Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Ther Apher Dial ; 25(5): 595-606, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33470531

RESUMEN

We investigated the effectiveness of monitoring serum carnitine levels in hemodialysis patients receiving L-carnitine supplementation. One-hundred forty-five hemodialysis patients were divided into three groups. Group 1 consisted of patients (n = 30) who had been receiving supplementation before this study and then discontinued at the beginning. The remaining patients were divided into Group 2 (n = 13) and Group 3 (n = 102) based on their baseline free carnitine (FC) level, <20 or ≥ 20 µmol/L. Group 2 was started on supplementation, and Groups 1 and 3 were observed without any intervention for the first 6 months. FC was measured every 6 months in all three groups up to 18 months. All patients in whom FC was less than 20 µmol/L at 6 and 12 months were prescribed supplementation. After the first 6 months, the mean ± SD of FC changed from 262.5 ± 87.5 µmol/L at baseline to 70.8 ± 33.6 µmol/L (P < 0.001) in Group 1, from 17.4 ± 1.9 to 193.9 ± 43.3 µmol/L (P < 0.001) in Group 2, and from 49.2 ± 24.6 to 44.2 ± 19.8 µmol/L (P < 0.05) in Group 3. The acyl/free carnitine changed from 0.62 to 0.59 in Group 1 (P = 0.287), from 0.76 to 0.66 in Group 2 (P = 0.054) and from 0.57 to 0.60 in Group 3 (P < 0.05). Of the 145 patients, 126 continued follow-up for the full 18 months. FC remained in the normal range (36-74 µmol/L) within the 95% CI. FC was considered a strong predictor of carnitine deficiency after 6 months (AUC: 0.9146, cut-off value: 33.8 µmol/L). FC monitoring is essential for appropriate carnitine supplementation in hemodialysis patients.


Asunto(s)
Cardiomiopatías/prevención & control , Carnitina/administración & dosificación , Carnitina/sangre , Carnitina/deficiencia , Hiperamonemia/prevención & control , Fallo Renal Crónico/sangre , Fallo Renal Crónico/terapia , Enfermedades Musculares/prevención & control , Diálisis Renal/métodos , Anciano , Cardiomiopatías/etiología , Suplementos Dietéticos , Femenino , Humanos , Hiperamonemia/etiología , Masculino , Enfermedades Musculares/etiología , Diálisis Renal/efectos adversos
2.
Eur J Clin Nutr ; 73(2): 293-301, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30353121

RESUMEN

BACKGROUND: Carnitine deficiency is common in patients on hemodialysis. However, the efficacy of L-carnitine supplementation for improving lean body mass (LBM) and physical function has not yet been evaluated. METHODS: In this multicenter, prospective, parallel, randomized, controlled trial, 91 patients on hemodialysis who developed carnitine deficiency were randomly assigned to receive injections of 1,000 mg L-carnitine 3 times per week after each hemodialysis session (L-carnitine group) or no injections (control group) with monitoring for 12 months. RESULTS: The data for 84 of the 91 patients were available for analysis (L-carnitine group, n = 42; control group, n = 42). Dry weight and body mass index did not significantly change in the L-carnitine group, but significantly decreased in the control group. Arm muscle area (AMA) did not change significantly in the L-carnitine group but decreased significantly in the control group; the difference in mean AMA between the groups was 6.22% (95% confidence interval [CI] 1.90-10.5; P = 0.037). Hand grip strength did not change significantly in the L-carnitine group, but decreased significantly in the control group. The difference in change in hand grip strength between the groups was 4.27% (95% CI 0.42-8.12; P = 0.030). Furthermore, LBM did not change significantly in the L-carnitine group but decreased significantly in the control group; the difference in mean LBM between the groups was 2.92 % (95% CI 1.28-4.61; P = 0.0007). CONCLUSIONS: L-carnitine supplementation is useful in patients who develop carnitine deficiency on hemodialysis because it maintains physical function and LBM.


Asunto(s)
Cardiomiopatías/prevención & control , Carnitina/deficiencia , Carnitina/uso terapéutico , Hiperamonemia/prevención & control , Fallo Renal Crónico , Enfermedades Musculares/prevención & control , Desnutrición Proteico-Calórica/prevención & control , Diálisis Renal , Actividades Cotidianas , Adulto , Anciano , Anciano de 80 o más Años , Composición Corporal , Carnitina/administración & dosificación , Suplementos Dietéticos , Femenino , Humanos , Japón , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento , Adulto Joven
3.
Artículo en Inglés | MEDLINE | ID: mdl-30107254

RESUMEN

Triplicate groups of juvenile yellow catfish (1.98 ±â€¯0.01 g) were fed diets supplemented with 0% and 1% alanyl-glutamine dipeptide (AGD) for 56 days under three ammonia concentrations (0.01, 5.70 and 11.40 mg L-1 total ammonia nitrogen). The results showed that ammonia poisoning could induce growth (weight gain and specific growth rate) and survival reduction, live ammonia and serum malondialdehyde accumulation, and subsequently lead to blood deterioration (serum total protein, albumin, globulin, alkaline phosphatase and acid phosphatase reduced), oxidative stress (superoxide dismutase and glutathione peroxidase activities declined), and induce down-regulation of antioxidant enzymes (SOD, GPX and GRX) genes transcription. However, dietary supplemented with 1% AGD could mitigate the adverse effect of ammonia poisoning on fish growth performance.


Asunto(s)
Amoníaco/toxicidad , Fenómenos Fisiológicos Nutricionales de los Animales , Bagres/fisiología , Dipéptidos/uso terapéutico , Hiperamonemia/prevención & control , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/uso terapéutico , Acuicultura , Bagres/sangre , Bagres/crecimiento & desarrollo , China , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hiperamonemia/etiología , Hiperamonemia/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Malondialdehído/sangre , Concentración Osmolar , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Distribución Aleatoria , Análisis de Supervivencia , Aumento de Peso/efectos de los fármacos
4.
Br J Nutr ; 120(7): 732-739, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30079843

RESUMEN

Keto analogues and amino acids (KAAA) supplementation can reduce blood ammonia concentrations in athletes undergoing high-intensity exercise under both ketogenic and thermoneutral conditions. This study evaluated the acute effects of KAAA supplementation on ammonia metabolism during extenuating endurance exercise in rats fed a ketogenic diet. In all, eighty male Fischer rats at 90 d of age were divided into eight groups, and some were trained using a swimming endurance protocol. A ketogenic diet supplemented with keto analogues was administered for 10 d. Administration of the ketogenic diet ended 3 d before the exhaustion test (extenuating endurance exercise). A ketogenic diet plus KAAA supplementation and extenuating endurance exercise (trained ketogenic diet supplemented with KAAA (TKKa)) increased blood ammonia concentrations by approximately 50 % compared with the control diet (trained control diet supplemented with KAAA (TCKa)) and similar training (effect size=1·33; statistical power=0·50). The KAAA supplementation reduced blood urea concentrations by 4 and 18 % in the control and ketogenic diet groups, respectively, compared with the groups fed the same diets without supplementation. The trained groups had 60 % lower blood urate concentrations after TCKa treatment than after TKKa treatment. Our results suggest that KAAA supplementation can reduce blood ammonia concentrations after extenuating endurance exercise in rats fed a balanced diet but not in rats fed a ketogenic diet.


Asunto(s)
Aminoácidos/uso terapéutico , Amoníaco/sangre , Dieta , Suplementos Dietéticos , Hiperamonemia/prevención & control , Cetoácidos/uso terapéutico , Resistencia Física/fisiología , Aminoácidos/farmacología , Animales , Dieta Cetogénica , Hiperamonemia/sangre , Hiperamonemia/etiología , Cetoácidos/farmacología , Masculino , Condicionamiento Físico Animal/fisiología , Ratas Endogámicas F344
5.
Scand J Med Sci Sports ; 27(9): 935-944, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27367794

RESUMEN

Perceptual-motor performance in prolonged tennis matches may be affected by central fatigue. The purpose of this study was to investigate the supplementation of branched-chain amino acids (BCAA), arginine, and citrulline on tennis-specific perceptual-motor performance after a simulated match. Nine male tennis players consumed 0.17 g/kg BCAA, 0.05 g/kg arginine, and 0.05 g/kg citrulline (AA trial), or placebo (PB trial) 1 h before the match. In the perceptual-motor performance test before and after the match, the subjects hit balls to the opposite direction of the examiner's movement. The AA trial showed significantly higher rate of correct direction than the PB trial after the match (AA trial: 93.63 ± 1.28%, PB trial: 69.09 ± 2.40%). The AA trial also demonstrated significantly higher post-match accuracy and consistency than the PB trial. The AA trial showed significantly lower heart rate and ratings of perceive exertion during the match, concurrently with a significantly lower plasma total tryptophan/BCAA ratio. Similar post-match plasma NH3 concentrations were found in both trials while the AA trial was significantly higher in NOx concentration. This study suggested that the supplementation could prevent the decline in perceptual-motor performance through alleviation of central fatigue by BCAA and prevention of excess hyperammonemia by arginine and citrulline.


Asunto(s)
Aminoácidos de Cadena Ramificada/administración & dosificación , Arginina/administración & dosificación , Citrulina/administración & dosificación , Desempeño Psicomotor , Fenómenos Fisiológicos en la Nutrición Deportiva , Tenis/fisiología , Adulto , Suplementos Dietéticos , Fatiga/prevención & control , Humanos , Hiperamonemia/prevención & control , Masculino , Método Simple Ciego
6.
Ann Nutr Metab ; 68 Suppl 3: 1-4, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27931034

RESUMEN

The metabolic roles of carnitine have been greatly clarified over the past 50 years, and it is now well established that carnitine is a key player in mitochondrial generation of energy and metabolism of acetyl coenzyme A. A therapeutic role for carnitine in treatment of nutritional deficiencies in infants and children was first demonstrated in 1958, and since that time it has been used to treat a number of inborn errors of metabolism. Carnitine was approved by the US Food and Drug Administration in 1985 for treatment of 'primary carnitine deficiency', and later in 1992 for treatment of 'secondary carnitine deficiency', a definition that included the majority of relevant metabolic disorders associated with low or abnormal plasma carnitine levels. Today, carnitine treatment of inborn errors of metabolism is a safe and integral part of many treatment protocols, and a growing interest in carnitine has resulted in greater recognition of many causes of carnitine depletion. Notwithstanding, there is still a lack of data from randomized clinical trials, even on the use of carnitine in inborn errors of metabolism, although ethical issues may be a contributing factor in this regard.


Asunto(s)
Cardiomiopatías/prevención & control , Carnitina/deficiencia , Carnitina/uso terapéutico , Ciencias de la Nutrición del Niño/historia , Enfermedades Carenciales/prevención & control , Suplementos Dietéticos , Hiperamonemia/prevención & control , Errores Innatos del Metabolismo/dietoterapia , Enfermedades Musculares/prevención & control , Ciencias de la Nutrición/historia , Administración Intravenosa , Adulto , Cardiomiopatías/dietoterapia , Cardiomiopatías/historia , Cardiomiopatías/fisiopatología , Carnitina/administración & dosificación , Carnitina/efectos adversos , Carnitina/historia , Carnitina Aciltransferasas/deficiencia , Carnitina Aciltransferasas/historia , Niño , Ensayos Clínicos como Asunto , Enfermedades Carenciales/dietoterapia , Enfermedades Carenciales/historia , Enfermedades Carenciales/fisiopatología , Suplementos Dietéticos/efectos adversos , Metabolismo Energético , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Hiperamonemia/dietoterapia , Hiperamonemia/historia , Hiperamonemia/fisiopatología , Lactante , Errores Innatos del Metabolismo Lipídico/dietoterapia , Errores Innatos del Metabolismo Lipídico/tratamiento farmacológico , Errores Innatos del Metabolismo Lipídico/historia , Errores Innatos del Metabolismo Lipídico/fisiopatología , Errores Innatos del Metabolismo/tratamiento farmacológico , Errores Innatos del Metabolismo/historia , Errores Innatos del Metabolismo/fisiopatología , Enfermedades Musculares/dietoterapia , Enfermedades Musculares/historia , Enfermedades Musculares/fisiopatología , Producción de Medicamentos sin Interés Comercial/historia
7.
J Nutr Sci Vitaminol (Tokyo) ; 61(6): 433-40, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26875483

RESUMEN

Transarterial chemoembolization (TACE) and radiofrequency ablation (RFA) are effective treatments for hepatocellular carcinoma (HCC). However, the extent of treatment depends on hepatic functional reserve. L-Carnitine is a vitamin-like substance and several reports have described the usefulness of L-carnitine supplementation in cases of cirrhosis, with confirmed effectiveness against refractory hepatic encephalopathy. On the other hand, we have previously reported that in patients who underwent TACE or RFA, administration of branched-chain amino acids (BCAAs) pre-intervention significantly reduced inflammatory reactions. We first determined serum levels of total, free, and acyl-carnitine before and at 7 d after performing TACE in 10 HCC patients. We administered levocarnitine (L-carnitine chloride, a biologically active form of carnitine) at 900 mg/d to 69 consecutive HCC patients hospitalized to undergo TACE and/or RFA, and compared changes in blood test values with those in 119 consecutive patients not administered this drug. Sixty-seven patients had a history of using BCAAs at the time of admission. We found that after 7 d of TACE, serum levels of total and acyl-carnitine are significantly decreased. On comparing the four groups, the carnitine+BCAA, carnitine-alone, and BCAA-alone groups showed significantly higher values for changes in NH3 when compared with the non-dosed group. The decrease in albumin (Alb) was significantly suppressed in the carnitine+BCAA and BCAA-alone groups. We also conducted the same examinations in a subset of patients classified as Child-Pugh class A, and noted the same trends. Administration of levocarnitine and/or BCAAs during invasive treatments reduced blood NH3 concentrations and suppressed decreases in Alb.


Asunto(s)
Técnicas de Ablación/efectos adversos , Aminoácidos de Cadena Ramificada/uso terapéutico , Carcinoma Hepatocelular/terapia , Carnitina/uso terapéutico , Embolización Terapéutica/efectos adversos , Neoplasias Hepáticas/terapia , Hígado/efectos de los fármacos , Anciano , Anciano de 80 o más Años , Albúminas/metabolismo , Aminoácidos de Cadena Ramificada/farmacología , Amoníaco/sangre , Carcinoma Hepatocelular/sangre , Carnitina/sangre , Carnitina/farmacología , Suplementos Dietéticos , Femenino , Encefalopatía Hepática/sangre , Encefalopatía Hepática/prevención & control , Humanos , Hiperamonemia/etiología , Hiperamonemia/prevención & control , Hígado/patología , Hígado/cirugía , Cirrosis Hepática/sangre , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/sangre , Masculino , Persona de Mediana Edad
8.
Curr Opin Clin Nutr Metab Care ; 17(2): 200-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24500444

RESUMEN

PURPOSE OF REVIEW: New insight in mitochondrial physiology has highlighted the importance of mitochondrial dysfunction in the metabolic and neuroendocrine changes observed in patients presenting with chronic critical illness. This review highlights specifically the importance of carnitine status in this particular patient population and its impact on beta-oxidation and mitochondrial function. RECENT FINDINGS: The main function of carnitine is long chain fatty acid esterification and transport through the mitochondrial membrane. Carnitine depletion should be suspected in critically ill patients with risk factors such as prolonged continuous renal replacement therapy or chronic parenteral nutrition, and evidence of beta-oxidation impairments such as inappropriate hypertriglyceridemia or hyperlactatemia. When fatty acid oxidation is impaired, acyl-CoAs accumulate and deplete the CoA intramitochondrial pool, hence causing a generalized mitochondrial dysfunction and multiorgan failure, with clinical consequences such as muscle weakness, rhabdomyolysis, cardiomyopathy, arrhythmia or sudden death. In such situations, carnitine plasma levels should be measured along with a complete assessment of plasma amino acid, plasma acylcarnitines and urinary organic acid analysis. Supplementation should be initiated if below normal levels (20 µmol/l) of carnitine are observed. In the absence of current guidelines, we recommend an initial supplementation of 0.5-1 g/day. SUMMARY: Metabolic modifications associated with chronic critical illness are just being explored. Carnitine deficiency in critically ill patients is one aspect of these profound and complex changes associated with prolonged stay in ICU. It is readily measurable in the plasma and can easily be substituted if needed, although guidelines are currently missing.


Asunto(s)
Cardiomiopatías , Carnitina/deficiencia , Enfermedad Crítica , Ácidos Grasos/metabolismo , Hiperamonemia , Mitocondrias/metabolismo , Enfermedades Musculares , Cardiomiopatías/sangre , Cardiomiopatías/prevención & control , Carnitina/sangre , Enfermedad Crónica , Enfermedad Crítica/terapia , Humanos , Hiperamonemia/sangre , Hiperamonemia/prevención & control , Enfermedades Musculares/sangre , Enfermedades Musculares/prevención & control
9.
Neuromolecular Med ; 16(2): 360-75, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24338618

RESUMEN

Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.


Asunto(s)
Encéfalo/efectos de los fármacos , Maleato de Dizocilpina/uso terapéutico , Antagonistas de Aminoácidos Excitadores/uso terapéutico , Encefalopatía Hepática/prevención & control , Riñón/efectos de los fármacos , Fallo Hepático/tratamiento farmacológico , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Animales , Barrera Hematoencefálica/efectos de los fármacos , Temperatura Corporal , Encéfalo/metabolismo , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Circulación Cerebrovascular/efectos de los fármacos , Progresión de la Enfermedad , Maleato de Dizocilpina/farmacología , Evaluación Preclínica de Medicamentos , Antagonistas de Aminoácidos Excitadores/farmacología , Galactosamina/toxicidad , Tasa de Filtración Glomerular/efectos de los fármacos , Encefalopatía Hepática/etiología , Hiperamonemia/tratamiento farmacológico , Hiperamonemia/etiología , Hiperamonemia/prevención & control , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/prevención & control , Inulina/farmacocinética , Riñón/metabolismo , Riñón/patología , Lactatos/sangre , Fallo Hepático/inducido químicamente , Fallo Hepático/complicaciones , Regeneración Hepática , Masculino , Ratas , Ratas Wistar , Factores de Tiempo
10.
Br J Nutr ; 105(12): 1729-33, 2011 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-21324213

RESUMEN

Hyperammonaemia is related to both central and peripheral fatigue during exercise. Hyperammonaemia in response to exercise can be reduced through supplementation with either amino acids or combined keto analogues and amino acids (KAAA). In the present study, we determined the effect of short-term KAAA supplementation on ammonia production in subjects eating a low-carbohydrate diet who exercise. A total of thirteen male cyclists eating a ketogenic diet for 3 d were divided into two groups receiving either KAAA (KEx) or lactose (control group; LEx) supplements. Athletes cycled indoors for 2 h, and blood samples were obtained at rest, during exercise and over the course of 1 h during the recovery period. Exercise-induced ammonaemia increased to a maximum of 35 % in the control group, but no significant increase was observed in the supplemented group. Both groups had a significant increase (approximately 35 %) in uraemia in response to exercise. The resting urate levels of the two groups were equivalent and remained statistically unchanged in the KEx group after 90 min of exercise; an earlier increase was observed in the LEx group. Glucose levels did not change, either during the trial time or between the groups. An increase in lactate levels was observed during the first 30 min of exercise in both groups, but there was no difference between the groups. The present results suggest that the acute use of KAAA diminishes exercise-induced hyperammonaemia.


Asunto(s)
Aminoácidos/metabolismo , Dieta Baja en Carbohidratos , Dieta Cetogénica , Suplementos Dietéticos , Ejercicio Físico/fisiología , Hiperamonemia/sangre , Cetoácidos/metabolismo , Adulto , Análisis de Varianza , Área Bajo la Curva , Atletas , Glucemia/análisis , Estudios de Casos y Controles , Humanos , Hiperamonemia/metabolismo , Hiperamonemia/prevención & control , Ácido Láctico/sangre , Masculino , Urea/sangre
11.
Clin Toxicol (Phila) ; 47(2): 101-11, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19280426

RESUMEN

INTRODUCTION: Valproic acid (VPA) is a broad-spectrum antiepileptic drug that is now used commonly for several other neurological and psychiatric indications. VPA is usually well tolerated, but serious complications, including hepatotoxicity and hyperammonemic encephalopathy, may occur. These complications may also arise following acute VPA overdose, the incidence of which is increasing. Intoxication usually only results in mild central nervous system depression, but serious toxicity and death have been reported. VALPROIC ACID AND CARNITINE: As a branched chain carboxylic acid, VPA is extensively metabolized by the liver via glucuronic acid conjugation, mitochondrial beta- and cytosolic omega-oxidation to produce multiple metabolites, some of which may be involved in its toxicity. Carnitine is an amino acid derivative that is an essential cofactor in the beta-oxidation of fatty acids. It is synthesized endogenously from the essential amino acids, methionine and lysine. VPA inhibits the biosynthesis of carnitine by decreasing the concentration of alpha-ketoglutarate and may contribute to carnitine deficiency. It is postulated that carnitine supplementation may increase the beta-oxidation of VPA, thereby limiting cytosolic omega-oxidation and the production of toxic metabolites that are involved in liver toxicity and ammonia accumulation. VPA-induced hepatotoxicity and hyperammonemic encephalopathy may be promoted either by a pre-existing carnitine deficiency or by deficiency induced by VPA per se. CARNITINE SUPPLEMENTATION: Some experimental and clinical data suggest that early intravenous supplementation with l-carnitine could improve survival in severe VPA-induced hepatotoxicity. Carnitine administration has been shown to speed the decrease of ammonemia in patients with VPA-induced encephalopathy although a correlation between ammonia concentrations and the clinical condition was not always observed. As it does not appear to be harmful, l-carnitine is commonly recommended in severe VPA poisoning, especially in children, although the clinical benefit in terms of liver protection or hastening of recovery from unconsciousness has not been established clearly. Prophylactic carnitine supplementation is also advocated during VPA therapy in high-risk pediatric patients. CONCLUSION: Further controlled, randomized, and probably multicenter trials are required to better delineate the therapeutic and prophylactic roles of l-carnitine and the optimal regimen of administration in the management of VPA toxicity.


Asunto(s)
Anticonvulsivantes/envenenamiento , Antídotos/uso terapéutico , Carnitina/uso terapéutico , Hiperamonemia/tratamiento farmacológico , Hepatopatías/tratamiento farmacológico , Síndromes de Neurotoxicidad/tratamiento farmacológico , Ácido Valproico/análogos & derivados , Animales , Anticonvulsivantes/metabolismo , Antídotos/administración & dosificación , Antídotos/metabolismo , Carnitina/administración & dosificación , Carnitina/deficiencia , Enfermedad Hepática Inducida por Sustancias y Drogas , Metabolismo Energético/efectos de los fármacos , Humanos , Hiperamonemia/inducido químicamente , Hiperamonemia/metabolismo , Hiperamonemia/prevención & control , Hepatopatías/metabolismo , Hepatopatías/prevención & control , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/prevención & control , Ácido Valproico/metabolismo , Ácido Valproico/envenenamiento
12.
J Inherit Metab Dis ; 30(5): 815, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17508264

RESUMEN

Carnitine-acylcarnitine translocase (CACT) deficiency is a rare disorder that results in long-chain fatty acids being unavailable for mitochondrial beta-oxidation and ketogenesis. It can present in the neonatal period or infancy with a severe clinical form, typically with convulsions, hypothermia, encephalopathy, cardiomyopathy and liver dysfunction, or with a milder phenotype with episodes of hypoglycaemia and hyperammonaemia during intercurrent illness. Investigations show hypoketonaemia, intermittent dicarboxyluria and hypocarnitinaemia with grossly elevated acylcarnitines. Enzyme assay or DNA analysis confirms the diagnosis. The severe phenotype results in severe disability or death. The less severe phenotype can also cause significant disability secondary to hypoglycaemia and/or hyperammonaemia at presentation. We report the outcome of two siblings with CACT deficiency. The index patient presented at the age of 2 months during a respiratory illness with hypoglycaemia, hyperammonaemia and cardiorespiratory collapse. Acylcarnitine profiles showed decreased free carnitine but striking elevations of long-chain acylcarnitines. Urine organic acids showed dicarboxylic aciduria. Fatty acid oxidation studies showed reduced oleate and myristate oxidation. His acylcarnitine profile normalized after he was started on a medium-chain triglyceride (MCT) low-fat diet and carnitine supplementation. Low CACT activity on enzyme assay confirmed the diagnosis. He has resulting profound developmental delay and epilepsy. The sibling was prospectively treated with a low-fat MCT diet and carnitine supplementation. Acylcarnitine profile at birth also showed elevated long-chain acylcarnitines. Fatty acid oxidation studies confirmed the diagnosis. To date he has normal development and has not had any significant periods of hypoglycaemia or hyperammonaemia.


Asunto(s)
Carnitina Aciltransferasas/deficiencia , Carnitina/uso terapéutico , Dieta con Restricción de Grasas , Suplementos Dietéticos , Proteínas de Transporte de Membrana/deficiencia , Errores Innatos del Metabolismo/dietoterapia , Errores Innatos del Metabolismo/tratamiento farmacológico , Carnitina/análogos & derivados , Carnitina/sangre , Ácidos Dicarboxílicos/orina , Ácidos Grasos/metabolismo , Humanos , Hiperamonemia/etiología , Hiperamonemia/prevención & control , Hipoglucemia/etiología , Hipoglucemia/prevención & control , Lactante , Masculino , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/diagnóstico , Errores Innatos del Metabolismo/metabolismo , Oxidación-Reducción , Linaje , Fenotipo , Índice de Severidad de la Enfermedad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA