Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Steroid Biochem Mol Biol ; 232: 106345, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286110

RESUMEN

Aging is a complex biological process which can be associated with skeletal muscle degradation leading to sarcopenia. The aim of this study consisted i) to determine the oxidative and inflammatory status of sarcopenic patients and ii) to clarify the impact of oxidative stress on myoblasts and myotubes. To this end, various biomarkers of inflammation (C-reactive protein (CRP), TNF-α, IL-6, IL-8, leukotriene B4 (LTB4)) and oxidative stress (malondialdehyde, conjugated dienes, carbonylated proteins and antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase) as well as oxidized derivatives of cholesterol formed by cholesterol autoxidation (7-ketocholesterol, 7ß-hydroxycholesterol), were analyzed. Apelin, a myokine which contributes to muscle strength, was also quantified. To this end, a case-control study was conducted to evaluate the RedOx and inflammatory status in 45 elderly subjects (23 non-sarcopenic; 22 sarcopenic) from 65 years old and higher. SARCopenia-Formular (SARC-F) and Timed Up and Go (TUG) tests were used to distinguish between sarcopenic and non-sarcopenic subjects. By using red blood cells, plasma and/or serum, we observed in sarcopenic patients an increased activity of major antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) associated with lipid peroxidation and protein carbonylation (increased level of malondialdehyde, conjugated dienes and carbonylated proteins). Higher levels of 7-ketocholesterol and 7ß-hydroxycholesterol were also observed in the plasma of sarcopenic patients. Significant differences were only observed with 7ß-hydroxycholesterol. In sarcopenic patients comparatively to non-sarcopenic subjects, significant increase of CRP, LTB4 and apelin were observed whereas similar levels of TNF-α, IL-6 and IL-8 were found. The increased plasma level of 7-ketocholesterol and 7ß-hydroxycholesterol in sarcopenic patients led us to study the cytotoxic effect of these oxysterols on undifferentiated (myoblasts) and differentiated (myotubes) murine C2C12 cells. With the fluorescein diacetate and sulforhodamine 101 assays, an induction of cell death was observed both on undifferentiated and differentiated cells: the cytotoxic effects were less pronounced with 7-ketocholesterol. In addition, IL-6 secretion was never detected whatever the culture conditions, TNF-α secretion was significantly increased on undifferentiated and differentiated C2C12 cells treated with 7-ketocholesterol- and 7ß-hydroxycholesterol, and IL-8 secretion was increased on differentiated cells. 7-ketocholesterol- and 7ß-hydroxycholesterol-induced cell death was strongly attenuated by α-tocopherol and Pistacia lentiscus L. seed oil both on myoblasts and/or myotubes. TNF-α and/or IL-8 secretions were reduced by α-tocopherol and Pistacia lentiscus L. seed oil. Our data support the hypothesis that the enhancement of oxidative stress observed in sarcopenic patients could contribute, especially via 7ß-hydroxycholesterol, to skeletal muscle atrophy and inflammation via cytotoxic effects on myoblasts and myotubes. These data bring new elements to understand the pathophysiology of sarcopenia and open new perspectives for the treatment of this frequent age-related disease.


Asunto(s)
Antioxidantes , Sarcopenia , Humanos , Ratones , Animales , Anciano , Catalasa , Apelina/metabolismo , Apelina/farmacología , Antioxidantes/farmacología , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacología , Sarcopenia/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Estudios de Casos y Controles , Interleucina-6/metabolismo , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacología , Hidroxicolesteroles/metabolismo , Cetocolesteroles/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa , Biomarcadores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Aceites de Plantas/metabolismo , Aceites de Plantas/farmacología
2.
Steroids ; 183: 109032, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35381271

RESUMEN

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Asunto(s)
Silybum marianum , alfa-Tocoferol , Animales , Antioxidantes/farmacología , Flavonoides , Humanos , Hidroxicolesteroles , Ratones , Silybum marianum/metabolismo , Mioblastos/metabolismo , Aceites de Plantas , ARN Mensajero , Especies Reactivas de Oxígeno/metabolismo , alfa-Tocoferol/farmacología
3.
Plant J ; 109(4): 940-951, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34816537

RESUMEN

Diosgenin is an important compound in the pharmaceutical industry and it is biosynthesized in several eudicot and monocot species, herein represented by fenugreek (a eudicot), and Dioscorea zingiberensis (a monocot). Formation of diosgenin can be achieved by the early C22,16-oxidations of cholesterol followed by a late C26-oxidation. This study reveals that, in both fenugreek and D. zingiberensis, the early C22,16-oxygenase(s) shows strict 22R-stereospecificity for hydroxylation of the substrates. Evidence against the recently proposed intermediacy of 16S,22S-dihydroxycholesterol in diosgenin biosynthesis was also found. Moreover, in contrast to the eudicot fenugreek, which utilizes a single multifunctional cytochrome P450 (TfCYP90B50) to perform the early C22,16-oxidations, the monocot D. zingiberensis has evolved two separate cytochrome P450 enzymes, with DzCYP90B71 being specific for the 22R-oxidation and DzCYP90G6 for the C16-oxidation. We suggest that the DzCYP90B71/DzCYP90G6 pair represent more broadly conserved catalysts for diosgenin biosynthesis in monocots.


Asunto(s)
Dioscorea/metabolismo , Diosgenina/metabolismo , Hidroxicolesteroles/metabolismo , Trigonella/metabolismo , Vías Biosintéticas , Colesterol , Sistema Enzimático del Citocromo P-450/metabolismo , Hidroxilación , Oxigenasas/metabolismo , Extractos Vegetales
4.
Phytomedicine ; 92: 153763, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34601222

RESUMEN

BACKGROUND: Misfolded proteins are formed in the endoplasmic reticulum (ER) due to diverse stimuli including oxidant production, calcium disturbance, and inflammatory factors. Accumulation of these non-native proteins in the ER evokes cellular stress involving the activation of unfolded protein response (UPR) and the execution of ER-associated degradation (ERAD). Naturally-occurring plant compounds are known to interfere with UPR due to their antioxidant and anti-inflammatory activities, leading to inhibition of ER stress. However, there are few studies dealing with the protective effects of natural compounds on the functionality of ERAD. PURPOSE: The current study examined whether asaronic acid enhanced ubiquitin-proteasomal degradation in J774A.1 murine macrophages exposed to 7ß-hydroxycholesterol, a risk factor for atherosclerosis. Asaronic acid (2,4,5-trimethoxybenzoic acid), identified as one of purple perilla constituents, has anti-diabetic and anti-inflammatory effects. Little is known regarding the effects of asaronic acid on the ERAD process and the ubiquitin-proteasomal degradation. METHODS AND RESULTS: Murine macrophages were incubated with 28 µM 7ß-hydroxycholesterol in absence and presence of 1-20 µΜ asaronic acid for up to 24 h. Nontoxic asaronic acid in macrophage diminished the activation of the ER stress sensors of ATF6, IRE1 and PERK stimulated by 7ß-hydroxycholesterol. This methoxybenzoic acid down-regulated the oxysterol-induced expression of EDEM1, OS9, Sel1L-Hrd1 and p97/VCP1, all required for the recognition, recruitment and dislocation of misfolded proteins. On the other hand, asaronic acid enhanced the ubiquitin-proteasomal degradation of non-native proteins dislocated to the cytosol by 7ß-hydroxycholesterol, which entailed the induction of the chaperones of Hsp70 and CHIP and the increased colocalization of ubiquitin and proteasomes. Taken together, asaronic acid attenuated the induction of the UPR-associated sensors and the dislocation-linked transmembrane components in the ER. Conversely, this compound enhanced the proteasomal degradation of dislocated non-native proteins in concert with the chaperones of Hsp70 and CHIP through ubiquitination. CONCLUSION: These observations demonstrate that asaronic acid may be a potent atheroprotective agent as a natural chaperone targeting ER stress-associated macrophage injury.


Asunto(s)
Hidroxicolesteroles , Ubiquitina , Animales , Estrés del Retículo Endoplásmico , Degradación Asociada con el Retículo Endoplásmico , Macrófagos , Ratones
5.
Biomolecules ; 11(6)2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071950

RESUMEN

Oxysterols are assumed to be the driving force behind numerous neurodegenerative diseases. In this work, we aimed to study the ability of 7ß-hydroxycholesterol (7ß-OHC) to trigger oxidative stress and cell death in human neuroblastoma cells (SH-SY5Y) then the capacity of Nigella sativa and Milk thistle seed oils (NSO and MTSO, respectively) to oppose 7ß-OHC-induced side effects. The impact of 7ß-OHC, associated or not with NSO or MTSO, was studied on different criteria: cell viability; redox status, and apoptosis. Oxidative stress was assessed through the intracellular reactive oxygen species (ROS) production, levels of enzymatic and non-enzymatic antioxidants, lipid, and protein oxidation products. Our results indicate that 7ß-OHC (40 µg/mL) exhibit pr-oxidative and pro-apoptotic activities shown by a decrease of the antioxidant enzymatic activities and an increase of ROS production, lipid, and protein oxidation end products as well as nitrotyrosine formation and caspase 3 activation. However, under the pre-treatment with NSO, and especially with MTSO (100 µg/mL), a marked attenuation of oxidative damages was observed. Our study suggests harmful effects of 7ß-OHC consisting of pro-oxidative, anti-proliferative, and pro-apoptotic activities that may contribute to neurodegeneration. NSO and especially MTSO showed potential cytoprotection against the cytotoxicity of 7ß-OHC.


Asunto(s)
Citoprotección/efectos de los fármacos , Citotoxinas/toxicidad , Hidroxicolesteroles/toxicidad , Nigella/química , Estrés Oxidativo/efectos de los fármacos , Aceites de Plantas , Semillas/química , Silybum marianum/química , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Aceites de Plantas/química , Aceites de Plantas/farmacología
6.
Ageing Res Rev ; 68: 101324, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33774195

RESUMEN

Age-related diseases for which there are no effective treatments include cardiovascular diseases; neurodegenerative diseases such as Alzheimer's disease; eye disorders such as cataract and age-related macular degeneration; and, more recently, Severe Acute Respiratory Syndrome (SARS-CoV-2). These diseases are associated with plasma and/or tissue increases in cholesterol derivatives mainly formed by auto-oxidation: 7-ketocholesterol, also known as 7-oxo-cholesterol, and 7ß-hydroxycholesterol. The formation of these oxysterols can be considered as a consequence of mitochondrial and peroxisomal dysfunction, leading to increased in oxidative stress, which is accentuated with age. 7-ketocholesterol and 7ß-hydroxycholesterol cause a specific form of cytotoxic activity defined as oxiapoptophagy, including oxidative stress and induction of death by apoptosis associated with autophagic criteria. Oxiaptophagy is associated with organelle dysfunction and in particular with mitochondrial and peroxisomal alterations involved in the induction of cell death and in the rupture of redox balance. As the criteria characterizing 7-ketocholesterol- and 7ß-hydroxycholesterol-induced cytotoxicity are often simultaneously observed in major age-related diseases (cardiovascular diseases, age-related macular degeneration, Alzheimer's disease) the involvement of these oxysterols in the pathophysiology of the latter seems increasingly likely. It is therefore important to better understand the signalling pathways associated with the toxicity of 7-ketocholesterol and 7ß-hydroxycholesterol in order to identify pharmacological targets, nutrients and synthetic molecules attenuating or inhibiting the cytotoxic activities of these oxysterols. Numerous natural cytoprotective compounds have been identified: vitamins, fatty acids, polyphenols, terpenes, vegetal pigments, antioxidants, mixtures of compounds (oils, plant extracts) and bacterial enzymes. However, few synthetic molecules are able to prevent 7-ketocholesterol- and/or 7ß-hydroxycholesterol-induced cytotoxicity: dimethyl fumarate, monomethyl fumarate, the tyrosine kinase inhibitor AG126, memantine, simvastatine, Trolox, dimethylsufoxide, mangafodipir and mitochondrial permeability transition pore (MPTP) inhibitors. The effectiveness of these compounds, several of which are already in use in humans, makes it possible to consider using them for the treatment of certain age-related diseases associated with increased plasma and/or tissue levels of 7-ketocholesterol and/or 7ß-hydroxycholesterol.


Asunto(s)
COVID-19 , Envejecimiento , Humanos , Hidroxicolesteroles , Cetocolesteroles , Nutrientes , Aceites , SARS-CoV-2
7.
Breast Cancer Res ; 22(1): 123, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176848

RESUMEN

BACKGROUND: 27-Hydroxycholesterol (27HC) stimulates estrogen receptor-positive (ER+) breast cancer (BC) progression. Inhibiting the sterol 27-hydroxylase (CYP27A1) abrogates these growth-promoting effects of 27HC in mice. However, the significance of CYP27A1 expression on BC biology and prognosis is unclear. METHODS: Intratumoral CYP27A1 expression in invasive BC was measured by immunohistochemistry in two Swedish population-based cohorts (n = 645 and n = 813, respectively). Cox proportional hazards models were used to evaluate the association between CYP27A1 expression and prognosis. RESULTS: CYP27A1 was highly expressed in less than 1/3 of the tumors. High CYP27A1 expression was more frequent among high-grade tumors lacking hormone receptor expression and with larger tumor sizes. Over a median of 12.2 years follow-up in cohort 1, high CYP27A1 expression was associated with impaired survival, specifically after 5 years from diagnosis among all patients [overall survival (OS), HRadjusted = 1.93, 95%CI = 1.26-2.97, P = 0.003; breast cancer-specific survival (BCSS), HRadjusted = 2.33, 95%CI = 1.28-4.23, P = 0.006] and among patients ≥ 55 years presenting with ER+ tumors [OS, HRadjusted = 1.99, 95%CI = 1.24-3.21, P = 0.004; BCSS, HRadjusted = 2.78, 95%CI = 1.41-5.51, P = 0.003]. Among all patients in cohort 2 (median follow-up of 7.0 years), CYP27A1 expression was significantly associated with shorter OS and RFS in univariable analyses across the full follow-up period. However after adjusting for tumor characteristics and treatments, the association with survival after 5 years from diagnosis was non-significant among all patients [OS, HRadjusted = 1.08, 95%CI = 0.05-2.35, P = 0.83 and RFS, HRadjusted = 1.22, 95%CI = 0.68-2.18, P = 0.50] as well as among patients ≥ 55 years presenting with ER+ tumors [OS, HRadjusted = 0.46 95% CI = 0.11-1.98, P = 0.30 and RFS, HRadjusted = 0.97 95% CI = 0.44-2.10, P = 0.93]. CONCLUSION: CYP27A1 demonstrated great potentials as a biomarker of aggressive tumor biology and late lethal disease in postmenopausal patients with ER+ BC. Future studies should investigate if the benefits of prolonged endocrine therapy and cholesterol-lowering medication in BC are modified by CYP27A1 expression.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/mortalidad , Colestanotriol 26-Monooxigenasa/metabolismo , Recurrencia Local de Neoplasia/epidemiología , Posmenopausia , Anciano , Antineoplásicos Hormonales/uso terapéutico , Biomarcadores de Tumor/análisis , Mama/patología , Mama/cirugía , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Quimioterapia Adyuvante , Colestanotriol 26-Monooxigenasa/análisis , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Hidroxicolesteroles/metabolismo , Inmunohistoquímica , Estimación de Kaplan-Meier , Mastectomía , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/prevención & control , Pronóstico , Receptores de Estrógenos/análisis , Receptores de Estrógenos/metabolismo , Factores de Tiempo
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1865(12): 158811, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32896622

RESUMEN

There is an increasing need to explore the mechanism of the progression of non-alcoholic fatty liver disease. Steroid metabolism is closely linked to hepatic steatosis and steroids are excreted as bile acids (BAs). Here, we demonstrated that feeding WKAH/HkmSlc inbred rats a diet supplemented with cholic acid (CA) at 0.5 g/kg for 13 weeks induced simple steatosis without obesity. Liver triglyceride and cholesterol levels were increased accompanied by mild elevation of aminotransferase activities. There were no signs of inflammation, insulin resistance, oxidative stress, or fibrosis. CA supplementation increased levels of CA and taurocholic acid (TCA) in enterohepatic circulation and deoxycholic acid (DCA) levels in cecum with an increased ratio of 12α-hydroxylated BAs to non-12α-hydroxylated BAs. Analyses of hepatic gene expression revealed no apparent feedback control of BA and cholesterol biosynthesis. CA feeding induced dysbiosis in cecal microbiota with enrichment of DCA producers, which underlines the increased cecal DCA levels. The mechanism of steatosis was increased expression of Srebp1 (positive regulator of liver lipogenesis) through activation of the liver X receptor by increased oxysterols in the CA-fed rats, especially 4ß-hydroxycholesterol (4ßOH) formed by upregulated expression of hepatic Cyp3a2, responsible for 4ßOH formation. Multiple regression analyses identified portal TCA and cecal DCA as positive predictors for liver 4ßOH levels. The possible mechanisms linking these predictors and upregulated expression of Cyp3a2 are discussed. Overall, our observations highlight the role of 12α-hydroxylated BAs in triggering liver lipogenesis and allow us to explore the mechanisms of hepatic steatosis onset, focusing on cholesterol and BA metabolism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Disbiosis/metabolismo , Hidroxicolesteroles/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Ácidos Cólicos/metabolismo , Ácido Desoxicólico/metabolismo , Disbiosis/etiología , Hidroxilación , Masculino , Enfermedad del Hígado Graso no Alcohólico/etiología , Ratas , Ratas Wistar , Ácido Taurocólico/metabolismo
9.
J Neuroinflammation ; 17(1): 192, 2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32552741

RESUMEN

BACKGROUND: Genome-wide association studies of Alzheimer's disease (AD) have implicated pathways related to lipid homeostasis and innate immunity in AD pathophysiology. However, the exact cellular and chemical mediators of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate immunity. Cholesterol 25-hydroxylase (CH25H), the enzyme responsible for 25-HC production, has also been found to be one of the disease-associated microglial (DAM) genes that are upregulated in the brain of AD and AD transgenic mouse models. METHODS: We used real-time PCR and immunoblotting to examine CH25H expression in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-ß plaques or tau pathology. The innate immune response of primary mouse microglia under different treatment conditions or bearing different genetic backgrounds was analyzed using ELISA, western blotting, or immunocytochemistry. RESULTS: We found that CH25H expression is upregulated in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-ß plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brain and stimulates CH25H expression and 25-HC secretion in mouse primary microglia. We found that LPS-induced microglial production of the pro-inflammatory cytokine IL-1ß is markedly potentiated by 25-HC and attenuated by the deletion of CH25H. Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC than apoE3-expressing microglia following treatment with LPS. Remarkably, 25-HC treatment results in a greater level of IL-1ß secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia. Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL-1ß release in apoE4-expressing microglia, indicating the involvement of caspase-1 inflammasome activity. CONCLUSION: 25-HC may function as a microglial-secreted inflammatory mediator in the brain, promoting IL-1ß-mediated neuroinflammation in an apoE isoform-dependent manner (E4>>E2/E3) and thus may be an important mediator of neuroinflammation in AD.


Asunto(s)
Apolipoproteínas E/metabolismo , Hidroxicolesteroles/metabolismo , Interleucina-1beta/metabolismo , Microglía/metabolismo , Esteroide Hidroxilasas/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteínas E/genética , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/metabolismo , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Transgénicos , Microglía/efectos de los fármacos , Esteroide Hidroxilasas/genética , Proteínas tau/metabolismo
10.
Curr Opin Ophthalmol ; 31(1): 61-66, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31770163

RESUMEN

PURPOSE OF REVIEW: Age-related cataract occurs when crystallin proteins in the lens partially unfold and subsequently aggregate. Physicians and traditional healers alike have been exploring pharmacologic cataract treatment for hundreds of years. Currently, surgery is the only effective treatment. However, there are an abundance of homeopathic and alternative remedies that have been suggested as treatment for cataract. This article reviews the current understanding of cataract development and discusses several homeopathic remedies purported to treat age-related cataract. Additionally, we will present an overview of evidence regarding the development of pharmacologic cataract reversal therapies. RECENT FINDINGS: Some homeopathic therapies have been shown to prevent cataract development in experimental models. More studies are required to elucidate the potential medicinal and toxic properties of the various alternative therapies. However, in recent years, scientists have begun to investigate substances that address cataract by reversing lens protein aggregation. One such compound, lanosterol, was reported to reverse cataract opacity in vitro and in animal models. Subsequently, 25-hydroxycholesterol and rosmarinic acid were identified as having similar properties. SUMMARY: Although challenges and uncertainties remain, further research has the potential to lead to the development of a nonsurgical therapeutic option for age-related cataract.


Asunto(s)
Catarata/terapia , Materia Medica , Animales , Antioxidantes/uso terapéutico , Cinamatos/uso terapéutico , Depsidos/uso terapéutico , Humanos , Hidroxicolesteroles/uso terapéutico , Ácido Rosmarínico
11.
J Mater Sci Mater Med ; 30(8): 87, 2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31325047

RESUMEN

Previous studies have demonstrated the significant roles of simvastatin (SVA) and oxysterols in the osteogenesis process. In this study, we evaluate the effect of a combination of SVA and 20(S)-hydroxycholesterol (20(S)OHC) on the cell viability and osteogenic differentiation of bone marrow stromal cells (BMSCs). After treatment with a control vehicle, SVA (0.025, 0.10, 0.25 or 1.0 µM), 20(S)OHC (5 µM), or a combination of both (0.25 µM SVA + 5 µM 20(S)OHC), the proliferation, apoptosis, ALP activity, mineralization, osteogenesis-related gene expression and Raf/MEK/ERK signaling activity in BMSCs were measured. Our results showed that high concentrations of SVA (0.25 and 1.0 µM) enhanced osteogenesis-related genes expression while attenuating cell viability. The addition of 5 µM 20(S)OHC induced significantly higher proliferative activity, which neutralized the inhibitory effect of SVA on the viability of BMSCs. Moreover, compared to supplementation with only one of the additives, combined supplementation with both SVA and 20(S)OHC induced significantly enhanced ALP activity, calcium sedimentation, osteogenesis-related genes (ALP, OCN and BMP-2) expression and Raf/MEK/ERK signaling activity in BMSCs; these enhancements were attenuated by treatment with the inhibitor U0126, indicating a significant role of Raf/MEK/ERK signaling in mediating the synergistically enhanced osteogenic differentiation of BMSCs by combined SVA and 20(S)OHC treatment. Additionally, histological examination confirmed a synergistic effect of SVA and 20(S)OHC on enhancing bone regeneration in a rabbit calvarial defect model. This newly developed SVA/20(S)OHC formulation may be used as an osteoinductive drug to enhance bone healing.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Hidroxicolesteroles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Simvastatina/farmacología , Fosfatasa Alcalina/metabolismo , Animales , Regeneración Ósea/fisiología , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Sinergismo Farmacológico , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Células Madre Mesenquimatosas/fisiología , Osteogénesis/genética , Conejos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Quinasas raf/metabolismo
12.
Biomed Environ Sci ; 32(4): 291-299, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31217065

RESUMEN

OBJECTIVE: Age-related diseases, including neurodegenerative diseases, are associated with oxidative stress and lipid peroxidation, and increase the levels of cholesterol auto-oxidation products such as 7ß-hydroxycholesterol (7ß-OHC). Thus, it is imperative to identify agents that can prevent 7ß-OHC-induced side-effects. METHODS: We evaluated the potential protective effects of Carpobrotus edulis ethanol-water extract (EWe) on murine oligodendrocytes (158N) cultured in the absence or presence of 7ß-OHC (20 µg/mL, 24 h). The cells were incubated with EWe (20-200 µg/mL) 2 h before 7ß-OHC treatment. Mitochondrial activity and cell growth were evaluated with the MTT assay. Photometric methods were used to analyze antioxidant enzyme [catalase (CAT) and glutathione peroxidase (GPx)] activities and the generation of lipid and protein oxidation products [malondialdehyde (MDA), conjugated diene (CD), and carbonylated proteins (CPs)]. RESULTS: Treatment with 7ß-OHC induced cell death and oxidative stress (reflected by alteration in CAT and SOD activities). Overproduction of lipid peroxidation products (MDA and CDs) and CPs was also reported. The cytotoxic effects associated with 7ß-OHC were attenuated by 160 µg/mL of EWe of C. edulis. Cell death induced by 7ß-OHC treatment was ameliorated, GPx and CAT activities were restored to normal, and MDA, CD, and CP levels were reduced following C. edulis extract treatment. CONCLUSION: These data demonstrate the protective activities of C. edulis EWe against 7ß-OHC-induced disequilibrium in the redox status of 158N cells, indicative of the potential role of this plant extract in the prevention of neurodegenerative diseases.


Asunto(s)
Aizoaceae , Enfermedades Neurodegenerativas/prevención & control , Oligodendroglía/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Línea Celular , Evaluación Preclínica de Medicamentos , Hidroxicolesteroles , Ratones , Neuroprotección , Oligodendroglía/metabolismo , Fitoterapia , Extractos Vegetales/uso terapéutico
13.
Artículo en Inglés | WPRIM | ID: wpr-773394

RESUMEN

OBJECTIVE@#Age-related diseases, including neurodegenerative diseases, are associated with oxidative stress and lipid peroxidation, and increase the levels of cholesterol auto-oxidation products such as 7β-hydroxycholesterol (7β-OHC). Thus, it is imperative to identify agents that can prevent 7β-OHC-induced side-effects.@*METHODS@#We evaluated the potential protective effects of Carpobrotus edulis ethanol-water extract (EWe) on murine oligodendrocytes (158N) cultured in the absence or presence of 7β-OHC (20 μg/mL, 24 h). The cells were incubated with EWe (20-200 µg/mL) 2 h before 7β-OHC treatment. Mitochondrial activity and cell growth were evaluated with the MTT assay. Photometric methods were used to analyze antioxidant enzyme [catalase (CAT) and glutathione peroxidase (GPx)] activities and the generation of lipid and protein oxidation products [malondialdehyde (MDA), conjugated diene (CD), and carbonylated proteins (CPs)].@*RESULTS@#Treatment with 7β-OHC induced cell death and oxidative stress (reflected by alteration in CAT and SOD activities). Overproduction of lipid peroxidation products (MDA and CDs) and CPs was also reported. The cytotoxic effects associated with 7β-OHC were attenuated by 160 μg/mL of EWe of C. edulis. Cell death induced by 7β-OHC treatment was ameliorated, GPx and CAT activities were restored to normal, and MDA, CD, and CP levels were reduced following C. edulis extract treatment.@*CONCLUSION@#These data demonstrate the protective activities of C. edulis EWe against 7β-OHC-induced disequilibrium in the redox status of 158N cells, indicative of the potential role of this plant extract in the prevention of neurodegenerative diseases.


Asunto(s)
Animales , Ratones , Aizoaceae , Línea Celular , Evaluación Preclínica de Medicamentos , Hidroxicolesteroles , Enfermedades Neurodegenerativas , Neuroprotección , Oligodendroglía , Metabolismo , Estrés Oxidativo , Fitoterapia , Extractos Vegetales , Farmacología , Usos Terapéuticos
14.
Oxid Med Cell Longev ; 2018: 8520746, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30008986

RESUMEN

Involvement of high cholesterol and oxidative stress in cardiovascular diseases is well studied, as it can be hypothesized that various products originated from lipid peroxidation, such as oxysterols, or affected protein expression might lead to cardiomyocyte damage followed by the pathological modifications. Although oxidation of excessive cholesterol to oxysterols in elevated stress conditions is identified by a number of studies, the role of a high cholesterol diet in regulating fatty acid and oxysterol accumulation, together with scavenger receptor mRNA levels, in the heart remains little investigated. Our study provides a detailed analysis of the changes in fatty acid, oxysterol, and scavenger receptor profiles and its relation with histological alterations in the heart tissue. We evaluated alterations of fatty acid composition, by the GC-MS method, while 4ß-, 25-, and 27-hydroxycholesterol and 7-ketocholesterol levels by means of LC-MS/MS in high cholesterol diet-fed rabbits. Additionally, a number of proteins related to lipid metabolism and scavenger receptor mRNA expressions were evaluated by Western blotting and RT-PCR. According to our in vivo results, a high cholesterol diet enhances a number of unsaturated fatty acids, oxysterols, and LXRα, in addition to CD36, CD68, CD204, and SR-F1 expressions while α-tocopherol supplementation decreases LXRα and SR expressions together with an increase in 27-hydroxycholesterol and ABCA1 levels. Our results indicated that the high cholesterol diet modulates proteins related to lipid metabolism, which might result in the malfunction of the heart and α-tocopherol shows its beneficial effects. We believe that this work will lead the generation of different theories in the development of heart diseases.


Asunto(s)
Colesterol/efectos adversos , Miocardio/metabolismo , Oxiesteroles/sangre , Receptores Depuradores/sangre , Animales , Western Blotting , Antígenos CD36/sangre , Cromatografía de Gases y Espectrometría de Masas , Hidroxicolesteroles/sangre , Cetocolesteroles/sangre , Metabolismo de los Lípidos/fisiología , Peroxidación de Lípido/fisiología , Receptores X del Hígado/sangre , Masculino , Oxidación-Reducción , Estrés Oxidativo/fisiología , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Triglicéridos/sangre , alfa-Tocoferol/sangre
15.
Mol Hum Reprod ; 24(1): 2-13, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29177442

RESUMEN

STUDY QUESTION: Does 27-hydroxycholesterol (27OH) actively facilitate the progression of luteolysis? SUMMARY ANSWER: There is increased mRNA expression of the enzyme that produces 27OH during luteolysis in vivo in rhesus macaques and sheep, and 27OH reduces progesterone secretion from human luteinized granulosa cells. WHAT IS KNOWN ALREADY: There is an increase in mRNA expression of liver x receptor (LXR) and a decrease in sterol regulatory element binding protein 2 (SREBP2) target genes during spontaneous luteolysis in primates, which could result in reduced cholesterol availability for steroidogenesis. Concentrations of 27OH are also increased in primate corpora lutea (CL) during luteolysis, and 27OH is a dual LXR agonist and SREBP2 inhibitor. STUDY DESIGN SIZE, DURATION: This was an in vitro study using primary human luteinized granulosa cells in a control versus treatment(s) design. Analyses of CL from sheep undergoing induced or spontaneous luteolysis were also performed, along with database mining of microarray data from rhesus macaque CL. PARTICIPANTS/MATERIALS, SETTING, METHODS: Primary luteinizing granulosa cells were obtained from 37 women aged 24-44 who were undergoing oocyte donation or IVF for male factor or idiopathic infertility, and cells were further luteinized in vitro using human chorionic gonadotropin. Three approaches to test the effect of 27OH produced via CYP27A1 (cytochrome p450, family 27, subfamily A, polypeptide 1) on luteinized granulosa cells were used: (i) direct 27OH supplementation, (ii) induction of endogenous CYP27A1 activity via pharmacologic inhibition of steroidogenesis, and (iii) siRNA-mediated knockdown to directly inhibit CYP27A1 as well as cholesterol transport into the mitochondria via the steroidogenic acute regulatory protein (STAR). Endpoints included: progesterone (P4) secretion into culture media determined by enzyme immunoassay, cholesterol efflux and uptake assays using fluorescent lipid analogs, and mRNA expression determined via semi-quantitative real-time PCR (QPCR). An additional experiment involved QPCR analysis of 40 CL collected from ewes undergoing induced or spontaneous luteolysis, as well as database mining of microarray data generated from 16 rhesus macaque CL collected during spontaneous luteolysis and 13 macaque CL collected during a luteinizing hormone ablation and replacement protocol. MAIN RESULTS AND THE ROLE OF CHANCE: The mRNA expression of CYP27A1 was significantly increased during luteolysis in rhesus macaques and sheep in vivo, and CYP27A1 transcription was suppressed by luteinizing hormone and hCG. There was a significant decrease in hCG-stimulated P4 secretion from human luteinized granulosa cells caused by 27OH treatment, and a significant increase in basal and hCG-stimulated P4 synthesis when endogenous 27OH production was inhibited via CYP27A1 knockdown, indicating that 27OH inhibits steroidogenesis. Pharmacologic inhibition of steroidogenesis by aminoglutethimide significantly induced LXR and inhibited SREBP2 target gene mRNA expression, indicating that increased oxysterol production occurs when steroidogenesis is suppressed. Inhibiting cholesterol delivery into the mitochondria via knockdown of STAR resulted in reduced SREBP2 target gene mRNA expression, indicating that STAR function is necessary to maintain SREBP2-mediated transcription. The effects of 27OH treatment on markers of LXR and SREBP2 activity were moderate, and knockdown of CYP27A1 did not prevent aminoglutethimide-induced changes in LXR and SREBP2 target gene mRNA expression. These observations indicate that 27OH inhibits P4 secretion partially via mechanisms separate from its role as an LXR agonist and SREBP2 inhibitor, and also demonstrate that other oxysterols are involved in modulating LXR and SREBP2-mediated transcription when steroidogenesis is suppressed. LARGE SCALE DATA: None. LIMITATIONS REASONS FOR CAUTION: Luteinized granulosa cells may differ from luteal cells, and the effect on luteal function in vivo was not directly tested. The mechanisms that cause the initial rise in CYP27A1 mRNA expression during luteolysis are also not clear. WIDER IMPLICATIONS OF THE FINDINGS: The factors causing luteolysis in primates have not yet been determined. This study provides functional evidence of a novel mechanism via increased 27OH synthesis during luteolysis, which subsequently represses progesterone secretion. Increased 27OH may also facilitate the progression of luteolysis in domestic animal species. STUDY FUNDING AND COMPETING INTEREST(S): The authors have nothing to disclose. Support was provided by the Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD) of the National Institutes of Health (NIH), award number R00HD067678 to R.L.B.


Asunto(s)
Colestanotriol 26-Monooxigenasa/metabolismo , Hidroxicolesteroles/metabolismo , Luteólisis/metabolismo , Progesterona/metabolismo , Adulto , Aminoglutetimida/farmacología , Células Cultivadas , Colestanotriol 26-Monooxigenasa/genética , Colesterol/metabolismo , Gonadotropina Coriónica/farmacología , Femenino , Humanos , Técnicas para Inmunoenzimas , Hormona Luteinizante/farmacología , Luteólisis/efectos de los fármacos , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética
16.
Mol Pharmacol ; 93(2): 101-108, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29192124

RESUMEN

Cytochrome P450 27A1 (CYP27A1) is a ubiquitous enzyme that hydroxylates cholesterol and other sterols. Complete CYP27A1 deficiency owing to genetic mutations is detrimental to human health, whereas 50% of activity retention is not and does not affect the whole body cholesterol levels. CYP27A1 is considered a potential therapeutic target in breast cancer and age-related neurodegenerative diseases; however, CYP27A1 inhibition should be ≤50%. Herein, 131 pharmaceuticals were tested for their effect on CYP27A1-mediated cholesterol 27-hydroxylation by in vitro enzyme assay. Of them, 14 drugs inhibited CYP27A1 by ≥75% and were evaluated for in vitro binding to the enzyme active site and for inhibition constants. All drugs except one (dasatinib) elicited a spectral response in CYP27A1 and had Ki values for cholesterol 27-hydroxylation either in the submicromolar (clevidipine, delavirdine, etravirine, felodipine, nicardipine, nilotinib, and sorafenib) or low micromolar range (abiratone, candesartan, celecoxib, dasatinib, nilvadipine, nimodipine, and regorafenib). Clevidipine, felodipine, nicardipine, nilvadipine, and nimodipine have the same 1,4-dihydropyridine scaffold and are indicated for hypertension. We used two of these antihypertensives (felodipine and nilvadipine) for administration to mice at a 1-mg/kg of body weight dose, daily, for 7 days. Mouse 27-hydroxycholesterol levels in the plasma, brain, and liver were reduced, whereas tissue levels of total cholesterol were unchanged. Structure-activity relationships within the 1,4-dihydropyridine scaffold were investigated, and features important for CY27A1 inhibition were identified. We confirmed our previous finding that CYP27A1 is a druggable enzyme and found additional drugs as well as the scaffold with potential for partial CYP27A1 inhibition in humans.


Asunto(s)
Antihipertensivos/farmacología , Colestanotriol 26-Monooxigenasa/antagonistas & inhibidores , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Hidroxicolesteroles/metabolismo , Animales , Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos/métodos , Felodipino/análogos & derivados , Felodipino/farmacología , Femenino , Ratones Endogámicos C57BL
17.
Andrologia ; 50(1)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28295471

RESUMEN

This study examined whether feeding hydroalcoholic extract of Lepidium meyenii (maca) to 8-week-old (sexually maturing) or 18-week-old (mature) male rats for more than a half year affects serum testosterone concentration and testosterone production by Leydig cells cultured with hCG, 22R-hydroxycholesterol or pregnenolone. Testosterone concentration was determined in the serum samples obtained before and 6, 12, 18 and 24 weeks after the feeding, and it was significantly increased only at the 6 weeks in the group fed with the maca extract to maturing rats when it was compared with controls. Testosterone production by Leydig cells significantly increased when cultured with hCG by feeding the maca extract to maturing rats for 27 weeks (35 weeks of age) and when cultured with 22R-hydroxycholesterol by feeding it to mature rats for 30 weeks (48 weeks of age). Overall testosterone production by cultured Leydig cells decreased to about a half from 35 to 48 weeks of age. These results suggest that feeding the maca extract for a long time to male rats may enhance the steroidogenic ability of Leydig cells to alleviate its decline with ageing, whereas it may cause only a transient increase in blood testosterone concentration in sexually maturing male rats.


Asunto(s)
Envejecimiento/efectos de los fármacos , Lepidium , Células Intersticiales del Testículo/efectos de los fármacos , Extractos Vegetales/farmacología , Testosterona/biosíntesis , Envejecimiento/metabolismo , Animales , Gonadotropina Coriónica/farmacología , Hidroxicolesteroles/farmacología , Células Intersticiales del Testículo/metabolismo , Masculino , Pregnenolona/farmacología , Ratas , Testosterona/sangre
18.
Breast Cancer Res Treat ; 167(3): 797-802, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29116467

RESUMEN

PURPOSE: 27-hydroxycholesterol (27HC), an endogenous selective estrogen receptor modulator (SERM), drives the growth of estrogen receptor-positive (ER+) breast cancer. 1,25-dihydroxyvitamin D (1,25(OH)2D), the active metabolite of vitamin D, is known to inhibit expression of CYP27B1, which is very similar in structure and function to CYP27A1, the synthesizing enzyme of 27HC. Therefore, we hypothesized that 1,25(OH)2D may also inhibit expression of CYP27A1, thereby reducing 27HC concentrations in the blood and tissues that express CYP27A1, including breast cancer tissue. METHODS: 27HC, 25-hydroxyvitamin D (25OHD), and 1,25(OH)2D were measured in sera from 29 breast cancer patients before and after supplementation with low-dose (400 IU/day) or high-dose (10,000 IU/day) vitamin D in the interval between biopsy and surgery. RESULTS: A significant increase (p = 4.3E-5) in 25OHD and a decrease (p = 1.7E-1) in 27HC was observed in high-dose versus low-dose vitamin D subjects. Excluding two statistical outliers, 25OHD and 27HC levels were inversely correlated (p = 7.0E-3). CONCLUSIONS: Vitamin D supplementation can decrease circulating 27HC of breast cancer patients, likely by CYP27A1 inhibition. This suggests a new and additional modality by which vitamin D can inhibit ER+ breast cancer growth, though a larger study is needed for verification.


Asunto(s)
Neoplasias de la Mama/dietoterapia , Colestanotriol 26-Monooxigenasa/genética , Hidroxicolesteroles/sangre , Vitamina D/administración & dosificación , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/genética , Biopsia , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Neoplasias de la Mama/cirugía , Línea Celular Tumoral , Colestanotriol 26-Monooxigenasa/antagonistas & inhibidores , Suplementos Dietéticos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Receptores de Estrógenos/genética , Moduladores Selectivos de los Receptores de Estrógeno/administración & dosificación
19.
Exp Gerontol ; 92: 74-81, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28336316

RESUMEN

Soy-food and its isoflavones, genistein (G) and daidzein (D), were reported to exert mild cholesterol-lowering effect, but the underlying mechanism is still unclear. In this research, first we studied age-related alterations in hepatic cholesterol metabolism of acyclic middle-aged (MA) female rats. Then we tested if purified isoflavones may prevent or reverse these changes, and whether putative changes in hepatic thyroid hormone availability may be associated with this effect. Serum and hepatic total cholesterol (TChol), bile acid and cholesterol precursors, as well as serum TSH and T4 concentrations, hepatic deiodinase (Dio) 1 enzyme activity and MCT8 protein expression were determined by comparing data obtained for MA with young adult (YA) intact (IC) females. Effects of subcutaneously administered G or D (35mg/kg) to MA rats were evaluated versus vehicle-treated MA females. MA IC females were characterized by: higher (p<0.05) serum TChol, lower (p<0.05) hepatic TChol and its biosynthetic precursors, lower (p<0.05) hepatic 7α-hydroxycholesterol but elevated (p<0.05) 27- and 24-hydroxycholesterol in comparison to YA IC. Both isoflavone treatments decreased (p<0.05) hepatic 27-hydroxycholesterol, G being more effective than D, without affecting any other parameter of Chol metabolism. Only G elevated hepatic Dio1 activity (p<0.05). In conclusion, age-related hypercholesteremia was associated with lower hepatic Chol synthesis and shift from main neutral (lower 7α-hydroxycholesterol) to alternative acidic pathway (higher 27-hydroxycholesterol) of Chol degradation to bile acid. Both isoflavones lowered hepatic 27-hydroxycholesterol, which may be considered beneficial. Only G treatment increased hepatic Dio1 activity, thus indicating local increase in thyroid hormones, obviously insufficient to induce prominent cholesterol-lowering effect.


Asunto(s)
Envejecimiento , Hidroxicolesteroles/sangre , Isoflavonas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hormonas Tiroideas/sangre , Animales , Peso Corporal/efectos de los fármacos , Femenino , Hidroxicolesteroles/metabolismo , Hígado/efectos de los fármacos , Tamaño de los Órganos/efectos de los fármacos , Fitoestrógenos/farmacología , Ratas , Ratas Wistar , Glycine max/química
20.
J Steroid Biochem Mol Biol ; 169: 137-144, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27084531

RESUMEN

The effect of broccoli extract (BE)-enriched diet was studied in order to evaluate its ability to counteract liver cholesterol oxidation products (COPs) induced by acute strenuous exercise in rats. Thirty-two female Wistar rats were randomly divided into four groups: control diet without exercise (C), BE-enriched diet without exercise (B), control diet with acute exhaustive exercise (S) and BE-enriched diet with acute exhaustive exercise (BS). The study lasted 45days and on the last day, rats of S and BS groups were forced to run until exhaustion on a treadmill. Glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT) and cholesterol oxidation products (COPs) were determined in liver. Exhaustive exercise was clearly responsible for tissue damage, as evidenced by the increase of lactate dehydrogenase (LDH) plasma activity in the S group. Moreover, the exercise protocol reduced CAT activity in liver, while it did not affect GST, GR and GPx. BE-enriched diet raised GST, GR and CAT activities in rats of BS group. The main COPs found were 7α-hydroxycholesterol, 7ß-hydroxycholesterol, 7-ketocholesterol, cholestanetriol, 24-hydroxycholesterol and 27-hydroxycholesterol. The BE-enriched diet led to reduced cholesterol oxidation following exhaustive exercise; the highest level of COPs was found in the S group, whereas the BS rats showed the lowest amount. This study indicates that the BE-enriched diet increases antioxidant enzyme activities and exerts an antioxidant effect towards cholesterol oxidation in rat liver, suggesting the use of phytochemicals in the prevention of oxidative damage and in the modulation of the redox environment.


Asunto(s)
Brassica/química , Colesterol/metabolismo , Hígado/metabolismo , Oxígeno/química , Condicionamiento Físico Animal , Extractos Vegetales/química , Animales , Antioxidantes/química , Catalasa/metabolismo , Prueba de Esfuerzo , Femenino , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Hidroxicolesteroles/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fitoquímicos/química , Análisis de Componente Principal , Ratas , Ratas Wistar , Esteroles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA