Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Nephrol ; 39(1): 141-148, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37458799

RESUMEN

BACKGROUND: Primary hyperoxaluria type 1 (PH1) is a rare, severe genetic disease causing increased hepatic oxalate production resulting in urinary stone disease, nephrocalcinosis, and often progressive chronic kidney disease. Little is known about the natural history of urine and plasma oxalate values over time in children with PH1. METHODS: For this retrospective observational study, we analyzed data from genetically confirmed PH1 patients enrolled in the Rare Kidney Stone Consortium PH Registry between 2003 and 2018 who had at least 2 measurements before age 18 years of urine oxalate-to-creatinine ratio (Uox:cr), 24-h urine oxalate excretion normalized to body surface area (24-h Uox), or plasma oxalate concentration (Pox). We compared values among 3 groups: homozygous G170R, heterozygous G170R, and non-G170R AGXT variants both before and after initiating pyridoxine (B6). RESULTS: Of 403 patients with PH1 in the registry, 83 met the inclusion criteria. Uox:cr decreased rapidly over the first 5 years of life. Both before and after B6 initiation, patients with non-G170R had the highest Uox:cr, 24-h Uox, and Pox. Patients with heterozygous G170R had similar Uox:cr to homozygous G170R prior to B6. Patients with homozygous G170R had the lowest 24-h Uox and Uox:cr after B6. Urinary oxalate excretion and Pox tend to decrease over time during childhood. eGFR over time was not different among groups. CONCLUSIONS: Children with PH1 under 5 years old have relatively higher urinary oxalate excretion which may put them at greater risk for nephrocalcinosis and kidney failure than older PH1 patients. Those with homozygous G170R variants may have milder disease. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Hiperoxaluria Primaria , Cálculos Renales , Nefrocalcinosis , Humanos , Niño , Adolescente , Preescolar , Oxalatos , Nefrocalcinosis/complicaciones , Hiperoxaluria Primaria/orina , Cálculos Renales/etiología
2.
J Nephrol ; 36(5): 1473-1476, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209362

RESUMEN

Primary hyperoxaluria type 1 is a rare genetic disorder caused by bi-allelic pathogenic variants in the AGXT gene leading to an overproduction of oxalate which accumulates in the kidneys in the form of calcium oxalate crystals. Thus, patients may present with recurrent nephrocalcinosis and lithiasis, with progressive impairment of the  renal function and eventually kidney failure.  There is no specific treatment besides liver-kidney transplantation, and pre-transplantation management by 24 h-hyperhydration, crystallisation inhibitors and high-dose pyridoxine has a high negative impact on quality of life, especially because of the discomfort due to nocturnal hyperhydration. Since 2020, lumasiran, an RNA-interfering therapy, has been approved for the treatment of primary hyperoxaluria type 1 in adults and children. However, to date, there are no recommendations regarding the discontinuation of other supportive measures during RNAi therapy. In this report, we present two patients with primary hyperoxaluria type 1 who were treated with lumasiran and stopped nocturnal hyperhydration with positive outcomes, i.e. normal urinary oxalate, absence of crystalluria, stable kidney function and improved well-being. These data suggest that discontinuing nocturnal hydration may be safe in children responding to lumasiran, and may have a positive impact on their quality of life. Additional data are needed to update treatment recommendations.


Asunto(s)
Hiperoxaluria Primaria , Intoxicación por Agua , Adulto , Humanos , Niño , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/terapia , Hiperoxaluria Primaria/orina , Interferencia de ARN , Calidad de Vida , Intoxicación por Agua/genética , Oxalatos
3.
Pediatr Nephrol ; 38(7): 2083-2092, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36472654

RESUMEN

BACKGROUND: With declining kidney function and therefore increasing plasma oxalate, patients with primary hyperoxaluria type I (PHI) are at risk to systemically deposit calcium-oxalate crystals. This systemic oxalosis may occur even at early stages of chronic kidney failure (CKD) but is difficult to detect with non-invasive imaging procedures. METHODS: We tested if magnetic resonance imaging (MRI) is sensitive to detect oxalate deposition in bone. A 3 Tesla MRI of the left knee/tibial metaphysis was performed in 46 patients with PHI and in 12 healthy controls. In addition to the investigator's interpretation, signal intensities (SI) within a region of interest (ROI, transverse images below the level of the physis in the proximal tibial metaphysis) were measured pixelwise, and statistical parameters of their distribution were calculated. In addition, 52 parameters of texture analysis were evaluated. Plasma oxalate and CKD status were correlated to MRI findings. MRI was then implemented in routine practice. RESULTS: Independent interpretation by investigators was consistent in most cases and clearly differentiated patients from controls. Statistically significant differences were seen between patients and controls (p < 0.05). No correlation/relation between the MRI parameters and CKD stages or Pox levels was found. However, MR imaging of oxalate osteopathy revealed changes attributed to clinical status which differed clearly to that in secondary hyperparathyroidism. CONCLUSIONS: MRI is able to visually detect (early) oxalate osteopathy in PHI. It can be used for its monitoring and is distinguished from renal osteodystrophy. In the future, machine learning algorithms may aid in the objective assessment of oxalate deposition in bone. Graphical Abstract A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Hiperoxaluria Primaria , Hiperoxaluria , Fallo Renal Crónico , Humanos , Oxalatos , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/diagnóstico por imagen , Hiperoxaluria/complicaciones , Oxalato de Calcio
4.
Am J Kidney Dis ; 79(5): 717-727, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34508834

RESUMEN

Hyperoxaluria results from either inherited disorders of glyoxylate metabolism leading to hepatic oxalate overproduction (primary hyperoxaluria), or increased intestinal oxalate absorption (secondary hyperoxaluria). Hyperoxaluria may lead to urinary supersaturation of calcium oxalate and crystal formation, causing urolithiasis and deposition of calcium oxalate crystals in the kidney parenchyma, a condition termed oxalate nephropathy. Considerable progress has been made in the understanding of pathophysiological mechanisms leading to hyperoxaluria and oxalate nephropathy, whose diagnosis is frequently delayed and prognosis too often poor. Fortunately, novel promising targeted therapeutic approaches are on the horizon in patients with primary hyperoxaluria. Patients with secondary hyperoxaluria frequently have long-standing hyperoxaluria-enabling conditions, a fact suggesting the role of triggers of acute kidney injury such as dehydration. Current standard of care in these patients includes management of the underlying cause, high fluid intake, and use of calcium supplements. Overall, prompt recognition of hyperoxaluria and associated oxalate nephropathy is crucial because optimal management may improve outcomes.


Asunto(s)
Lesión Renal Aguda , Hiperoxaluria Primaria , Hiperoxaluria , Lesión Renal Aguda/complicaciones , Oxalato de Calcio , Femenino , Humanos , Hiperoxaluria/complicaciones , Hiperoxaluria/terapia , Hiperoxaluria Primaria/complicaciones , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/terapia , Masculino , Oxalatos
5.
Biochim Biophys Acta Mol Basis Dis ; 1867(1): 165981, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002578

RESUMEN

The Primary Hyperoxalurias (PH) are rare disorders of metabolism leading to excessive endogenous synthesis of oxalate and recurring calcium oxalate kidney stones. Alanine glyoxylate aminotransferase (AGT), deficient in PH type 1, is a key enzyme in limiting glyoxylate oxidation to oxalate. The affinity of AGT for its co-substrate, alanine, is low suggesting that its metabolic activity could be sub-optimal in vivo. To test this hypothesis, we examined the effect of L-alanine supplementation on oxalate synthesis in cell culture and in mouse models of Primary Hyperoxaluria Type 1 (Agxt KO), Type 2 (Grhpr KO) and in wild-type mice. Our results demonstrated that increasing L-alanine in cells decreased synthesis of oxalate and increased viability of cells expressing GO and AGT when incubated with glycolate. In both wild type and Grhpr KO male and female mice, supplementation with 10% dietary L-alanine significantly decreased urinary oxalate excretion ~30% compared to baseline levels. This study demonstrates that increasing the availability of L-alanine can increase the metabolic efficiency of AGT and reduce oxalate synthesis.


Asunto(s)
Alanina/farmacología , Hiperoxaluria Primaria/metabolismo , Oxalatos/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Células CHO , Cricetulus , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/patología , Ratones , Ratones Noqueados , Transaminasas/genética , Transaminasas/metabolismo
6.
G Ital Nefrol ; 37(1)2020 Feb 12.
Artículo en Italiano | MEDLINE | ID: mdl-32068359

RESUMEN

Primary hyperoxaluria (PH) is a rare genetic disorder with autosomal recessive transmission, characterized by high endogenous production and markedly excessive urinary excretion of oxalate (Ox). It causes the accumulation of calcium oxide crystals in organs and tissues including bones, heart, arteries, skin and kidneys, where it may cause oxalo-calcic nephrolithiasis, nephrocalcinosis and chronic renal failure. Some forms are secondary to enteric diseases, drugs or dietetic substances, while three primitive forms, caused by various enzymatic defects, are currently known: PH1, PH2 and PH3. An early diagnosis, with the aid of biochemical and genetic investigations, helps prevent complications and establish a therapeutic strategy that often includes liver and liver-kidney transplantation, improving the prognosis of these patients. In this work we describe the clinical case of a patient with PH1 undergoing extracorporeal hemodialysis treatment and we report the latest research results that could change the life of patients with PH.


Asunto(s)
Calcifilaxia/terapia , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/terapia , Diálisis Renal/métodos , Enfermedades Cutáneas Metabólicas/terapia , Transaminasas/genética , Calcifilaxia/etiología , Calcifilaxia/patología , Compuestos de Calcio/metabolismo , Femenino , Glioxilatos/metabolismo , Hemodiafiltración/métodos , Humanos , Hiperoxaluria Primaria/diagnóstico , Fallo Renal Crónico/etiología , Trasplante de Riñón , Persona de Mediana Edad , Nefrocalcinosis/etiología , Nefrocalcinosis/terapia , Uso Fuera de lo Indicado , Oxalatos/metabolismo , Óxidos/metabolismo , Enfermedades Cutáneas Metabólicas/etiología , Enfermedades Cutáneas Metabólicas/patología , Tiosulfatos/uso terapéutico
7.
Nephrol Dial Transplant ; 34(6): 908-914, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30169827

RESUMEN

The primary hyperoxalurias (PHs) are inborn errors of glyoxylate metabolism characterized by endogenous oxalate overproduction in the liver, and thus elevated urinary oxalate excretion. The urinary calcium-oxalate (CaOx) supersaturation and the continuous renal accumulation of insoluble CaOx crystals yield a progressive decline in renal function that often ends with renal failure. In PH Type 1 (AGXT mutated), the most frequent and severe condition, patients typically progress to end-stage renal disease (ESRD); in PH Type 2 (GRHPR mutated), 20% of patients develop ESRD, while only one patient with PH Type 3 (HOGA1 mutated) has been reported with ESRD so far. Patients with ESRD undergo frequent maintenance (haemo)dialysis treatment, and finally must receive a combined liver-kidney transplantation as the only curative treatment option available in PH Type 1. In experimental models using oxalate-enriched chow, CaOx crystals were bound to renal tubular cells, promoting a pro-inflammatory environment that led to fibrogenesis in the renal parenchyma by activation of a NACHT, LRR and PYD domains-containing protein 3 (NALP3)-dependent inflammasome in renal dendritic cells and macrophages. Chronic fibrogenesis progressively impaired renal function. Targeting the inflammatory response has recently been suggested as a therapeutic strategy to treat not only oxalate-induced crystalline nephropathies, but also those characterized by accumulation of cystine and urate in other organs. Herein, we summarize the pathogenesis of PH, revising the current knowledge of the CaOx-mediated inflammatory response in animal models of endogenous oxalate overproduction. Furthermore, we highlight the possibility of modifying the NLRP3-dependent inflammasome as a new and complementary therapeutic strategy to treat this severe and devastating kidney disease.


Asunto(s)
Oxalato de Calcio/metabolismo , Hiperoxaluria Primaria/terapia , Fallo Renal Crónico/complicaciones , Nefritis/terapia , Adolescente , Adulto , Animales , Niño , Preescolar , Modelos Animales de Enfermedad , Humanos , Lactante , Inflamasomas/metabolismo , Riñón/patología , Trasplante de Riñón/efectos adversos , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nefritis/metabolismo , Oxalatos/metabolismo , Interferencia de ARN , Diálisis Renal/efectos adversos , Insuficiencia Renal/complicaciones , Ácido Úrico/metabolismo , Adulto Joven
8.
Int Urol Nephrol ; 50(9): 1583-1589, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30039216

RESUMEN

PURPOSE: The primary goal of this pilot study was to evaluate metabolic characteristics and to examine the impact of diet in patients with primary hyperoxaluria (PH) under controlled, standardized conditions. METHODS: Four patients with genetically confirmed PH collected 24 h urines on their habitual, self-selected diets and on day 1, 6, 7, 8, and 11 under controlled, standardized conditions. The [13C2]oxalate absorption, calcium, and ammonium chloride loading tests were performed. RESULTS: While none of the patients had abnormal findings from the calcium loading test, incomplete distal renal tubular acidosis (RTA) was diagnosed in each of the four patients. Dietary intervention resulted in a significant decrease in urinary oxalate expressed as molar creatinine ratio (mmol/mol) between 30 and 40% in two of four patients. The evaluation of dietary records revealed a high daily intake of oxalate-rich foods as well as gelatin-containing sweets and meat products, rich sources of hydroxyproline, under the habitual, self-selected diets of the two responders. Intestinal oxalate hyperabsorption of 12.4% in one of the two patients may have additionally contributed to the increased urinary oxalate excretion under the individual diet. CONCLUSIONS: Our pilot data indicate that patients with PH may benefit from a restriction of dietary oxalate and hydroxyproline intake. Further research is needed to define the role of distal RTA in PH and to evaluate the hypothesis of an acquired acidification defect.


Asunto(s)
Hiperoxaluria Primaria/dietoterapia , Hiperoxaluria Primaria/orina , Oxalatos/administración & dosificación , Oxalatos/orina , Acidosis Tubular Renal/diagnóstico , Adolescente , Adulto , Calcio/administración & dosificación , Calcio/orina , Niño , Creatinina/orina , Dieta , Registros de Dieta , Humanos , Hidroxiprolina/administración & dosificación , Absorción Intestinal , Túbulos Renales Distales , Masculino , Persona de Mediana Edad , Proyectos Piloto
9.
Urolithiasis ; 46(4): 313-323, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28718073

RESUMEN

Primary hyperoxaluria (PH) patients overproduce oxalate because of rare genetic errors in glyoxylate metabolism. Recurrent urolithiasis and/or progressive nephrocalcinosis are PH hallmarks and can lead to kidney damage, systemic oxalosis and death. Based on previous studies, we hypothesised that treatment with the oxalate-metabolizing bacterium Oxalobacter formigenes would mediate active elimination of oxalate from the plasma to the intestine of PH patients, thereby reducing urinary oxalate excretion (Uox). The efficacy and safety of O. formigenes (Oxabact™ OC3) were evaluated for 24 weeks in a randomised, placebo-controlled, double-blind study. The primary endpoint was reduction in Uox. Secondary endpoints included change in plasma oxalate (Pox) concentration, frequency of stone events, number of responders, and Uox in several subgroups. Additional post hoc analyses were conducted. Thirty-six patients were randomised; two patients withdrew from placebo treatment. Both OC3 and placebo groups demonstrated a decrease in Uox/urinary creatinine ratio, but the difference was not statistically significant. No differences were observed with respect to change in Pox concentration, stone events, responders' number or safety measures. In patients with estimated glomerular filtration rate (eGFR) < 90 mL/min/1.73 m2, Pox increased by 3.25 µmol/L in the placebo group and decreased by -1.7 µmol/L in the OC3 group (p = 0.13). After 24 weeks, eGFR had declined to a greater degree in the placebo than in the OC3 group: -8.00 ± 2.16 versus -2.71 ± 2.50; p = 0.01. OC3 treatment did not reduce urinary oxalate over 24 weeks of treatment compared with placebo in patients with PH. The treatment was well tolerated.


Asunto(s)
Terapia Biológica/métodos , Oxalato de Calcio/metabolismo , Hiperoxaluria Primaria/terapia , Cálculos Renales/epidemiología , Oxalobacter formigenes/metabolismo , Adolescente , Adulto , Terapia Biológica/efectos adversos , Oxalato de Calcio/sangre , Niño , Preescolar , Creatinina/sangre , Método Doble Ciego , Femenino , Tasa de Filtración Glomerular , Humanos , Hiperoxaluria Primaria/sangre , Hiperoxaluria Primaria/complicaciones , Hiperoxaluria Primaria/metabolismo , Cálculos Renales/sangre , Cálculos Renales/etiología , Cálculos Renales/metabolismo , Pruebas de Función Renal , Masculino , Placebos/administración & dosificación , Eliminación Renal , Resultado del Tratamiento , Adulto Joven
10.
SLAS Discov ; 22(7): 887-896, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28346094

RESUMEN

Primary hyperoxaluria is the underlying cause of oxalosis and is a life-threatening autosomal recessive disease, for which treatment may require dialysis or dual liver-kidney transplantation. The most common primary hyperoxaluria type 1 (PH1) is caused by genetic mutations of a liver-specific enzyme alanine:glyoxylate aminotransferase (AGT), which results in the misrouting of AGT from the peroxisomes to the mitochondria. Pharmacoperones are small molecules with the ability to modify misfolded proteins and route them correctly within the cells, which may present an effective strategy to treat AGT misrouting in PH1 disorders. We miniaturized a cell-based high-content assay into 1536-well plate format and screened ~4200 pharmacologically relevant compounds including Food and Drug Administration, European Union, and Japanese-approved drugs. This assay employs CHO cells stably expressing AGT-170, a mutant that predominantly resides in the mitochondria, where we monitor for its relocation to the peroxisomes through automated image acquisition and analysis. The miniaturized 1536-well assay yielded a Z' averaging 0.70 ± 0.07. Three drugs were identified as potential pharmacoperones from this pilot screen, demonstrating the applicability of this assay for large-scale high-throughput screening.


Asunto(s)
Hiperoxaluria/tratamiento farmacológico , Ionóforos/farmacología , Enfermedades Renales/tratamiento farmacológico , Animales , Células CHO , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Hiperoxaluria/genética , Hiperoxaluria/metabolismo , Hiperoxaluria Primaria/tratamiento farmacológico , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/metabolismo , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Trasplante de Riñón/métodos , Hígado/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación/genética , Peroxisomas/efectos de los fármacos , Peroxisomas/genética , Peroxisomas/metabolismo , Diálisis Renal/métodos , Transaminasas/genética , Transaminasas/metabolismo
11.
Ann Clin Biochem ; 54(3): 406-411, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27742850

RESUMEN

We report the case of a 78-year-old patient with late diagnosis of hyperoxaluria type III (PH3). He developed renal failure after nephrectomy for clear cell papillary renal carcinoma and complained of recurrent urolithiasis for some 30 years, whose aetiology was never identified. Biochemical laboratory investigations of urine and urolithiasis composition revealed marked hyperoxaluria but normal concentrations of urinary glyceric and glycolic acid as well as stones of idiopathic calcium-oxalate appearance. Furthermore, the dietary survey showed excessive consumption of food supplements containing massive amounts of oxalate precursors. However, the persistence of excessive hyperoxaluria after his eating habits was changed leading us to perform molecular genetic testing. We found heterozygous mutations of the recently PH3-associated HOGA1 gene when sequencing PH genes. This is the first description of late diagnosis primary PH3 in a patient with several additional pro-lithogenic factors. This case illustrates the importance of undertaking a complete biological work-up to determine the aetiology of hyperoxaluria. This may reveal underdiagnosed primary hyperoxaluria, even in older patients.


Asunto(s)
Diagnóstico Tardío , Hiperoxaluria Primaria/diagnóstico , Mutación , Oxo-Ácido-Liasas/genética , Urolitiasis/diagnóstico , Anciano , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/cirugía , Expresión Génica , Ácidos Glicéricos/orina , Glicolatos/orina , Humanos , Hiperoxaluria Primaria/complicaciones , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/orina , Riñón/metabolismo , Riñón/patología , Riñón/cirugía , Neoplasias Renales/diagnóstico , Neoplasias Renales/patología , Neoplasias Renales/cirugía , Masculino , Nefrectomía , Oxo-Ácido-Liasas/metabolismo , Urolitiasis/complicaciones , Urolitiasis/genética , Urolitiasis/orina
12.
Mol Ther ; 24(4): 770-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26758691

RESUMEN

Primary hyperoxaluria type 1 (PH1) is an autosomal recessive, metabolic disorder caused by mutations of alanine-glyoxylate aminotransferase (AGT), a key hepatic enzyme in the detoxification of glyoxylate arising from multiple normal metabolic pathways to glycine. Accumulation of glyoxylate, a precursor of oxalate, leads to the overproduction of oxalate in the liver, which accumulates to high levels in kidneys and urine. Crystalization of calcium oxalate (CaOx) in the kidney ultimately results in renal failure. Currently, the only treatment effective in reduction of oxalate production in patients who do not respond to high-dose vitamin B6 therapy is a combined liver/kidney transplant. We explored an alternative approach to prevent glyoxylate production using Dicer-substrate small interfering RNAs (DsiRNAs) targeting hydroxyacid oxidase 1 (HAO1) mRNA which encodes glycolate oxidase (GO), to reduce the hepatic conversion of glycolate to glyoxylate. This approach efficiently reduces GO mRNA and protein in the livers of mice and nonhuman primates. Reduction of hepatic GO leads to normalization of urine oxalate levels and reduces CaOx deposition in a preclinical mouse model of PH1. Our results support the use of DsiRNA to reduce liver GO levels as a potential therapeutic approach to treat PH1.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Oxalato de Calcio/metabolismo , Hiperoxaluria Primaria/terapia , ARN Interferente Pequeño/administración & dosificación , Animales , ARN Helicasas DEAD-box/metabolismo , Modelos Animales de Enfermedad , Glioxilatos/orina , Humanos , Hiperoxaluria Primaria/enzimología , Hiperoxaluria Primaria/orina , Hígado/metabolismo , Ratones , Nanopartículas/química , ARN Interferente Pequeño/farmacología , Ribonucleasa III/metabolismo
14.
Hum Mol Genet ; 24(19): 5500-11, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26199318

RESUMEN

Vitamin B6 in the form of pyridoxine (PN) is one of the most widespread pharmacological therapies for inherited diseases involving pyridoxal phosphate (PLP)-dependent enzymes, including primary hyperoxaluria type I (PH1). PH1 is caused by a deficiency of liver-peroxisomal alanine: glyoxylate aminotransferase (AGT), which allows glyoxylate oxidation to oxalate leading to the deposition of insoluble calcium oxalate in the kidney. Only a minority of PH1 patients, mostly bearing the F152I and G170R mutations, respond to PN, the only pharmacological treatment currently available. Moreover, excessive doses of PN reduce the specific activity of AGT in a PH1 cellular model. Nevertheless, the possible effect(s) of other B6 vitamers has not been investigated previously. Here, we compared the ability of PN in rescuing the effects of the F152I and G170R mutations with that of pyridoxamine (PM) and PL. We found that supplementation with PN raises the intracellular concentration of PN phosphate (PNP), which competes with PLP for apoenzyme binding leading to the formation of an inactive AGT-PNP complex. In contrast, PNP does not accumulate in the cell upon PM or PL supplementation, but higher levels of PLP and PM phosphate (PMP), the two active forms of the AGT coenzyme, are found. This leads to an increased ability of PM and PL to rescue the effects of the F152I and G170R mutations compared with PN. A similar effect was also observed for other folding-defective AGT variants. Thus, PM and PL should be investigated as matter of importance as therapeutics for PH1 patients bearing folding mutations.


Asunto(s)
Hiperoxaluria Primaria/genética , Piridoxal/farmacología , Piridoxamina/farmacología , Piridoxina/farmacología , Transaminasas/química , Complejo Vitamínico B/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Hiperoxaluria Primaria/tratamiento farmacológico , Mutación/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Transaminasas/genética
15.
Praxis (Bern 1994) ; 104(7): 353-9, 2015 Mar 25.
Artículo en Francés | MEDLINE | ID: mdl-25804778

RESUMEN

Oxalate is a highly insoluble metabolic waste excreted by the kidneys. Disturbances of oxalate metabolism are encountered in enteric hyperoxaluria (secondary to malabsorption, gastric bypass or in case of insufficient Oxalobacter colonization), in hereditary hyperoxaluria and in intoxication (ethylene glycol, vitamin C). Hyperoxaluria causes a large spectrum of diseases, from isolated hyperoxaluria to kidney stones and nephrocalcinosis formation, eventually leading to kidney failure and systemic oxalosis with life-threatening deposits in vital organs. New causes of hyperoxaluria are arising recently, in particular after gastric bypass surgery, which requires regular and preemptive monitoring. The treatment of hyperoxaluria involves reduction in oxalate intake and increase in calcium intake. Optimal urine dilution and supplementation with inhibitors of kidney stone formation (citrate) are required. Some conditions may need vitamin B6 supplementation, and the addition of probiotics might be useful in the future. Primary care physicians should identify cases of recurrent calcium oxalate stones and severe hyperoxaluria. Further management of hyperoxaluria requires specialized care.


L'oxalate est un déchet métabolique peu soluble excrété par les reins, et les hyperoxaluries peuvent être distinguées en hyperoxaluries entériques, hyperoxaluries héréditaires et les intoxications (éthylène glycol, vitamine C). L'hyperoxalurie induit un large spectre de maladies allant de l'hyperoxalurie isolée, formation de calculs rénaux, voire d'une néphrocalcinose, à l'insuffisance rénale et l'oxalose systémique avec des dépôts s'accumulant dans de nombreux organes. De nouvelles causes d'hyperoxalurie sont apparues ces dernières années, en particulier les hyperoxaluries survenant à la suite d'un bypass gastrique. Le traitement des hyperoxaluries fait intervenir, d'une part, une diminution contrôlée des apports en oxalate et une augmentation des apports en calcium et, d'autre part, une dilution des urines et l'ajout d'inhibiteurs de la lithogenèse (citrate). Dans certaines conditions particulières, une supplémentation en vitamine B6 ou l'utilisation de probiotiques peuvent être envisagées. Le praticien doit rester attentif aux cas de calculs d'oxalate de calcium récidivants ou d'hyperoxalurie sévère et les adresser pour une prise en charge spécialisée et multidisciplinaire.


Asunto(s)
Hiperoxaluria/diagnóstico , Hiperoxaluria/etiología , Calcio/administración & dosificación , Diagnóstico Diferencial , Humanos , Hiperoxaluria/clasificación , Hiperoxaluria/complicaciones , Hiperoxaluria Primaria/clasificación , Hiperoxaluria Primaria/complicaciones , Hiperoxaluria Primaria/diagnóstico , Hiperoxaluria Primaria/genética , Intestino Grueso/microbiología , Cálculos Renales/prevención & control , Cálculos Renales/orina , Oxalatos/administración & dosificación , Oxalatos/orina , Oxalobacter formigenes/fisiología , Factores de Riesgo
16.
Assay Drug Dev Technol ; 13(1): 16-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25710543

RESUMEN

Primary hyperoxaluria is a severe disease for which the best current therapy is dialysis or organ transplantation. These are risky, inconvenient, and costly procedures. In some patients, pyridoxine treatment can delay the need for these surgical procedures. The underlying cause of particular forms of this disease is the misrouting of a specific enzyme, alanine:glyoxylate aminotransferase (AGT), to the mitochondria instead of the peroxisomes. Pharmacoperones are small molecules that can rescue misfolded proteins and redirect them to their correct location, thereby restoring their function and potentially curing disease. In the present study, we miniaturized a cell-based assay to identify pharmacoperone drugs present in large chemical libraries to selectively correct AGT misrouting. This assay employs AGT-170, a mutant form of AGT that predominantly resides in the mitochondria, which we monitor for its relocation to the peroxisomes through automated image acquisition and analysis. Over the course of a pilot screen of 1,280 test compounds, we achieved an average Z'-factor of 0.72±0.02, demonstrating the suitability of this assay for HTS.


Asunto(s)
Bioensayo/métodos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Hiperoxaluria Primaria/tratamiento farmacológico , Hiperoxaluria Primaria/patología , Chaperonas Moleculares/farmacología , Animales , Células CHO , Supervivencia Celular/efectos de los fármacos , Cricetulus , Diseño de Fármacos , Humanos , Chaperonas Moleculares/síntesis química , Chaperonas Moleculares/clasificación , Fenotipo , Tecnología Farmacéutica/métodos
17.
Urolithiasis ; 43(2): 107-17, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25269440

RESUMEN

Hyperoxaluria significantly increases the risk of calcium oxalate kidney stone formation. Since several bacteria have been shown to metabolize oxalate in vitro, including probiotic bifidobacteria, we focused on the efficiency and possible mechanisms by which bifidobacteria can influence oxalate handling in vivo, especially in the intestines, and compared these results with the reported effects of Oxalobacter formigenes. Bifidobacterium animalis subsp. lactis DSM 10140 and B. adolescentis ATCC 15703 were administered to wild-type (WT) mice and to mice deficient in the hepatic enzyme alanine-glyoxylate aminotransferase (Agxt(-/-), a mouse model of Primary Hyperoxaluria) that were fed an oxalate-supplemented diet. The administration of B. animalis subsp. lactis led to a significant decrease in urinary oxalate excretion in WT and Agxt(-/-) mice when compared to treatment with B. adolescentis. Detection of B. animalis subsp. lactis in feces revealed that 3 weeks after oral gavage with the bacteria 64% of WT mice, but only 37% of Agxt(-/-) mice were colonized. Examining intestinal oxalate fluxes showed there were no significant changes to net oxalate secretion in colonized animals and were therefore not associated with the changes in urinary oxalate excretion. These results indicate that colonization with B. animalis subsp. lactis decreased urinary oxalate excretion by degrading dietary oxalate thus limiting its absorption across the intestine but it did not promote enteric oxalate excretion as reported for O. formigenes. Preventive or therapeutic administration of B. animalis subsp. lactis appears to have some potential to beneficially influence dietary hyperoxaluria in mice.


Asunto(s)
Bifidobacterium , Suplementos Dietéticos , Hiperoxaluria Primaria/dietoterapia , Hiperoxaluria Primaria/orina , Oxalatos/orina , Oxalobacter formigenes , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL
18.
Proc Natl Acad Sci U S A ; 111(40): 14406-11, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25237136

RESUMEN

Primary hyperoxaluria 1 (PH1; Online Mendelian Inheritance in Man no. 259900), a typically lethal biochemical disorder, may be caused by the AGT(P11LG170R) allele in which the alanine:glyoxylate aminotransferase (AGT) enzyme is mistargeted from peroxisomes to mitochondria. AGT contains a C-terminal peroxisomal targeting sequence, but mutations generate an N-terminal mitochondrial targeting sequence that directs AGT from peroxisomes to mitochondria. Although AGT(P11LG170R) is functional, the enzyme must be in the peroxisome to detoxify glyoxylate by conversion to alanine; in disease, amassed glyoxylate in the peroxisome is transported to the cytosol and converted to oxalate by lactate dehydrogenase, leading to kidney failure. From a chemical genetic screen, we have identified small molecules that inhibit mitochondrial protein import. We tested whether one promising candidate, Food and Drug Administration (FDA)-approved dequalinium chloride (DECA), could restore proper peroxisomal trafficking of AGT(P11LG170R). Indeed, treatment with DECA inhibited AGT(P11LG170R) translocation into mitochondria and subsequently restored trafficking to peroxisomes. Previous studies have suggested that a mitochondrial uncoupler might work in a similar manner. Although the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited AGT(P11LG170R) import into mitochondria, AGT(P11LG170R) aggregated in the cytosol, and cells subsequently died. In a cellular model system that recapitulated oxalate accumulation, exposure to DECA reduced oxalate accumulation, similar to pyridoxine treatment that works in a small subset of PH1 patients. Moreover, treatment with both DECA and pyridoxine was additive in reducing oxalate levels. Thus, repurposing the FDA-approved DECA may be a pharmacologic strategy to treat PH1 patients with mutations in AGT because an additional 75 missense mutations in AGT may also result in mistrafficking.


Asunto(s)
Decualinio/farmacología , Hiperoxaluria Primaria/metabolismo , Transaminasas/metabolismo , Animales , Antiinfecciosos Locales/farmacología , Células CHO , Cricetinae , Cricetulus , Evaluación Preclínica de Medicamentos/métodos , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/embriología , Humanos , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/prevención & control , Immunoblotting , Microscopía Fluorescente , Mitocondrias/metabolismo , Mutación , Oxalatos/metabolismo , Peroxisomas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Piridoxina/farmacología , Transaminasas/genética , Pez Cebra/embriología
19.
Int Urol Nephrol ; 42(3): 825-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20020206

RESUMEN

Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive inborn error of the glyoxylate metabolism that is based on absence, deficiency or mislocalization of the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase. Hyperoxaluria leads to recurrent formation of calculi and/or nephrocalcinosis and often early end-stage renal disease (ESRD) accompanied by systemic calcium oxalate crystal deposition. In this report, we describe an adult female patient with only one stone passage before development of ESRD. With unknown diagnosis of PH, the patient received an isolated kidney graft and developed an early onset of graft failure. Although initially presumed as an acute rejection, the biopsy revealed calcium oxalate crystals, which then raised a suspicion of primary hyperoxaluria. The diagnosis was later confirmed by hyperoxaluria, elevated plasma oxalate levels and mutation of the AGXT gene, showing the patient to be compound heterozygous for the c.33_34InsC and c.508G > A mutations. Plasma oxalate levels did not decrease after high-dose pyridoxine treatment. Based on this case report, we would recommend in all patients even with a minor history of nephrolithiasis but progression to chronic renal failure to exclude primary hyperoxaluria before isolated kidney transplantation is considered.


Asunto(s)
Diagnóstico Tardío , Hiperoxaluria Primaria/diagnóstico , Fallo Renal Crónico/cirugía , Trasplante de Riñón , Disfunción Primaria del Injerto , Errores Diagnósticos , Femenino , Humanos , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/metabolismo , Riñón/metabolismo , Riñón/patología , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/etiología , Persona de Mediana Edad , Nefrocalcinosis/etiología , Oxalatos/sangre , Oxalatos/metabolismo , Disfunción Primaria del Injerto/diagnóstico , Disfunción Primaria del Injerto/patología , Insuficiencia del Tratamiento
20.
Semin Nephrol ; 28(2): 152-62, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18359396

RESUMEN

The primary hyperoxalurias (PHs) are rare autosomal-recessive inborn errors of metabolism. In the most severe form (type 1), recurrent kidney stones and progressive nephrocalcinosis lead to the loss of kidney function, accompanied by systemic oxalosis, and often requires dialysis and/or transplantation. The variety of genetic mutations leading to PH increasingly are being defined, resulting in the ability to diagnose most patients accurately via minimally invasive means. During and after definitive diagnosis, supportive therapies with pyridoxine supplementation, urinary crystallization inhibitors, and hydration should be used, but have varying success. Emerging information about the renal tubular and intestinal transport of oxalate is leading to increasing evidence to support the use of oxalate-degrading bacteria (probiotics) and enzymes in the treatment of PH. Organ transplantation historically has offered the only potential cure for PH, and may include kidney-alone, combined liver-kidney, or pre-emptive liver-alone transplantation. Exciting new approaches in the treatment of type 1 PH, however, are under investigation. These include the restoration of defective enzymatic activity through the use of chemical chaperones, hepatocyte cell transplantation, or enzyme replacement by recombinant gene therapy. These novel approaches illustrate the goal for the ideal treatment of PH: correcting the genetic defect without exposing patients to the life-long risks associated with organ transplantation.


Asunto(s)
Hiperoxaluria Primaria/diagnóstico , Terapia Genética , Humanos , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/fisiopatología , Hiperoxaluria Primaria/terapia , Trasplante de Riñón , Trasplante de Hígado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA