Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Biol Macromol ; 266(Pt 1): 131012, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522709

RESUMEN

Medicinal tropane alkaloids (TAs), including hyoscyamine, anisodamine and scopolamine, are essential anticholinergic drugs specifically produced in several solanaceous plants. Atropa belladonna is one of the most important medicinal plants that produces TAs. Therefore, it is necessary to cultivate new A. belladonna germplasm with the high content of TAs. Here, we found that the levels of TAs were elevated under low nitrogen (LN) condition, and identified a LN-responsive bHLH transcription factor (TF) of A. belladonna (named LNIR) regulating the biosynthesis of TAs. The expression level of LNIR was highest in secondary roots where TAs are synthesized specifically, and was significantly induced by LN. Further research revealed that LNIR directly activated the transcription of hyoscyamine 6ß-hydroxylase gene (H6H) by binding to its promoter, which converts hyoscyamine into anisodamine and subsequently epoxidizes anisodamine to form scopolamine. Overexpression of LNIR upregulated the expression levels of TA biosynthesis genes and consequently led to the increased production of TAs. In summary, we functionally identified a LN-responsive bHLH gene that facilitated the development of A. belladonna with high-yield TAs under the decreased usage of nitrogen fertilizer.


Asunto(s)
Atropa belladonna , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta , Nitrógeno , Tropanos , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Atropa belladonna/metabolismo , Atropa belladonna/genética , Tropanos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinales/metabolismo , Plantas Medicinales/genética , Hiosciamina/metabolismo , Hiosciamina/genética , Escopolamina/metabolismo , Regiones Promotoras Genéticas
2.
Food Chem ; 438: 138010, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37983999

RESUMEN

In recent years, the monitoring of tropane alkaloids, specifically hyoscyamine and scopolamine, in food has become a pressing concern. This is due to increasing reports of food contamination with these compounds worldwide, raising awareness about the potential risks associated with their consumption. A novel method is proposed here for the determination of the sum of (+)-hyoscyamine, (-)-hyoscyamine, and (-)-scopolamine in buckwheat-based matrices, using solid-liquid extraction at low temperature and quantification by bidimensional chromatography coupled to tandem mass spectrometry. The validated method presented a linear response in the concentration range of 2.5-15 µg kg-1 (r > 0.99). The precision and accuracy were in the ranges from 0.8 to 11.0 % and from 96 to 103 %, respectively. The limit of quantification (LOQ) was 2.5 µg kg-1. No contamination was found at levels above the LOQ in any of the 18 samples analyzed (buckwheat flour, grains, and gluten-free mix).


Asunto(s)
Alcaloides , Fagopyrum , Hiosciamina , Alcaloides/análisis , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Harina/análisis , Brasil , Temperatura , Tropanos/química , Escopolamina/análisis
3.
Compr Rev Food Sci Food Saf ; 20(1): 501-525, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33443796

RESUMEN

Tropane alkaloids (TAs) are secondary plant metabolites derived mainly from Solanaceae plant families, with the most virulent invasive species being Datura stramonium. Datura stramonium commonly grows in cereal fields and produce TAs (e.g., hyoscyamine and scopolamine) which may accidentally contaminate cereals (and cereal-based foods) at occasionally high levels. Dietary exposure to TAs can be toxic and depending on the dose ingested can cause outcomes ranging from anticholinergic effects to acute poisoning and death. In 2019, 315 adults became ill and another five adults died in Uganda following consumption of a "Super Cereal" (a fortified blended food) that was later confirmed to be contaminated by TAs-a scenario which provoked this holistic review on TAs in foodstuffs. Thus, this article provides information on the history, development, occurrences, exposures, and human legislative and health benchmarks for TAs. It describes control strategies for reducing TA contamination of agricultural commodities and resultant health implications following consumption of TA contaminated foodstuffs. Adequate application of food safety control measures (including maximum limits) and good practices, from the start of cereal cultivation through to the final stages of manufacturing of food products can aid in the reduction of seeing toxic plants including D. stramonium in cereal fields.


Asunto(s)
Alcaloides , Hiosciamina , Brotes de Enfermedades/prevención & control , Humanos , Tropanos , Uganda/epidemiología
4.
PLoS One ; 15(5): e0231355, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32437389

RESUMEN

The overexploitation of medicinal plants is depleting gene pool at an alarming rate. In this scenario inducing the genetic variability through targeted mutations could be beneficial in generating varieties with increased content of active compounds. The present study aimed to develop a reproducible protocol for in vitro multiplication and mutagenesis of Hyoscyamus niger targeting putrescine N-methyltransferase (PMT) and 6ß-hydroxy hyoscyamine (H6H) genes of alkaloid biosynthetic pathway. In vitro raised callus were treated with different concentrations (0.01% - 0.1%) of Ethyl Methane Sulfonate (EMS). Emerging multiple shoots and roots were obtained on the MS media supplemented with cytokinins and auxins. Significant effects on morphological characteristics were observed following exposure to different concentrations of EMS. EMS at a concentration of 0.03% was seen to be effective in enhancing the average shoot and root number from 14.5±0.30 to 22.2 ±0.77 and 7.2±0.12 to 8.8±0.72, respectively. The lethal dose (LD50) dose was calculated at 0.08% EMS. The results depicted that EMS has an intense effect on PMT and H6H gene expression and metabolite accumulation. The transcripts of PMT and H6H were significantly upregulated at 0.03-0.05% EMS compared to control. EMS treated explants showed increased accumulation of scopolamine (0.639 µg/g) and hyoscyamine (0.0344µg/g) compared to untreated.


Asunto(s)
Metanosulfonato de Etilo/toxicidad , Hiosciamina/metabolismo , Hyoscyamus/crecimiento & desarrollo , Metiltransferasas/genética , Oxigenasas de Función Mixta/genética , Mutagénesis , Mutación , Escopolamina/metabolismo , Vías Biosintéticas , Regulación de la Expresión Génica de las Plantas , Hyoscyamus/efectos de los fármacos , Hyoscyamus/genética , Hyoscyamus/metabolismo , Mutágenos/toxicidad , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
5.
Zhongguo Zhong Yao Za Zhi ; 45(2): 321-330, 2020 Jan.
Artículo en Chino | MEDLINE | ID: mdl-32237314

RESUMEN

Atropa belladonna seedlings were used as experimental materials and cultivated by soil culture method. Different concentrations(0,0.05,0.1,0.2,0.5 mmol·L~(-1))of NO donor sodium nitroprusside(SNP) were sprayed on the leaves. The effects of different concentrations of SNP and different treatment time(4,8,12,16 d) on nitrogen metabolism, secondary metabolite content, precursor content of tropane alkaloid synthesis pathway and expression of key enzyme genes under 100 mmol·L~(-1) NaCl stress were studied. The results showed that with the prolongation of salt stress, the nitrogen metabolism and the accumulation of secondary metabolites of A. belladonna were inhibited to some extent. After treatment with different concentrations of exogenous SNP, the ammonium nitrogen content decreased dramatically, and the contents of nitrate nitrogen, free amino acid, soluble protein and the activities of key enzymes of nitrogen metabolism(NR, GS, GDH) were all greatly improved; the contents of precursor amino acids(ornithine, arginine) and polyamines(Put, Spd, Spm) in the secondary metabolic pathway have increased to varying degrees. The qRT-PCR analysis showed that exogenous SNP treatment can effectively promote the high expression of key enzyme genes PMT, TRⅠ and H6H in the secondary metabolic pathway of A. belladonna, and the production of hyoscyamine and scopolamine were increased notably. In summary, the application of appropriate concentration of SNP can effectively alleviate the inhibition of salt stress on the nitrogen metabolism and secondary metabolism of Atropa belladonna, and enhance its salt tolerance. Overall, 0.1 mmol·L~(-1) and 0.2 mmol·L~(-1) SNP treatment achieved the most remarkable effect.


Asunto(s)
Atropa belladonna/metabolismo , Hiosciamina/análisis , Nitrógeno/metabolismo , Escopolamina/análisis , Nitroprusiato , Metabolismo Secundario , Cloruro de Sodio , Estrés Fisiológico
6.
Zhongguo Zhong Yao Za Zhi ; 43(20): 4044-4049, 2018 Oct.
Artículo en Chino | MEDLINE | ID: mdl-30486528

RESUMEN

Hyoscyamine and scopolamine are important secondary metabolites of tropane alkaloid in Atropa belladonna with pharmacological values in many aspects.In this study, the seedlings of A.belladonna were planted by soil culture and treated with different concentrations of methyl jasmonate (MeJA). The contents of hyoscyamine and scopolamine,the upstream products in alkaloid synthesis,and the expression levels of key enzyme genes PMT, TR Ⅰ and H6H in secondary metabolites of A. belladonna seedlings were measured to clarify the mechanism of MeJA regulating alkaloids synthesis.The results showed that MeJA(200 µmol·L⁻¹) treatment was more favorable for the accumulation of alkaloids.The content of putrescine was almost consistent with the change of key enzymes activities in the synthesis of putrescine,the both increased first and then decreased with the increased MeJA concentration and the content of putrescine reached the highest at 200 µmol·L⁻¹ MeJA.Further detection of gene expression of PMT, TR Ⅰ and H6H in TAs synthesis pathway showed that no significant trend in PMT gene expression levels.The expression levels of TR Ⅰ and H6H in leaves and roots under 200 µmol·L⁻¹ MeJA were the highest.It can be speculated that the regulation of the formation of hyoscyamine and scopolamine by MeJA mainly through affecting the expression of key enzyme genes.Appropriate concentration of MeJA increased the gene expression of TR Ⅰ in both leaves and roots as well as H6H in roots,promoting the accumulation of alkaloids and the conversion of hyoscyamine to scopolamine.


Asunto(s)
Acetatos/farmacología , Atropa belladonna/efectos de los fármacos , Ciclopentanos/farmacología , Hiosciamina/metabolismo , Oxilipinas/farmacología , Escopolamina/metabolismo , Atropa belladonna/genética , Atropa belladonna/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 43(8): 1610-1617, 2018 Apr.
Artículo en Chino | MEDLINE | ID: mdl-29751707

RESUMEN

In order to study the mechanism of nitrogen metabolism and secondary metabolism in Atropa belladonna hairy roots treated with yeast extract, yeast extract(YE) was added to the culture medium. Then the changes of physiological and biochemical indexes of A. belladonna hairy roots after treatment with YE were detected. The results are as follows,the activity of key enzymes of nitrogen metabolism changed differently. Compared with the control group (CK), the activity of nitrate reductase (NR) and glutamine synthetase (GS) were significantly increased, while the activity of glutamate dehydrogenase (GDH) was not changed significantly. The content of nitrate nitrogen, ammonium nitrogen had a significant decrease,but the content of soluble protein, free amino acid, total nitrogen are significantly more than CK. Moreover, YE treatment led to the increase of the content precursor amino acids (ornithine and arginine) and precursor putrescine in secondary metabolic pathways of A. belladonna. The expression level of gene putrescine N-methyl transferase (pmt), tropinone reductase-I (trI) and hyoscyamine 6-ß-hydroxylase(h6h) all increased in a different rate caused by YE treatment, which eventually led to the increase of the yield of tropane alkaloids. The yield of hyoscyamine and scopolamine were 3.09 and 1.85 folds than that of CK after 16 days treatment time. The results indicated that YE can induce more synthesis of tropane alkaloids by increasing the activity of key enzymes in nitrogen metabolism to provide more synthetic materials for secondary metabolism, meanwhile it regulated the expression level of some genes of key metabolic enzyme to accelerate secondary metabolism.


Asunto(s)
Atropa belladonna , Hiosciamina , Nitrógeno , Raíces de Plantas , Plantas Modificadas Genéticamente , Escopolamina , Metabolismo Secundario
8.
Food Chem Toxicol ; 116(Pt B): 346-353, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29653183

RESUMEN

Atropa belladonna, commonly known as belladonna or deadly nightshade, ranks among one of the most poisonous plants in Europe and other parts of the world. The plant contains tropane alkaloids including atropine, scopolamine, and hyoscyamine, which are used as anticholinergics in Food and Drug Administration (FDA) approved drugs and homeopathic remedies. These alkaloids can be very toxic at high dose. The FDA has recently reported that Hyland's baby teething tablets contain inconsistent amounts of Atropa belladonna that may have adverse effects on the nervous system and cause death in children, thus recalled the product in 2017. A greater understanding of the neurotoxicity of Atropa belladonna and its modification of genetic polymorphisms in the nervous system is critical in order to develop better treatment strategies, therapies, regulations, education of at-risk populations, and a more cohesive paradigm for future research. This review offers an integrated view of the homeopathy and neurotoxicity of Atropa belladonna in children, adults, and animal models as well as its implications to neurological disorders. Particular attention is dedicated to the pharmaco/toxicodynamics, pharmaco/toxicokinetics, pathophysiology, epidemiological cases, and animal studies associated with the effects of Atropa belladonna on the nervous system. Additionally, we discuss the influence of active tropane alkaloids in Atropa belladonna and other similar plants on FDA-approved therapeutic drugs for treatment of neurological disorders.


Asunto(s)
Atropa belladonna/toxicidad , Atropina/toxicidad , Hiosciamina/toxicidad , Enfermedades del Sistema Nervioso/inducido químicamente , Escopolamina/toxicidad , Animales , Atropa belladonna/química , Humanos , Modelos Animales , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Plantas Tóxicas/química , Plantas Tóxicas/toxicidad , Polimorfismo Genético/efectos de los fármacos , Toxicocinética
9.
Zhongguo Zhong Yao Za Zhi ; 43(1): 72-78, 2018 Jan.
Artículo en Chino | MEDLINE | ID: mdl-29552814

RESUMEN

Hyoscyamine and scopolamine are two main alkaloids in Atropa belladonna with great medicinal value. In this paper, the contents of hyoscyamine and scopolamine, the upstream products in alkaloid synthesis, and the expression levels of key enzyme genes PMT, TRⅠ and H6H in secondary metabolism of A. belladonna seedlings were measured to clarify the mechanism of nitrogen forms regulating alkaloids synthesis.The results showed that the 50/50 (NH⁺4/NO⁻3) treatment was more favorable for the accumulation of alkaloids and the conversion of hyoscyamine to scopolamine. The content of putrescine was almost consistent with the change of key enzymes activities in the synthesis of putrescine, they both increased with the rise of ammonium ratio, reaching the highest at 75/25 (NH⁺4/NO⁻3). The detection of signaling molecule nitric oxide (NO) showed that the NO concentration decreased with the decrease of nitrate proportion. Further detection of gene expression levels of PMT, TRⅠ and H6H in TAs synthesis pathway showed that a certain amount of ammonium promoted the expression of PMT and H6H in roots. When the ratio of ammonium to nitrate was 50/50, PMT, TRⅠ and H6H in leaves and roots had higher expression levels. It can be speculated that the regulation of the formation of hyoscyamine to scopolamine by nitrogen forms mainly through affecting the expression of key enzyme genes. 50/50 (NH⁺4/NO⁻3) treatment increased the gene expression of TRⅠ in both leaves and roots as well as PMT and H6H in roots, promoting the synthesis of putrescine to hyoscyamine and the conversion of hyoscyamine to scopolamine.


Asunto(s)
Atropa belladonna/enzimología , Hiosciamina/biosíntesis , Nitrógeno/metabolismo , Escopolamina/metabolismo , Atropa belladonna/genética , Regulación de la Expresión Génica de las Plantas , Oxigenasas de Función Mixta
10.
Plant Cell Physiol ; 59(1): 107-118, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-29095998

RESUMEN

Tropane alkaloids (TAs), especially hyoscyamine and scopolamine, are important precursors for anticholinergic and antispasmodic drugs. Hyoscyamine and scopolamine are currently obtained at commercial scale from hybrid crosses of Duboisia myoporoides × Duboisia leichhardtii plants. In this study, we present a global investigation of the localization and organization of TA biosynthesis in a Duboisia myoporoides R. Br. wild-type line. The tissue-specific spatial distribution of TAs within D. myoporoides is presented, including quantification of the TAs littorine, 6-hydroxy hyoscyamine, hyoscyamine, scopolamine and, additionally, hyoscyamine aldehyde as well as scopolamine glucoside. Scopolamine (14.77 ± 5.03 mg g-1), and to a lesser extent hyoscyamine (3.01 ± 1.54 mg g-1) as well as 6-hydroxy hyoscyamine (4.35 ± 1.18 mg g-1), are accumulated in leaves during plant development, with the highest concentration of total TAs detected in 6-month-old plants. Littorine, an early precursor in TA biosynthesis, was present only in the roots (0.46 ± 0.07 mg g-1). During development, the spatial distribution of all investigated alkaloids changed due to secondary growth in the roots. Transcripts of pmt, tr-I and cyp80f1 genes, involved in early stages of TA biosynthesis, were found to be most abundant in the roots. In contrast, the transcript encoding hyoscyamine 6ß-hydroxylase (h6h) was highest in the leaves of 3-month-old plants. This investigation presents the spatial distribution of biochemical components as well as gene expression profiles of genetic factors known to participate in TA biosynthesis in D. myoporoides. The results of this investigation may aid in future breeding or genetic enhancement strategies aimed at increasing the yields of TAs in these medicinally valuable plant species.


Asunto(s)
Alcaloides/biosíntesis , Duboisia/metabolismo , Escopolamina/metabolismo , Tropanos/metabolismo , Derivados de Atropina/metabolismo , Vías Biosintéticas/genética , Duboisia/genética , Duboisia/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hiosciamina/biosíntesis , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Alcaloides Solanáceos/biosíntesis
11.
Yao Xue Xue Bao ; 52(1): 172-9, 2017 Jan.
Artículo en Chino | MEDLINE | ID: mdl-29911833

RESUMEN

Tropane alkaloids are anticholinergic drugs widely used clinically. Biosynthesis of tropane alkaloids in planta involves a step of transamination of phenylalanine. Based on the sequenced transcriptomes of lateral roots and leaves of Hyoscyamus niger, we found three annotated aromatic amino acid aminotransferases, which were respectively named HnArAT1, HnArAT2 and HnArAT3. Sequence analysis showed that HnArAT3 had highest similarity with the reported Atropa belladonna Ab Ar AT4, which was involved in tropane alkaloid(TA) to provide the precursor of the phenyllactic acid moiety. Tissue expression pattern analysis indicated that HnArAT3 was specifically expressed in lateral roots, where is the organ synthesizing tropane alkaloids. Then, method of virus induced gene silencing (VIGS) was used to characterize the function of HnArAT3 in H. niger. Gene expression analysis given by real-time quantitative PCR showed that all the transgenic lines had lower expression levels of HnArAT3 than the non-transgenic control, and HPLC analysis of alkaloids demonstrated significant decrease in the contents of hyoscyamine, anisodamine and scopolamine in planta. These results suggested that HnArAT3 was involved in the phenyllactic acid branch of TA biosynthetic pathway. Molecular cloning and functional identification of HnArAT3 laid the foundation for further understanding of TA biosynthesis and metabolic regulation, and also provided a new candidate gene for engineering biosynthetic pathway of tropane alkaloids.


Asunto(s)
Alcaloides/biosíntesis , Hyoscyamus/genética , Proteínas de Plantas/genética , Transaminasas/genética , Tropanos/metabolismo , Atropa belladonna , Vías Biosintéticas , Antagonistas Colinérgicos , Clonación Molecular , Hiosciamina , Hyoscyamus/enzimología , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Escopolamina , Alcaloides Solanáceos
12.
J Chromatogr A ; 1474: 79-84, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27773388

RESUMEN

A new method has been developed for the enantioselective separation of (-) and (+) hyoscyamine in Solanaceaes seeds and contaminated buckwheat. Chromatographic separation was optimized, evaluating two chiral columns, Chirobiotic V and Chiralpal-AY3. Better resolution was obtained using a Chiralpak-AY3 column, utilizing as mobile phase ethanol (0.1% diethanolamine). An extraction procedure based on a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) was applied, using water and acetonitrile containing 1% of acetic acid, and a clean-up step utilizing primary secondary amine (PSA) and graphitized carbon black (GCB) as sorbents. The extract was diluted with ethanol (50/:50, v/v) prior to chromatographic analysis, and the separation was carried out avoiding the racemization during this stage. Enantiomerization process of atropine was studied in samples at different conditions such as temperature (30, 50 and 80°C) and pH (3, 5, 7 and 9), observing that racemization occurs at high pH (9) and temperature (80°C). Stramonium and Brugmansia seeds were analyzed and the concentration of (-)-hyoscyamine was 1500mg/kg and 320mg/kg respectively. Contaminated buckwheat was also determined and (-)-hyoscyamine was detected at 170µg/kg.


Asunto(s)
Atropina/química , Solanaceae/química , Atropina/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Datura stramonium/química , Fagopyrum/química , Concentración de Iones de Hidrógeno , Hiosciamina/análisis , Indicadores y Reactivos , Límite de Detección , Reproducibilidad de los Resultados , Semillas/química , Solventes , Estereoisomerismo , Espectrometría de Masas en Tándem , Temperatura
13.
Yao Xue Xue Bao ; 50(10): 1346-55, 2015 Oct.
Artículo en Chino | MEDLINE | ID: mdl-26837185

RESUMEN

Hyoscyamine 6 beta-hydroxylase (H6H) is the last rate-limiting enzyme directly catalyzing the formation of scopolamine in tropane alkaloids (TAs) biosynthesis pathway. It is the primary target gene in the genetic modification of TAs metabolic pathway. Full-length cDNA and gDNA sequences of a novel H6H gene were cloned from Datura arborea (DaH6H, GenBank accession numbers for cDNA and gDNA are KR006981 and KR006983, respectively). Nucleotide sequence analysis reveals an open reading frame of 1375 bp encoding 347 amino acids in the cDNA of DaH6H, while the gDNA of DaH6H contains four exons and three introns, with the highest similarity to the gDNA of H6H from D. stramonium. DaH6H also exhibited the most identity of 90.5% with DsH6H in amino acids and harbored conserved 2-oxoglutarate binding motif and two iron binding motifs. The expression level of DaH6H was highest in the mature leaf, followed by the secondary root, and with no expression in the primary root based on qPCR analysis. Its expression was inhibited by MeJA. DaH6H was expressed in E. coli and a 39 kD recombinant protein was detected in SDS-PAGE. Comparison of the contents of scopolamine and hyoscyamine in various TAs-producing plants revealed that D. arborea was one of the rare scopolamine predominant plants. Cloning of DaH6H gene will allow more research in the molecular regulatory mechanism of TAs biosynthesis in distinct plants and provide a new candidate gene for scopolamine metabolic engineering.


Asunto(s)
Datura/enzimología , Oxigenasas de Función Mixta/genética , Escopolamina/química , Clonación Molecular , ADN Complementario , Datura/genética , Escherichia coli , Hiosciamina/química , Hojas de la Planta/enzimología , Raíces de Plantas/enzimología , Proteínas Recombinantes/genética
14.
Acta Pharmaceutica Sinica ; (12): 1346-1355, 2015.
Artículo en Chino | WPRIM | ID: wpr-320078

RESUMEN

Hyoscyamine 6 beta-hydroxylase (H6H) is the last rate-limiting enzyme directly catalyzing the formation of scopolamine in tropane alkaloids (TAs) biosynthesis pathway. It is the primary target gene in the genetic modification of TAs metabolic pathway. Full-length cDNA and gDNA sequences of a novel H6H gene were cloned from Datura arborea (DaH6H, GenBank accession numbers for cDNA and gDNA are KR006981 and KR006983, respectively). Nucleotide sequence analysis reveals an open reading frame of 1375 bp encoding 347 amino acids in the cDNA of DaH6H, while the gDNA of DaH6H contains four exons and three introns, with the highest similarity to the gDNA of H6H from D. stramonium. DaH6H also exhibited the most identity of 90.5% with DsH6H in amino acids and harbored conserved 2-oxoglutarate binding motif and two iron binding motifs. The expression level of DaH6H was highest in the mature leaf, followed by the secondary root, and with no expression in the primary root based on qPCR analysis. Its expression was inhibited by MeJA. DaH6H was expressed in E. coli and a 39 kD recombinant protein was detected in SDS-PAGE. Comparison of the contents of scopolamine and hyoscyamine in various TAs-producing plants revealed that D. arborea was one of the rare scopolamine predominant plants. Cloning of DaH6H gene will allow more research in the molecular regulatory mechanism of TAs biosynthesis in distinct plants and provide a new candidate gene for scopolamine metabolic engineering.


Asunto(s)
Clonación Molecular , ADN Complementario , Datura , Genética , Escherichia coli , Hiosciamina , Química , Oxigenasas de Función Mixta , Genética , Hojas de la Planta , Raíces de Plantas , Proteínas Recombinantes , Genética , Escopolamina , Química
15.
Planta Med ; 80(15): 1315-20, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25248046

RESUMEN

Plant species of the Solanaceae family (nightshades) contain pharmacologically active anticholinergic tropane alkaloids, e.g., scopolamine and hyoscyamine. Tropane alkaloids are of special interest, either as active principles or as starting materials for semisynthetic production of other substances. For genetic evaluation, domestication, cultivation, harvest and post-harvest treatments, quantification of the individual active principles is necessary to monitor industrial processes and the resulting finished products. Up to now, frequently applied methods for quantification are based on high performance liquid chromatography and gas chromatography optionally combined with mass spectrometry. However, alternative analytical methods have the potential to replace the established standard methods partly. In this context, attenuated total reflection-Fourier transform infrared spectroscopy enabled chemotaxonomical classification of the Solanaceae Atropa belladonna, Datura stramonium, Hyoscyamus niger, Solanum dulcamara, and Duboisia in combination with cluster analysis. Also discrimination of genotypes within species was achieved to some extent. The most characteristic scopolamine bands could be identified in attenuated total reflection-Fourier transform infrared spectra of Solanaceae leaves, which allow a fast characterisation of plants with high scopolamine content. Applying a partial least square algorithm, very good calibration statistics were obtained for the prediction of the scopolamine content (residual prediction deviation = 7.67), and moderate prediction quality could be achieved for the hyoscyamine content (residual prediction deviation = 2.48).


Asunto(s)
Hiosciamina/análisis , Escopolamina/análisis , Solanaceae/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Algoritmos , Calibración , Análisis por Conglomerados , Análisis de los Mínimos Cuadrados , Hojas de la Planta/química , Solanaceae/clasificación
16.
Zhongguo Zhong Yao Za Zhi ; 39(1): 52-8, 2014 Jan.
Artículo en Chino | MEDLINE | ID: mdl-24754168

RESUMEN

Atropa belladonna is a medicinal plant and main commercial source of tropane alkaloids (TAs) including scopolamine and hyoscyamine, which are anticholine drugs widely used clinically. Based on the high throughput transcriptome sequencing results, the digital expression patterns of UniGenes representing 9 structural genes (ODC, ADC, AIH, CPA, SPDS, PMT, CYP80F1, H6H, TRII) involved in TAs biosynthesis were constructed, and simultaneously expression analysis of 4 released genes in NCBI (PMT, CYP80F1, H6H, TRII) for verification was performed using qPCR, as well as the TAs contents detection in 8 different tissues. Digital expression patterns results suggested that the 4 genes including ODC, ADC, AIH and CPA involved in the upstream pathway of TAs, and the 2 branch pathway genes including SPDS and TRII were found to be expressed in all the detected tissues with high expression level in secondary root. While the 3 TAs-pathway-specific genes including PMT, CYP80F1, H6H were only expressed in secondary roots and primary roots, mainly in secondary roots. The qPCR detection results of PMT, CYP80F1 and H6H were consistent with the digital expression patterns, but their expression levels in primary root were too low to be detected. The highest content of hyoscyamine was found in tender stems (3.364 mg x g(-1)), followed by tender leaves (1.526 mg x g(-1)), roots (1.598 mg x g(-1)), young fruits (1.271 mg x g(-1)) and fruit sepals (1.413 mg x g(-1)). The highest content of scopolamine was detected in fruit sepals (1.003 mg x g(-1)), then followed by tender stems (0.600 mg x g(-1)) and tender leaves (0.601 mg x g(-1)). Both old stems and old leaves had the lowest content of hyoscyamine and scopolamine. The gene expression profile and TAs accumulation indicated that TAs in Atropa belladonna were mainly biosynthesized in secondary root, and then transported and deposited in tender aerial parts. Screening Atropa belladonna secondary root transcriptome database will facilitate unveiling the unknown enzymatic reactions and the mechanisms of transcriptional control.


Asunto(s)
Alcaloides/biosíntesis , Alcaloides/genética , Atropa belladonna/genética , Atropa belladonna/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Tropanos/metabolismo , Alcaloides/metabolismo , Hiosciamina/genética , Hiosciamina/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Escopolamina/metabolismo
17.
Artículo en Chino | WPRIM | ID: wpr-319655

RESUMEN

Atropa belladonna is a medicinal plant and main commercial source of tropane alkaloids (TAs) including scopolamine and hyoscyamine, which are anticholine drugs widely used clinically. Based on the high throughput transcriptome sequencing results, the digital expression patterns of UniGenes representing 9 structural genes (ODC, ADC, AIH, CPA, SPDS, PMT, CYP80F1, H6H, TRII) involved in TAs biosynthesis were constructed, and simultaneously expression analysis of 4 released genes in NCBI (PMT, CYP80F1, H6H, TRII) for verification was performed using qPCR, as well as the TAs contents detection in 8 different tissues. Digital expression patterns results suggested that the 4 genes including ODC, ADC, AIH and CPA involved in the upstream pathway of TAs, and the 2 branch pathway genes including SPDS and TRII were found to be expressed in all the detected tissues with high expression level in secondary root. While the 3 TAs-pathway-specific genes including PMT, CYP80F1, H6H were only expressed in secondary roots and primary roots, mainly in secondary roots. The qPCR detection results of PMT, CYP80F1 and H6H were consistent with the digital expression patterns, but their expression levels in primary root were too low to be detected. The highest content of hyoscyamine was found in tender stems (3.364 mg x g(-1)), followed by tender leaves (1.526 mg x g(-1)), roots (1.598 mg x g(-1)), young fruits (1.271 mg x g(-1)) and fruit sepals (1.413 mg x g(-1)). The highest content of scopolamine was detected in fruit sepals (1.003 mg x g(-1)), then followed by tender stems (0.600 mg x g(-1)) and tender leaves (0.601 mg x g(-1)). Both old stems and old leaves had the lowest content of hyoscyamine and scopolamine. The gene expression profile and TAs accumulation indicated that TAs in Atropa belladonna were mainly biosynthesized in secondary root, and then transported and deposited in tender aerial parts. Screening Atropa belladonna secondary root transcriptome database will facilitate unveiling the unknown enzymatic reactions and the mechanisms of transcriptional control.


Asunto(s)
Alcaloides , Genética , Metabolismo , Atropa belladonna , Genética , Metabolismo , Regulación de la Expresión Génica de las Plantas , Genética , Hiosciamina , Genética , Metabolismo , Plantas Medicinales , Genética , Metabolismo , Escopolamina , Metabolismo , Tropanos , Metabolismo
18.
Plant Physiol Biochem ; 70: 188-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23786817

RESUMEN

A cDNA encoding hyoscyamine 6ß-hydroxylase (H6H, EC 1.14.11.11), a bifunctional enzyme catalyzing the last two steps in the scopolamine biosynthetic pathway, was isolated from Hyoscyamus senecionis, a medicinal plant endemic to the Iranian plateau. Expression analysis indicates that Hsh6h is expressed in all tested organs of H. senecionis including roots, rhizomes, leaves, stems and flowers unlike the other tropane alkaloid producing species. In parallel to this, in leaves, levels of scopolamine, the product of H6H, were higher than the substrate hyoscyamine. These data suggest that not only does the conversion of hyoscyamine to scopolamine take place in the root, followed by translocation to aerial parts, but also accumulated hyoscyamine in the aerial parts may be converted to scopolamine by activity of HsH6H. Analysis of expression profiles of putrescine N-methyltransferase and tropinone reductase I and II genes also indicates the organ-independent expression of these genes. Here we also introduce H. senecionis as an important tropane alkaloid producing species with its thick underground parts as a source of hyoscyamine, while its leaves can be considered as a source of scopolamine.


Asunto(s)
Genes de Plantas , Hiosciamina/metabolismo , Hyoscyamus/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas/metabolismo , Estructuras de las Plantas/metabolismo , Escopolamina/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Transporte Biológico , ADN Complementario , Expresión Génica , Hiosciamina/genética , Hyoscyamus/genética , Irán , Redes y Vías Metabólicas/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Oxigenasas de Función Mixta/genética , Proteínas de Plantas/genética , Plantas Medicinales , Transcriptoma
19.
Yao Xue Xue Bao ; 48(2): 243-9, 2013 Feb.
Artículo en Chino | MEDLINE | ID: mdl-23672021

RESUMEN

Atropa belladonna L. is the officially medicinal plant species and the main commercial source of scopolamine and hyoscyamine in China. In this study, we reported the simultaneous overexpression of two functional genes involved in biosynthesis of scopolamine, which respectively encoded the upstream key enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53) and the downstream key enzyme hyoscyamine 6beta-hydroxylase (H6H; EC 1.14.11.11) in transgenic hair root cultures of Atropa belladonna L. HPLC results suggested that four transgenic hair root lines produced higher content of scopolamine at different levels compared with nontransgenic hair root cultures. And scopolamine content increased to 8.2 fold in transgenic line PH2 compared with that of control line; and the other four transgenic lines showed an increase of scopolamine compared with the control. Two of the transgenic hair root lines produced higher levels of tropane alkaloids, and the content increased to 2.7 fold in transgenic line PH2 compared with the control. The gene expression profile indicated that both PMT and H6H expressed at a different levels in different transgenic hair root lines, which would be helpful for biosynthesis of scopolamine. Our studies suggested that overexpression of A. belladonna endogenous genes PMT and H6H could enhance tropane alkaloid biosynthesis.


Asunto(s)
Atropa belladonna , Metiltransferasas/metabolismo , Oxigenasas de Función Mixta/metabolismo , Escopolamina/metabolismo , Biología Sintética , Tropanos/metabolismo , Atropa belladonna/enzimología , Atropa belladonna/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hiosciamina/metabolismo , Metiltransferasas/genética , Oxigenasas de Función Mixta/genética , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Medicinales/enzimología , Plantas Medicinales/genética
20.
Acta Pharmaceutica Sinica ; (12): 243-249, 2013.
Artículo en Chino | WPRIM | ID: wpr-235677

RESUMEN

Atropa belladonna L. is the officially medicinal plant species and the main commercial source of scopolamine and hyoscyamine in China. In this study, we reported the simultaneous overexpression of two functional genes involved in biosynthesis of scopolamine, which respectively encoded the upstream key enzyme putrescine N-methyltransferase (PMT; EC 2.1.1.53) and the downstream key enzyme hyoscyamine 6beta-hydroxylase (H6H; EC 1.14.11.11) in transgenic hair root cultures of Atropa belladonna L. HPLC results suggested that four transgenic hair root lines produced higher content of scopolamine at different levels compared with nontransgenic hair root cultures. And scopolamine content increased to 8.2 fold in transgenic line PH2 compared with that of control line; and the other four transgenic lines showed an increase of scopolamine compared with the control. Two of the transgenic hair root lines produced higher levels of tropane alkaloids, and the content increased to 2.7 fold in transgenic line PH2 compared with the control. The gene expression profile indicated that both PMT and H6H expressed at a different levels in different transgenic hair root lines, which would be helpful for biosynthesis of scopolamine. Our studies suggested that overexpression of A. belladonna endogenous genes PMT and H6H could enhance tropane alkaloid biosynthesis.


Asunto(s)
Atropa belladonna , Genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hiosciamina , Metabolismo , Metiltransferasas , Genética , Metabolismo , Oxigenasas de Función Mixta , Genética , Metabolismo , Raíces de Plantas , Genética , Plantas Modificadas Genéticamente , Genética , Plantas Medicinales , Genética , Escopolamina , Metabolismo , Biología Sintética , Tropanos , Metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA