and diverse component of benthic habitats, contributing a variety of important functional roles; however, their responses to petroleum hydrocarbons are largely unknown. This study combined a traditional ecotoxicological experimental design and endpoint with global gene expression profiling and microbial indicator species analysis to examine the effects of a water accommodated fraction (WAF) of condensate oil on a common Indo-Pacific sponge, Phyllospongia foliascens. A no significant effect concentration (N(S)EC) of 2.1 % WAF was obtained for larval settlement, while gene-specific (N(S)EC) thresholds ranged from 3.4 % to 8.8 % WAF. Significant shifts in global gene expression were identified at WAF treatments ≥20 %, with larvae exposed to 100 % WAF most responsive. Results from this study provide an example on the incorporation of non-conventional molecular and microbiological responses into ecotoxicological studies on petroleum hydrocarbons.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Animales , Larva/metabolismo , Hidrocarburos/análisis , Petróleo/análisis , Tiempo (Meteorología) , Agua/análisis , Contaminantes Químicos del Agua/análisis , Contaminación por Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos/análisis
8.
Environ Pollut ; 343: 123224, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159633

RESUMEN

Diluted bitumen (DB), one of the most transported unconventional crude oils in Canada's pipelines, raises public concerns due to its potential spillage into freshwater environments. This study aimed to compare the fate and behaviour of DB versus conventional crude (CC) in a simulated warm freshwater environment. An equivalent of 10 L of either DB or CC was spilled into 1200 L of North Saskatchewan River (NSR) water containing natural NSR sediment (2.4 kg) in a mesoscale spill tank and its fate and behaviour at air/water temperatures of 18 °C/24 °C were monitored for 56 days. Oil mass distribution analysis showed that 42.3 wt % of CC and 63.6 wt% of DB resided in the oil slicks at the end of 56-day tests, consisting mainly high molecular weight (HMW) compounds (i.e., resins and asphaltenes). The lost oil contained mainly low molecular weight (LMW) compounds (i.e., light saturates and some aromatics) into the atmosphere, water column, and sediment through collective weathering processes. Notably, weathered CC emulsified with water and remained floating until the end, while the weathered DB mat started to lose its buoyancy after 24 days under quiescent conditions and resurfaced once waves were applied. Analysis of the microbial communities of water pre- and post-spills revealed the replacement of indigenous microbial communities with hydrocarbon-degrading species. Exposure to CC reduced the microbial diversity by 12%, while exposure to DB increased the diversity by 10%. During the early stages of the spill (up to Day 21), most dominant species were positively correlated with the benzene, toluene, ethylbenzene, and xylenes (BTEX) content or polycyclic aromatic hydrocarbon (PAH) content of the water column, while the dominant species at the later stages (Days 21-56) of the spill were negatively correlated with BTEX or PAH content and positively correlated with the total organic carbon (TOC) content in waters.


Asunto(s)
Contaminación por Petróleo , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Contaminación por Petróleo/análisis , Hidrocarburos/análisis , Petróleo/análisis , Agua Dulce/análisis , Agua/análisis , Benceno/análisis , Tolueno/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
9.
Sci Rep ; 13(1): 22153, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38092846

RESUMEN

A total of 265 fungal individuals were isolated from soils exposed to heavy oil spills in the Yadavaran oil field in Iran to discover indigenous fungal species with a high potential to biodegrade petroleum hydrocarbon pollutants. Morphological and molecular identification of obtained fungal species led to their assignment into 16 genera and 25 species. Alternaria spp. (78%), Fusarium spp. (5%), and Cladosporium spp. (4%) were the most common genera, along with Penicillium spp., Neocamarosporium spp., Epicoccum sp., Kotlabaea sp., Aspergillus sp., Mortierella sp., and Pleurotus sp. A preliminary screening using the DCPIP indicator revealed that approximately 35% of isolates from Alternaria, Epicoccum, Neocamarosporium, Cladosporium, Fusarium, Stachybotrys, Penicillium, and Stemphylium demonstrated promising tolerance to crude oil. The best-performing isolates (12 fungal individuals) were further investigated for their capacity to mineralize a mixture of four polycyclic aromatic hydrocarbons (PAH) for 47 days, quantified by GC-MS. Eventually, two top-performing isolates, namely 5c-12 (Alternaria tenuissima) and 3b-1 (Epicoccum nigrum), were applied to petroleum-contaminated soil. The GC-MS analysis showed that 60 days after inoculation, these isolates successfully degraded more than 70% of the long-chain hydrocarbons in the soil, including C8-C16 n-alkanes, C36 n-alkane, and Pristane. This study introduces two fungal species (5c-12 and 3b-1) with high potential for biodegrading petroleum compounds and PAHs, offering promising prospects for the decontamination of oil-contaminated soil.


Asunto(s)
Penicillium , Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Hidrocarburos Policíclicos Aromáticos/análisis , Petróleo/metabolismo , Irán , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Hidrocarburos/análisis , Alcanos/metabolismo , Biodegradación Ambiental , Penicillium/metabolismo , Suelo
10.
Chemosphere ; 345: 140288, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37783354

RESUMEN

Deciphering the impact of single and combined contamination of total petroleum hydrocarbons (TPH) and heavy metals on soil microecosystems is essential for the remediation of contaminated habitats, yet it remains incompletely understood. In this study, we employed high-throughput sequencing to investigate the impact of single TPH contamination, single metal contamination, and their co-contamination on soil microbial diversity, assembly mechanisms, composition, ecological function, and resistome. Our results revealed that contamination led to a reduction in alpha diversity, with single contamination displaying lower diversity compared to co-contamination, depending on the concentration of pollutants. Community beta diversity was primarily driven by turnover rather than nestedness, and narrower ecological niches were detected under pollution conditions. The neutral community model suggested that homogenizing dispersal played a significant role in the community assembly process under single TPH or co-contamination, while homogeneous selection dominated under heavy metals pollution. Procrustes analysis demonstrated a correlation between community composition and functional divergence, while Mantel tests linked this divergence to concentrations of Cr, Cr6+, Pb, and TPH. Interestingly, soils co-polluted with TPH and heavy metals exhibited similar genera, community functions, and resistomes as soils contaminated with only metals, highlighting the significant impact of heavy metals. Ecological functions related to carbon (C), nitrogen (N), and sulfur (S) cycles were enhanced under TPH pollution but impaired under heavy metals stress. These findings enhance our understanding of soil microecosystems subjected to TPH, heavy metals, and their co-contamination, and carry significant implications for environmental microecology and pollutant risk assessment.


Asunto(s)
Metales Pesados , Petróleo , Contaminantes del Suelo , Suelo/química , Petróleo/análisis , Metales Pesados/análisis , Hidrocarburos/análisis , Bacterias/genética , Contaminantes del Suelo/análisis
11.
Mar Pollut Bull ; 196: 115576, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37813061

RESUMEN

The distribution of saturated hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) was assessed in superficial sediment samples collected from Mandapam island groups, Gulf of Mannar, India. The hydrocarbon distribution pattern and the n-alkane indices (e.g., carbon preference index (CPI) and natural n-alkanes ratio (NAR)) were deployed to differentiate between the biogenic and anthropogenic sources. Petroleum pollution was indicated by the pristane/phytane ratio close to 1. Presence of a prominent unresolved complex mixture (UCM) as well as hopane concentrations further supported this assertion. The evaluation of petrogenic sources of contamination were also comprehended by various diagnostic ratios of PAHs. The sites associated with shipping activities, tourism, and located near the mainland and accessible portions of the islands exhibited high petroleum contamination. Correlation analysis underlines the significance of combining petroleum-specific marker compounds and diagnostic ratios to improve the assessment of human influence on marine ecosystems.


Asunto(s)
Petróleo , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Humanos , Petróleo/análisis , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos/análisis , Hidrocarburos/análisis , Alcanos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
12.
Environ Pollut ; 337: 122562, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37717896

RESUMEN

The electroplating industry encompasses various processes and plating types that contribute to environmental pollution, which has led to growing public concern. To investigate related soil pollution in China, the study selected 10 sites with diverse industrial characteristics distributed across China and collected 1052 soil samples to determine the presence of industrial priority pollutants (PP) based on production process and pollutant toxicity. The factors influencing site pollution as well as proposed pollution prevention and control approaches were then evaluated. The results indicate the presence of significant pollution in the electroplating industry, with ten constituents surpassing the risk screening values (RSV). The identified PP consist of Cr(VI), zinc (Zn), nickel (Ni), total chromium (Cr), and petroleum hydrocarbons (C10-C40). PP contamination was primarily observed in production areas, liquid storage facilities, and solid zones. The vertical distribution of metal pollutants decreased with soil depth, whereas the reverse was true for petroleum hydrocarbons (C10-C40). Increase in site production time was strongly correlated with soil pollution, but strengthening anti-seepage measures in key areas can effectively reduce the soil exceedance standard ratio. This study serves as a foundation for conceptualizing site repair technology in the electroplating industry and offers a reference and methodology for pollution and source control in this and related sectors.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Petróleo , Contaminantes del Suelo , Metales Pesados/análisis , Galvanoplastia , Contaminantes del Suelo/análisis , Medición de Riesgo , Monitoreo del Ambiente/métodos , Contaminación Ambiental/análisis , Contaminantes Ambientales/análisis , Cromo/análisis , Suelo , China , Hidrocarburos/análisis , Petróleo/análisis
13.
Environ Sci Pollut Res Int ; 30(52): 111916-111935, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544945

RESUMEN

Crude oil exploitation in the Niger Delta, particularly in Ogoniland, brought environmental devastation occasioned by petroleum pollution, as farmlands and water sources were destroyed. This study was designed to remediate crude oil contaminated water obtained from water sources in Ogoniland using two green algal species. Thirty water samples were collected from eight different water sources. The samples were analysed for total petroleum hydrocarbon (TPH) using gas chromatography/flame ionization detector (GC/FID). Algal samples were collected from Ogba River and at wetland in Military Hospital Benin, Edo State, Nigeria. The algal samples were identified, screened, optimized and grown in Bold basal medium. Results obtained from the determination of TPH showed that the infiltrated pond (Exc) sample site had the highest concentration among all the sites sampled with 198.8329 µg/L, R2 with 134.1296 µg/L, R1 with 108.9394 µg/L, R3 with 105.8011 µg/L, R4 with 98.442 8 µg/L, the hand-dug wells (Wll) had 9.6586 µg/L while the borehole (Bhl) had the lowest with 1.8310 µg/L. It was deduced that pollution of water sources was principally because of pollutants washed from the soil environment into the open surface water sources via run-off rather than through the seepage from the underground aquifers, incriminating illegal oil mining and artisanal refining. Results obtained from the analysis of algal growth medium indicated that the two algal species were able to absorb the hydrocarbon contaminants, albeit at different rates, corresponding with the algal growth rate. Analysis of algal biomass after 4 weeks of remediation showed that from the initial 10.27 µg/20 mL added to the growth medium, the highest TPH mean value of 0.490 µg/20 mL was extracted from Ulothrix zonata (F.Weber & Mohr) Kützing biomass grown in Exc compared to 0.344 µg/20 mL of TPH extracted from Chlorella sorokiniana Shihira & R.W.Krauss grown in the same sample site. Also, Ulothrix zonata had higher TPH yield 0.023 µg/20 mL in Bhl compared to Chlorella sorokiniana 0.021 µg/20 mL of TPH from the same water source. This result indicated Ulothrix zonata had superior TPH phycoremediation ability to Chlorella sorokiniana. While the present study calls for deployment of the algal species for field trial, it is strongly recommended that crude oil pollution should be discouraged.


Asunto(s)
Chlorella , Contaminación por Petróleo , Petróleo , Contaminantes del Suelo , Petróleo/análisis , Agua/análisis , Nigeria , Hidrocarburos/análisis , Contaminación por Petróleo/análisis , Contaminantes del Suelo/análisis
14.
Environ Pollut ; 335: 122350, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37572845

RESUMEN

Limited human activities in catchments make remote alpine lakes valuable sites for studying the evolution of lake environments in response to climate change and atmospheric deposition; however, this issue remains rarely studied owing to the scarcity of monitoring data. In this study, water quality evolution in Lake Jiren, a remote alpine lake on the southeastern margin of the Tibetan Plateau, over the past two centuries was reconstructed through geochemical analyses of aliphatic hydrocarbons, major and trace elements, and organic matter (OM) pyrolysis products in a dated sediment core, and the associated drivers were identified by temporally comparing the geochemical results with document records. All geochemical data demonstrated that the lake water remained relatively pure until 1947, after which the n-alkane and αß-hopane proxies indicated eutrophication and petroleum contamination. The OM pyrolysis proxy hydrocarbon index indicated more eutrophic conditions after 1957. Concurrently, hypolimnetic deoxygenation increased, as indicated by redox-sensitive proxies, such as the enrichment factors (EFs) of molybdenum (Mo). These proxies recorded further intensification of deoxygenation after 1976. The EFs for other trace elements indicated cadmium contamination after 1967. The greater anthropogenic emissions of reactive nitrogen, petroleum products, and heavy metals in East and South Asia since approximately 1950 and the subsequent atmospheric transport of these materials to the lake might be the basic driver of water quality deterioration. Eutrophication induced by nitrogen deposition was responsible for increased hypolimnetic deoxygenation by enhancing phytoplankton productivity and OM input. The further intensification of deoxygenation was attributed to climate warming since the 1970s, as prolonged water column stratification under this condition decreased oxygen input from the epilimnion to the lake bottom. These findings may be beneficial for understanding the natural and anthropogenic effects on the water quality of alpine lakes and help in the environmental management of Lake Jiren and other alpine lakes.


Asunto(s)
Petróleo , Oligoelementos , Contaminantes Químicos del Agua , Humanos , Calidad del Agua , Tibet , Oligoelementos/análisis , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/análisis , Hidrocarburos/análisis , Petróleo/análisis , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , China
15.
Environ Geochem Health ; 45(11): 7679-7692, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37410198

RESUMEN

Surveys and assessments of contaminated sites primarily focus on hazardous pollutants in the soil with less attention paid to odorants. This makes the management of contaminated sites difficult. In this study, hazardous and odorous pollutants in the soil were assessed for a large site that was previously used for production of pharmaceuticals to determine the degree and characteristics of soil contamination at pharmaceutical production sites, for undertaking rational remediation measures. The main hazardous pollutants at the study site were triethylamine, n-butyric acid, benzo(a)pyrene (BaP), N-nitrosodimethylamine (NDMA), dibenzo(a,h)anthracene (DBA), total petroleum hydrocarbons (C10-C40) (TPH), and 1,2-dichloroethane; TEA, BA, and isovaleric acid (IC) were the main odorants. As the type and distribution of hazardous and odorous pollutants differ, it is necessary to separately assess the impact of these pollutants at a contaminated site. Soils in the surface layer pose significant non-carcinogenic (HI = 68.30) and carcinogenic risks (RT = 3.56E-5), whereas those in the lower layer only pose non-carcinogenic risks (HI > 7.43). Odorants were found at considerable concentrations both in the surface and lower layers, with the maximum concentrations being 29,309.91 and 41.27, respectively. The findings of this study should improve our understanding of soil contamination at former pharmaceutical production sites and should inform the assessment of the risks posed by contaminated sites, with problems associated with odour, and possible remediation strategies.


Asunto(s)
Contaminantes Ambientales , Petróleo , Contaminantes del Suelo , Odorantes , Monitoreo del Ambiente , Suelo , Medición de Riesgo , China , Hidrocarburos/análisis , Petróleo/análisis , Preparaciones Farmacéuticas , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis
16.
Molecules ; 28(13)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37446664

RESUMEN

Vapor intrusion is detrimental for indoor air quality. One of the most common sources of vapor intrusion is soil contaminated with petroleum hydrocarbons. To evaluate the long-term risk from individual exposure to hydrocarbons it is necessary to measure quantitively and reliably an average concentration level of individual pollutants on a monthly or yearly basis. Temporal variability of vapor intrusion from hydrocarbons poses a significant challenge to determination of average exposure and there is a need for reliable long-term integrative sampling. To this end, an analytical method for determination of 10 selected nonmethane hydrocarbons (NMHCs), including hexane, heptane, octane, decane, benzene, toluene, ethyl-benzene, m,p-xylene, o-xylene, and naphthalene, sampled on active triple-bed tubes filled with Carbograph 2, Carbograph 1, and Carboxen 1003 adsorbents was developed and validated. Extensive laboratory studies proved the absence of breakthrough at 50% HR and ambient temperature for experiments lasting up to 28 days and established a safe sampling time/volume of 20 days/114 L when sampling at a low flow rate of around 4 mL min-1. In addition, the developed method includes detailed uncertainty calculations for determination of concentrations. Finally, the method was tested by measuring NMHC concentrations in indoor air at a former industrial site during a 2-month-long field campaign in Lyon. The results of the field campaign suggest that 4-week integrated concentration measurements can be achieved by using active sampling on triple-bed tubes at 4.5 mL min-1.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Petróleo , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Benceno , Hidrocarburos/análisis , Petróleo/análisis , Gases , Monitoreo del Ambiente/métodos
17.
Environ Geochem Health ; 45(11): 7727-7740, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37428426

RESUMEN

The estuaries of Maharashtra are under continuous pressure due to uncontrolled dumping of persistent toxic organic pollutants into these regions and their impact on the marine environment. In this study, total petroleum hydrocarbons (TPHs) in water, sediments, fish, and biomarker responses in the Coilia dussumieri exposed to TPHs were determined in seven urbanized tropical estuaries along the west coast of India during the winter and summer. The results of the cluster analysis highlighted that the concentration of TPHs in the water, sediment, and fish in the study area was spatially varied, with the highest concentration in the northern area of Maharashtra (NM) estuaries than in the southern region of Maharashtra (SM) estuaries during both seasons. The enrichment of TPHs in water and sediment in the middle part of most estuaries highlights the addition of anthropogenic organic matter. A higher concentration of TPHs in the muscle tissue of Coilia dussumieri observed in NM during the winter season, indicates the energetic intake and storage of large quantities of TPHs in their muscle tissue. The biochemical results showed decreased levels of total protein (PRT) under exposure to TPHs, under oxidative stress and reversing correlations was observed between catalase (CAT) and lipid peroxidation (LPO) activities with the respective TPHs. Similarly, reduced activity of the CAT antioxidant and increased glutathione-S-transferase (GST) under exposure to TPHs were more likely to occur under hydrocarbon stress. However, current results indicate that Coilia dussumieri actively produces oxidative stress and antioxidant reaction that can be used as biomarkers of pollution in the study area.


Asunto(s)
Petróleo , Contaminantes Químicos del Agua , Animales , Estuarios , Monitoreo del Ambiente/métodos , Antioxidantes/análisis , Petróleo/toxicidad , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , India , Peces/metabolismo , Hidrocarburos/análisis , Biomarcadores/metabolismo , Glutatión Transferasa/metabolismo , Agua/análisis , Sedimentos Geológicos
18.
J Environ Manage ; 344: 118601, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454451

RESUMEN

The Kuwaiti oil fire during the first Gulf War resulted in the formation of approximately 300 "oil lakes" of varying sizes that covered over 110 km2 of the desert land. This threatens the fragile desert ecosystems and human health. Following the award of over US$2 billion to the State of Kuwait by the United Nations, large-scale remediation of the oil-contaminated soils has now been on the agenda. However, how to implement the remediation program in a cost-effective way represents a major challenge. In this study, cost-effective remediation strategies were developed based on field and laboratory investigations in a typical oil lake area. Overall, most of the lighter petroleum hydrocarbons (PHCs) were lost due to evaporation. Long-chain aliphatic PHCs dominated the PHCs in the investigated oil lake area. This has implications for developing remediation strategies. Toxicity assessment results showed that the majority of soils pose a low environmental risk with a hazard index <1. Therefore, intensive treatment of these PHCs may not be necessary for these soils. Although active treatment methods are needed to remove the contaminants as soon as practical for the relatively small areas of high contamination, more cost-effective passive methods should be considered to minimize the remedial costs for the larger area of the non-hotspot areas. Given the extremely low risk in terms of groundwater contamination by the contaminated soils, it may not be necessary to remove the soils from the contaminated sites. A low-cost capping method should be sufficient to minimize human exposure to the PHC-contaminated soils.


Asunto(s)
Restauración y Remediación Ambiental , Petróleo , Contaminantes del Suelo , Humanos , Kuwait , Guerra del Golfo , Ecosistema , Análisis Costo-Beneficio , Contaminantes del Suelo/análisis , Hidrocarburos/análisis , Suelo , Biodegradación Ambiental
19.
J Environ Qual ; 52(5): 1049-1059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37301542

RESUMEN

A greenhouse experiment was conducted to assess the effect of phytoremediation and biochar application on hydrocarbon degradation in crude oil-contaminated soils. The experiment consisted of four levels of biochar application (0, 5, 10, and 15 t/ha) and the presence or absence of Vigna unguiculata (cowpea; +C, -C) replicated thrice and arranged in a 4 × 2 × 3 factorial completely randomized design. Samples were taken on days 0, 30, and 60 for total petroleum hydrocarbon (TPH) analysis. A significantly higher TPH degradation efficiency of 69.2% (7033 mg/kg) was observed in contaminated soils amended with 15 t/ha biochar only after 60 days of incubation. Highly significant interactions were observed between biochar × plant (p < 0.001) and biochar × days (p = 0.0073). Biochar also improved the growth of plants in contaminated soils, with the highest height of 23.50 cm and stem girth of 2.10 cm obtained when plants were amended with 15 t/ha biochar at 6 weeks after planting. The potential of biochar to increase the degradation efficiency of hydrocarbons should be explored in the long run for the cleanup of crude oil-contaminated soils.


Asunto(s)
Petróleo , Contaminantes del Suelo , Microbiología del Suelo , Petróleo/análisis , Biodegradación Ambiental , Plantas , Hidrocarburos/análisis , Hidrocarburos/metabolismo , Suelo , Contaminantes del Suelo/análisis
20.
Environ Monit Assess ; 195(7): 831, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37296255

RESUMEN

Petrochemical contamination has been one of the significant causes of pollution all over the world. The upper Assam of Northeast India has been known for its oil industries and their contribution to India's economy. With tremendous oil production, an adequate amount of petroleum contamination is also observed. Several works have been furnished in the oilfields of Assam; however, the knowledge of heavy metal contamination and hydrocarbon pollution in nearby water bodies and soil, along with risk assessment and statistical validation in the vicinity of the Geleky oilfield of Sibsagar district of Assam, is still limited. The study also reveals native potential phytoremediators that can uptake heavy metals and hydrocarbons to help clean the environment through a greener approach. The presence of aromatic hydrocarbon derivatives in water, soil, plants, and sludge samples, including groundwater, is an alarming concern due to their high toxicity to the surrounding ecosystem and potential threat to the groundwater system. The Principal Component Analysis (PCA) further corroborates the significant and common origin of the heavy metals and total petroleum hydrocarbon (TPH), which inclines toward the oil exploration activities in the nearby oilfield. Among all the six plant species studied, Colocasia esculenta proved to be a noteworthy phytoremediator of both heavy metals and TPH, having an uptake efficiency of 78% of Zn, 46% of Pb, and 75% of Fe, and 70% of TPH. The study provides baseline information to help us identify future threats and suitable endemic phytoremediators, which can be advantageous for future remediation.


Asunto(s)
Metales Pesados , Contaminación por Petróleo , Petróleo , Contaminantes del Suelo , Yacimiento de Petróleo y Gas , Petróleo/análisis , Agua/análisis , Suelo , Ecosistema , Monitoreo del Ambiente , Hidrocarburos/análisis , Plantas , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Contaminación por Petróleo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA