Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 379
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bioresour Technol ; 394: 130277, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176596

RESUMEN

Traditional Chinese medicine residue (TCMR) was utilized as an inexpensive carbon source for the production of poly(3-hydroxybutyrate) (PHB) using the newly isolated Bacillus altitudinis HBU-SI7. The results showed that Yu Ping Feng TCMR could be directly hydrolysed by cellulase to obtain a high proportion of glucose (99 % of total sugar) without pretreatment, achieving an enzymatic hydrolysis rate of up to 89.2 %. B. altitudinis could grow and produce PHB when using enzymatically hydrolysed TCMR in a 5-L fermenter. After 20 h of fermentation, the maximum concentration of PHB was 11.2 g/L, and the highest cell dry weight (CDW) was 15.4 g/L, with 72.7 % of the PHB fraction in CDW. Moreover, this strain could utilize enzymatic hydrolysates from various herbal formulas to produce high levels of PHB. This novel approach aims to accumulate PHB from TCMR hydrolysates, offering an effective and environmentally friendly method to reduce production costs and achieve mass production.


Asunto(s)
Bacillus , Polihidroxialcanoatos , Hidroxibutiratos/química , Medicina Tradicional China , Bacillus/metabolismo , Fermentación , Poliésteres/metabolismo
2.
Bioresour Technol ; 394: 130297, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185449

RESUMEN

Bioplastic production using cyanobacteria can be an effective strategy to cope with environmental problems caused by using petroleum-based plastics. Synechococcus elongatus UTEX 2973 with heterogeneous phaCAB can produce bioplastic polyhydroxybutyrate (PHB) with a high CO2 uptake rate. For cost-effective production of PHB in S. elongatus UTEX 2973, phaCAB was expressed by the constitutive Pcpc560, resulting in the production of 226 mg/L of PHB by only photoautotrophic cultivation without the addition of inducer. Several culture conditions were applied to increase PHB productivity, and when acetate was supplied at a concentration of 1 g/L as an organic carbon source, productivity significantly increased resulting in 607.2 mg/L of PHB and additive cost reduction of more than 300 times was achieved compared to IPTG. Consequently, these results suggest the possibility of cyanobacteria as an agent that can economically produce PHB and as a solution to the problem of petroleum-based plastics.


Asunto(s)
Petróleo , Polihidroxibutiratos , Acetilcoenzima A , Análisis Costo-Beneficio , Plásticos , Biopolímeros , Hidroxibutiratos , Poliésteres
3.
Nutrients ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068734

RESUMEN

Exogenous ketone ester and ketone ester mixed with ketone free acid formulations are rapidly entering the commercial marketspace. Short-term animal and human studies using these products suggest significant potential for primary or secondary prevention of a number of chronic disease conditions. However, a number of questions need to be addressed by the field for optimal use in humans, including variable responses among available exogenous ketones at different dosages; frequency of dosing; and their tolerability, acceptability, and efficacy in long-term clinical trials. The purpose of the current investigation was to examine the tolerability, acceptability, and circulating R-beta-hydroxybutyrate (R-ßHB) and glucose responses to a ketone monoester (KME) and ketone monoester/salt (KMES) combination at 5 g and 10 g total R-ßHB compared with placebo control (PC). Fourteen healthy young adults (age: 21 ± 2 years, weight: 69.7 ± 14.2 kg, percent fat: 28.1 ± 9.3%) completed each of the five study conditions: placebo control (PC), 5 g KME (KME5), 10 g KME (KME10), 5 g (KMES5), and 10 g KMES (KMES10) in a randomized crossover fashion. Circulating concentrations of R-ßHB were measured at baseline (time 0) following an 8-12 h overnight fast and again at 15, 30, 60, and 120 min following drink ingestion. Participants also reported acceptability and tolerability during each condition. Concentrations of R-ßHB rose to 2.4 ± 0.1 mM for KME10 after 15 min, whereas KMES10 similarly peaked (2.1 ± 0.1 mM) but at 30 min. KME5 and KMES5 achieved similar peak R-ßHB concentrations (1.2 ± 0.7 vs. 1.1 ± 0.5 mM) at 15 min. Circulating R-ßHB concentrations were similar to baseline for each condition by 120 min. Negative correlations were observed between R-ßHB and glucose at the 30 min time point for each condition except KME10 and PC. Tolerability was similar among KME and KMES, although decreases in appetite were more frequently reported for KMES. Acceptability was slightly higher for KMES due to the more frequently reported aftertaste for KME. The results of this pilot investigation illustrate that the KME and KMES products used increase circulating R-ßHB concentrations to a similar extent and time course in a dose-dependent fashion with slight differences in tolerability and acceptability. Future studies are needed to examine variable doses, frequency, and timing of exogenous ketone administration for individuals seeking to consume ketone products for health- or sport performance-related purposes.


Asunto(s)
Hidroxibutiratos , Cetonas , Humanos , Adulto Joven , Ácido 3-Hidroxibutírico , Suplementos Dietéticos , Ésteres , Glucosa , Cloruro de Sodio , Cloruro de Sodio Dietético
4.
Sci Rep ; 13(1): 4050, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899103

RESUMEN

Low phosphorus (P) availability in soils is a major challenge for sustainable food production, as most soil P is often unavailable for plant uptake and effective strategies to access this P are limited. Certain soil occurring bacteria and root exudate-derived compounds that release P are in combination promising tools to develop applications that increase phosphorus use efficiency in crops. Here, we studied the ability of root exudate compounds (galactinol, threonine, and 4-hydroxybutyric acid) induced under low P conditions to stimulate the ability of bacteria to solubilize P. Galactinol, threonine, and 4-hydroxybutyric acid were incubated with the P solubilizing bacterial strains Enterobacter cloacae, Pseudomonas pseudoalcaligenes, and Bacillus thuringiensis under either inorganic (calcium phosphate) or organic (phytin) forms of plant-unavailable P. Overall, we found that the addition of individual root exudate compounds did not support bacterial growth rates. However, root exudates supplemented to the different bacterial appeared to enhance P solubilizing activity and overall P availability. Threonine and 4-hydroxybutyric acid induced P solubilization in all three bacterial strains. Subsequent exogenous application of threonine to soils improved the root growth of corn, enhanced nitrogen and P concentrations in roots and increased available levels of potassium, calcium and magnesium in soils. Thus, it appears that threonine might promote the bacterial solubilization and plant-uptake of a variety of nutrients. Altogether, these findings expand on the function of exuded specialized compounds and propose alternative approaches to unlock existing phosphorus reservoirs of P in crop lands.


Asunto(s)
Bacterias , Fósforo , Hidroxibutiratos , Suelo , Fosfatos , Microbiología del Suelo
5.
Bioresour Technol ; 376: 128907, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933574

RESUMEN

Heterotrophic nitrification and aerobic denitrification (HNAD) sludge were successfully acclimated. The effects of organics and dissolved oxygen (DO) on nitrogen and phosphorus removal by the HNAD sludge were investigated. The nitrogen can be heterotrophically nitrified and denitrified in the sludge at a DO of 6 mg/L. The TOC/N (total organic carbon to nitrogen) ratio of 3 was found to result in removal efficiencies of over 88% for nitrogen and 99% for phosphorus. The use of demand-driven aeration with a TOC/N ratio of 1.7 improved nitrogen and phosphorus removal from 35.68% and 48.17% to 68% and 93%, respectively. The kinetics analysis generated an empirical formula, Ammonia oxidation rate = 0.08917·(TOC·Ammonia)0.329·Biomass0.342. The nitrogen, carbon, glycogen, and poly-ß-hydroxybutyric acid (PHB) metabolism pathways of HNAD sludge were constructed using the Kyoto Encyclopedia of Genes and Genomes (KEGG). The findings suggest that heterotrophic nitrification precedes aerobic denitrification, glycogen synthesis, and PHB synthesis.


Asunto(s)
Nitrificación , Aguas del Alcantarillado , Desnitrificación , Aguas Residuales , Amoníaco/análisis , Reactores Biológicos , Nitrógeno/metabolismo , Oxígeno/análisis , Procesos Heterotróficos , Fósforo/metabolismo , Carbono , Glucógeno/metabolismo , Hidroxibutiratos
6.
Int J Biol Macromol ; 233: 123512, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36739047

RESUMEN

The objective of current study was to develop Poly(hydroxybutyrate) (PHB) based active packaging film with long lasting antimicrobial potential in food-packaging applications. For developing such films, PHB was incorporated with poly(ethylene glycol) (PEG) as a plasticizer, nano-silica (n-Si) as strengthening material and clove essential oil (CEO) as an antimicrobial agent. These solvent-casted films with varying concentration of n-Si (0.5, 1, 1.5, 2 %) and 30 % CEO of total polymer matrix weight i.e., PHB/PEG (90/10) were prepared and studied on the basis of morphological, mechanical, thermal, degradation and antimicrobial behaviours. The presence of CEO and n-Si was confirmed by Fourier transform infrared spectroscopy (FTIR). Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) were used to investigate homogeneous dispersal of n-Si in polymer matrix. PHB/PEG/CEO/Si 1.0 film was selected as optimized one after mechanical testing and therefore further carried for antimicrobial testing. This selected film extended the shelf-life of brown bread up to 10 days comparable to bread wrapped in polyethylene. This revealed that PHB/PEG/CEO/Si 1.0 exhibited superior antibacterial activity against the food borne microbes i.e., Escherichia coli, Staphylococcus aureus and Aspergillus niger. Our findings indicate that this film improved the shelf-life of packaged bread and has promising features for active food packaging.


Asunto(s)
Antiinfecciosos , Aceites Volátiles , Syzygium , Aceites Volátiles/farmacología , Aceites Volátiles/química , Aceite de Clavo/farmacología , Syzygium/química , Pan , Antiinfecciosos/farmacología , Antiinfecciosos/química , Polímeros , Embalaje de Alimentos/métodos , Hidroxibutiratos
7.
Front Med ; 17(2): 339-351, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36602721

RESUMEN

Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.


Asunto(s)
Cuerpos Cetónicos , Sirtuinas , Ratones , Animales , Ácido Butírico/farmacología , Ácido Butírico/metabolismo , Cuerpos Cetónicos/metabolismo , Hígado/metabolismo , Hidroxibutiratos/metabolismo , Regulación hacia Abajo , Sirtuinas/genética , Sirtuinas/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo
8.
Int J Biol Macromol ; 227: 416-423, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36563801

RESUMEN

Fossil-based plastic has become a global-threat due to its high stability and transformation into more lethal forms such as micro plastics with time. An alternative should be found to combat this global enemy. Polyhydroxybutyrate or PHB can be such an alternative to plastic. Present study explores the synthesis of PHB in Neowollea manoromense, using two different cultivation-approaches: acute and chronic stress. This study has used 6 carbon sources and 3 different level of phosphate to study the accumulation of PHB along with lipid, carbohydrate, and proteins. Highest PHB in chronic-stress was achieved under glucose supplementation without phosphate at 21st day (156.5 ± 22.5 µg/mg), whereas in acute-stress, it was achieved under acetate without phosphate (91.0 ± 2.7 µg/mg). Despite higher accumulation in chronic-stress, high PHB productivity was achieved in acute-stress. Principal Component Analysis suggests that all the variables were positively correlated with each other. Here we first report PHB accumulation in Neowollea manoromense. This study highlights that acute-stress can be a powerful tool in establishment of a sustainable cyanobacteria based bio refinery for PHB production.


Asunto(s)
Cianobacterias , Cianobacterias/metabolismo , Carbono/metabolismo , Plásticos/metabolismo , Fosfatos/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
9.
Frontiers of Medicine ; (4): 339-351, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982565

RESUMEN

Ketone bodies have beneficial metabolic activities, and the induction of plasma ketone bodies is a health promotion strategy. Dietary supplementation of sodium butyrate (SB) is an effective approach in the induction of plasma ketone bodies. However, the cellular and molecular mechanisms are unknown. In this study, SB was found to enhance the catalytic activity of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting enzyme in ketogenesis, to promote ketone body production in hepatocytes. SB administrated by gavage or intraperitoneal injection significantly induced blood ß-hydroxybutyrate (BHB) in mice. BHB production was induced in the primary hepatocytes by SB. Protein succinylation was altered by SB in the liver tissues with down-regulation in 58 proteins and up-regulation in 26 proteins in the proteomics analysis. However, the alteration was mostly observed in mitochondrial proteins with 41% down- and 65% up-regulation, respectively. Succinylation status of HMGCS2 protein was altered by a reduction at two sites (K221 and K358) without a change in the protein level. The SB effect was significantly reduced by a SIRT5 inhibitor and in Sirt5-KO mice. The data suggests that SB activated HMGCS2 through SIRT5-mediated desuccinylation for ketone body production by the liver. The effect was not associated with an elevation in NAD+/NADH ratio according to our metabolomics analysis. The data provide a novel molecular mechanism for SB activity in the induction of ketone body production.


Asunto(s)
Ratones , Animales , Ácido Butírico/metabolismo , Cuerpos Cetónicos/metabolismo , Hígado/metabolismo , Hidroxibutiratos/metabolismo , Regulación hacia Abajo , Sirtuinas/metabolismo , Hidroximetilglutaril-CoA Sintasa/metabolismo
10.
Molecules ; 27(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234738

RESUMEN

Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.


Asunto(s)
Polihidroxialcanoatos , Antioxidantes/farmacología , Hidroxibutiratos/farmacología , Metaloproteinasa 9 de la Matriz , Olea , Ácidos Pentanoicos , Fosfatos , Extractos Vegetales , Poliésteres/química , Polihidroxialcanoatos/química , Polifenoles , Estudios Prospectivos , Ingeniería de Tejidos , Andamios del Tejido/química , Cicatrización de Heridas
11.
Biochem Pharmacol ; 204: 115237, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36055381

RESUMEN

Dihydroorotate dehydrogenase (DHODH) catalyzes a key step in pyrimidine biosynthesis and has recently been validated as a therapeutic target for malaria through clinical studies on the triazolopyrimidine-based Plasmodium DHODH inhibitor DSM265. Selective toxicity towards Plasmodium species could be achieved because malaria parasites lack pyrimidine salvage pathways, and DSM265 selectively inhibits Plasmodium DHODH over the human enzyme. However, while DSM265 does not inhibit human DHODH, it inhibits DHODH from several preclinical species, including mice, suggesting that toxicity could result from on-target DHODH inhibition in those species. We describe here the use of dihydroorotate (DHO) as a biomarker of DHODH inhibition. Treatment of mammalian cells with DSM265 or the mammalian DHODH inhibitor teriflunomide led to increases in DHO where the extent of biomarker buildup correlated with both dose and inhibitor potency on DHODH. Treatment of mice with leflunomide (teriflunomide prodrug) caused a large dose-dependent buildup of DHO in blood (up to 16-fold) and urine (up to 5,400-fold) that was not observed for mice treated with DSM265. Unbound plasma teriflunomide levels reached 20-85-fold above the mouse DHODH IC50, while free DSM265 levels were only 1.6-4.2-fold above, barely achieving âˆ¼ IC90 concentrations, suggesting that unbound DSM265 plasma levels are not sufficient to block the pathway in vivo. Thus, any toxicity associated with DSM265 treatment in mice is likely caused by off-target mechanisms. The identification of a robust biomarker for mammalian DHODH inhibition represents an important advance to generally monitor for on-target effects in preclinical and clinical applications of DHODH inhibitors used to treat human disease.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Profármacos , Animales , Biomarcadores , Crotonatos , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Humanos , Hidroxibutiratos , Leflunamida/farmacología , Leflunamida/uso terapéutico , Mamíferos/metabolismo , Ratones , Nitrilos , Plasmodium falciparum/metabolismo , Profármacos/farmacología , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Toluidinas
12.
Bioprocess Biosyst Eng ; 45(10): 1719-1729, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36121506

RESUMEN

Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.


Asunto(s)
Cupriavidus necator , Petróleo , Amidas/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Azúcares de la Dieta/metabolismo , Azúcares de la Dieta/farmacología , Furaldehído/farmacología , Inhibidores de Crecimiento/metabolismo , Inhibidores de Crecimiento/farmacología , Hidroxibutiratos/metabolismo , Lignina , NAD/metabolismo , NAD/farmacología , Nicotina/metabolismo , Nicotina/farmacología , Nitrobencenos , Petróleo/metabolismo , Plásticos
13.
Appl Microbiol Biotechnol ; 106(18): 6033-6045, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36028634

RESUMEN

Spent coffee ground (SCG) oil is an ideal substrate for the biosynthesis of polyhydroxyalkanoates (PHAs) by Cupriavidus necator. The immiscibility of lipids with water limits their bioavailability, but this can be resolved by saponifying the oil with potassium hydroxide to form water-soluble fatty acid potassium salts and glycerol. Total saponification was achieved with 0.5 mol/L of KOH at 50 °C for 90 min. The relationship between the initial carbon substrate concentration (C0) and the specific growth rate (µ) of C. necator DSM 545 was evaluated in shake flask cultivations; crude and saponified SCG oils were supplied at matching initial carbon concentrations (C0 = 2.9-23.0 g/L). The Han-Levenspiel model provided the closest fit to the experimental data and accurately described complete growth inhibition at 32.9 g/L (C0 = 19.1 g/L) saponified SCG oil. Peak µ-values of 0.139 h-1 and 0.145 h-1 were obtained with 11.99 g/L crude and 17.40 g/L saponified SCG oil, respectively. Further improvement to biomass production was achieved by mixing the crude and saponified substrates together in a carbon ratio of 75:25% (w/w), respectively. In bioreactors, C. necator initially grew faster on the mixed substrates (µ = 0.35 h-1) than on the crude SCG oil (µ = 0.23 h-1). After harvesting, cells grown on crude SCG oil obtained a total biomass concentration of 7.8 g/L and contained 77.8% (w/w) PHA, whereas cells grown on the mixed substrates produced 8.5 g/L of total biomass and accumulated 84.4% (w/w) of PHA. KEY POINTS: • The bioavailability of plant oil substrates can be improved via saponification. • Cell growth and inhibition were accurately described by the Han-Levenpsiel model. • Mixing crude and saponified oils enable variation of free fatty acid content.


Asunto(s)
Cupriavidus necator , Polihidroxialcanoatos , Ácido 3-Hidroxibutírico , Carbono , Café/química , Hidroxibutiratos , Aceites , Poliésteres , Agua
14.
Appl Microbiol Biotechnol ; 106(8): 3021-3032, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35451630

RESUMEN

Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (PHBHHx) is a type of biopolyester of the polyhydroxyalkanoate group (PHA). Due to a wide range of properties resulting from the alteration of the (R)-3-hydroxyhexanoate (3HHx) composition, PHBHHx is getting a lot of attention as a substitute to conventional plastic materials for various applications. Cupriavidus necator H16 is the most promising PHA producer and has been genetically engineered to produce PHBHHx efficiently for many years. Nevertheless, the role of individual genes involved in PHBHHx biosynthesis is not well elaborated. C. necator H16 possesses six potential physiologically active ß-ketothiolase genes identified by transcriptome analysis, i.e., phaA, bktB, bktC (h16_A0170), h16_A0462, h16_A1528, and h16_B0759. In this study, we focused on the functionality of these genes in vivo in relation to 3HHx monomer supply. Gene deletion experiments identified BktB and H16_A1528 as important ß-ketothiolases for C6 metabolism in ß-oxidation. Furthermore, in the bktB/h16_A1528 double-deletion strain, the proportion of 3HHx composition of PHBHHx produced from sugar was very low, whereas that from plant oil was significantly higher. In fact, the proportion reached 36.2 mol% with overexpression of (R)-specifc enoyl-CoA hydratase (PhaJ) and PHA synthase. Furthermore, we demonstrated high-density production (196 g/L) of PHBHHx with high 3HHx (32.5 mol%) by fed-batch fermentation with palm kernel oil. The PHBHHx was amorphous according to the differential scanning calorimetry analysis. KEY POINTS: • Role of six ß-ketothiolases in PHBHHx biosynthesis was investigated in vivo. • Double-deletion of bktB/h16_A1528 results in high 3HHx composition with plant oil. • Amorphous PHBHHx with 32.5 mol% 3HHx was produced in high density by jar fermenter.


Asunto(s)
Cupriavidus necator , Polihidroxialcanoatos , Acetil-CoA C-Aciltransferasa/genética , Acetil-CoA C-Aciltransferasa/metabolismo , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Hidroxibutiratos/metabolismo , Aceites de Plantas/metabolismo , Polihidroxialcanoatos/metabolismo
15.
Sci Rep ; 12(1): 3049, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35197552

RESUMEN

Astrocytes utilize both glycolytic and mitochondrial pathways to power cellular processes that are vital to maintaining normal CNS functions. These cells also mount inflammatory and acute phase reactive programs in response to diverse stimuli. While the metabolic functions of astrocytes under homeostatic conditions are well-studied, the role of cellular bioenergetics in astrocyte reactivity is poorly understood. Teriflunomide exerts immunomodulatory effects in diseases such as multiple sclerosis by metabolically reprogramming lymphocytes and myeloid cells. We hypothesized that teriflunomide would constrain astrocytic inflammatory responses. Purified murine astrocytes were grown under serum-free conditions to prevent acquisition of a spontaneous reactive state. Stimulation with TNFα activated NFκB and increased secretion of Lcn2. TNFα stimulation increased basal respiration, maximal respiration, and ATP production in astrocytes, as assessed by oxygen consumption rate. TNFα also increased glycolytic reserve and glycolytic capacity of astrocytes but did not change the basal glycolytic rate, as assessed by measuring the extracellular acidification rate. TNFα specifically increased mitochondrial ATP production and secretion of Lcn2 required ATP generated by oxidative phosphorylation. Inhibition of dihydroorotate dehydrogenase via teriflunomide transiently increased both oxidative phosphorylation and glycolysis in quiescent astrocytes, but only the increased glycolytic ATP production was sustained over time, resulting in a bias away from mitochondrial ATP production even at doses down to 1 µM. Preconditioning with teriflunomide prevented the TNFα-induced skew toward oxidative phosphorylation, reduced mitochondrial ATP production, and reduced astrocytic inflammatory responses, suggesting that this drug may limit neuroinflammation by acting as a metabolomodulator.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Astrocitos/metabolismo , Crotonatos/farmacología , Hidroxibutiratos/farmacología , Inflamación/metabolismo , Nitrilos/farmacología , Toluidinas/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Adenosina Trifosfato/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/efectos de los fármacos , Células Cultivadas , Quimiocinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Glucólisis/efectos de los fármacos , Lipocalina 2/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
16.
PLoS One ; 17(1): e0260918, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34982779

RESUMEN

Desmanthus (Desmanthus spp.), a tropically adapted pasture legume, is highly productive and has the potential to reduce methane emissions in beef cattle. However, liveweight gain response to desmanthus supplementation has been inconclusive in ruminants. This study aimed to evaluate weight gain, rumen fermentation and plasma metabolites of Australian tropical beef cattle in response to supplementation with incremental levels of desmanthus forage legume in isonitrogenous diets. Forty-eight Brahman, Charbray and Droughtmaster crossbred beef steers were pen-housed and fed a basal diet of Rhodes grass (Chloris gayana) hay supplemented with 0, 15, 30 or 45% freshly chopped desmanthus forage on dry matter basis, for 140 days. Varying levels of lucerne (Medicago sativa) hay were added in the 0, 15 and 30% diets to ensure that all diets were isonitrogenous with the 45% desmanthus diet. Data were analyzed using the Mixed Model procedures of SAS software. Results showed that the proportion of desmanthus in the diet had no significant effect on steer liveweight, rumen volatile fatty acids molar proportions and plasma metabolites (P ≥ 0.067). Total bilirubin ranged between 3.0 and 3.6 µmol/L for all the diet treatments (P = 0.67). All plasma metabolites measured were within the expected normal range reported for beef cattle. Rumen ammonia nitrogen content was above the 10 mg/dl threshold required to maintain effective rumen microbial activity and maximize voluntary feed intake in cattle fed low-quality tropical forages. The average daily weight gains averaged 0.5 to 0.6 kg/day (P = 0.13) and were within the range required to meet the target slaughter weight for prime beef markets within 2.5 years of age. These results indicate that desmanthus alone or mixed with other high-quality legume forages can be used to supplement grass-based diets to improve tropical beef cattle production in northern Australia with no adverse effect on cattle health.


Asunto(s)
Dieta/veterinaria , Rumen/metabolismo , Vicia/química , Amoníaco/química , Alimentación Animal/análisis , Animales , Australia , Bilirrubina/sangre , Bovinos , Creatinina/sangre , Suplementos Dietéticos , Ácidos Grasos Volátiles/sangre , Ácidos Grasos Volátiles/metabolismo , Concentración de Iones de Hidrógeno , Hidroxibutiratos/sangre , Masculino , Medicago sativa/química , Medicago sativa/metabolismo , Rumen/química , Rumen/microbiología , Vicia/metabolismo , Aumento de Peso
17.
Int J Biol Macromol ; 191: 92-99, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34536471

RESUMEN

Polyhydroxybutyrate (PHB) production by the cyanobacterium cf. Anabaena sp. was here studied by varying the medium composition and the carbon source used to induce mixotrophic growth conditions. The highest PHB productivity (0.06 gPHB gbiomass-1 d-1) was observed when cultivating cf. Anabaena sp. in phosphorus-free medium and in the presence of sodium acetate (5.0 g L-1 concentration), after an incubation period of 7 days. A content of 40% of PHB on biomass, a dry weight of 0.1 g L-1, and a photosynthetic efficiency equal to the control were obtained. The cyanobacterium was then grown on a larger scale (10 L) to evaluate the characteristics of the produced PHB in relation to the main composition of the biomass (the content of proteins, polysaccharides, and lipids): after an incubation period of 7 days, a content of 6% of lipids (52% of which as unsaturated fatty acids with 18 carbon atoms), 12% of polysaccharides, 28% of proteins, and 46% of PHB was reached. The extracted PHB had a molecular weight of 3 MDa and a PDI of 1.7. These promising results demonstrated that cf. Anabaena sp. can be included among the Cyanobacteria species able to produce polyhydroxyalkanoates (PHAs) either in photoautotrophic or mixotrophic conditions, especially when it is grown under phosphorus-free conditions.


Asunto(s)
Anabaena/metabolismo , Hidroxibutiratos/metabolismo , Microbiología Industrial/métodos , Poliésteres/metabolismo , Anabaena/crecimiento & desarrollo , Biomasa , Fósforo/metabolismo
18.
J Environ Manage ; 299: 113591, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455350

RESUMEN

An annular bioreactor (ABR) with wide gap was used for PHB production from Ralstonia eutropha. Hydrodynamic studies demonstrated the uniform distribution of fluid in the ABR due to the Taylor-Couette flow. Thereafter, the ABR was operated at different agitation and sparging rates to study its effect on R. eutropha growth and PHB production. The ABR operated at 500 rpm with air sparge rate of 0.8 vvm yielded a maximum PHB concentration of 14.89 g/L, which was nearly 1.4 times that obtained using a conventional stirred-tank bioreactor (STBR). Furthermore, performances of the bioreactors were compared by operating the reactors under fed-batch mode. At the end of 90 h of operation, the ABR resulted in a very high PHB production of 70.8 g/L. But STBR resulted in a low PHB concentration of 44.2 g/L. The superior performance was due to enhanced oxygen and nutrient mass transfer in the ABR.


Asunto(s)
Cupriavidus necator , Reactores Biológicos , Galactanos , Hidroxibutiratos , Mananos , Extractos Vegetales , Gomas de Plantas , Poliésteres
19.
Nutrients ; 13(5)2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33923171

RESUMEN

Metabolomics has been increasingly used to evaluate metabolic changes associated with morbidities. The objective of this study is to assess the metabolic profile before and after intervention with mixed dietary fiber in overweight and obese hypertensive women. This is an intervention study, and the sample consists of 14 women aged 28 to 58 years. An intervention with 12 g of mixed soluble and insoluble fiber is performed for a period of eight weeks. Serum metabolites are identified using a Bruker 1H NMR spectrometer at 400 MHz. Multivariate data analysis, including principal component analysis (PCA), is used to differentiate the two groups. After supplementation with dietary fiber, there is a significant increase in the peak intensity values of the metabolites HDL-C (0.0010*), choline (0.0012*) and hydroxybutyrate (0.0010*) as well as a decrease in systolic (0.0013*) and diastolic (0.0026*) blood pressure. The analysis of the metabolomic profile allows the identification of metabolites that have been associated in the literature with hypertension and excess weight (choline, hydroxybutyrate and amino acids) and with fiber intake (choline, hydroxybutyrate and amino acids) in addition to an increase in HDL-C. The increase in the detection of the described metabolites possibly occurs due to the presence of pathologies and the use of fiber in the intervention, which also contributes to elevated HDL-c and reduced blood pressure.


Asunto(s)
Colina/sangre , Fibras de la Dieta/farmacología , Suplementos Dietéticos , Hidroxibutiratos/sangre , Hipertensión/sangre , Lipoproteínas HDL/sangre , Sobrepeso/sangre , Adulto , Femenino , Humanos , Hipertensión/complicaciones , Espectroscopía de Resonancia Magnética , Persona de Mediana Edad , Obesidad/sangre , Sobrepeso/complicaciones
20.
Angew Chem Int Ed Engl ; 60(16): 9071-9077, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33529427

RESUMEN

Mass spectrometry imaging (MSI) enables simultaneous spatial mapping for diverse molecules in biological tissues. Matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) has been a mainstream MSI method for a wide range of biomolecules. However, MALDI-MSI of biological homopolymers used for energy storage and molecular feedstock is limited by, e.g., preferential ionization for certain molecular classes. Matrix-free nanophotonic ionization from silicon nanopost arrays (NAPAs) is an emerging laser desorption ionization (LDI) platform with ultra-trace sensitivity and molecular imaging capabilities. Here, we show complementary analysis and MSI of polyhydroxybutyric acid (PHB), polyglutamic acid (PGA), and polysaccharide oligomers in soybean root nodule sections by NAPA-LDI and MALDI. For PHB, number and weight average molar mass, polydispersity, and oligomer size distributions across the tissue section and in regions of interest were characterized by NAPA-LDI-MSI.


Asunto(s)
Glycine max/química , Hidroxibutiratos/análisis , Nanoestructuras/química , Poliésteres/análisis , Ácido Poliglutámico/análisis , Polisacáridos/análisis , Silicio/química , Imagen Molecular , Raíces de Plantas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA