Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int Immunopharmacol ; 132: 111932, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38560961

RESUMEN

Uric acid is a product of purine degradation, and uric acid may have multiple physiologic roles, including the beneficial effects as an antioxidant and neuroprotector, maintenance of blood pressure during low salt ingestion, and modulation of immunity. However, overproduction of metabolic uric acid, and/or imbalance of renal uric acid secretion and reabsorption, and/or underexcretion of extrarenal uric acid, e.g. gut, will contribute to hyperuricemia, which is a common metabolic disease. Long-lasting hyperuricemia can induce the formation and deposition of monosodium urate (MSU) crystals within the joints and periarticular structures. MSU crystals further induce an acute, intensely painful, and sterile inflammation conditions named as gout by NLRP3 inflammasome-mediated cleavage of pro-IL-1ß to bioactive IL-1ß. Moreover, hyperuricemia and gout are associated with multiple cardiovascular and renal disorders, e.g., hypertension, myocardial infarction, stroke, obesity, hyperlipidemia, type 2 diabetes mellitus and chronic kidney disease. Although great efforts have been made by scientists of modern medicine, however, modern therapeutic strategies with a single target are difficult to exert long-term positive effects, and even some of these agents have severe adverse effects. The Chinese have used the ancient classic prescriptions of traditional Chinese medicine (TCM) to treat metabolic diseases, including gout, by multiple targets, for more than 2200 years. In this review, we discuss the current understanding of urate homeostasis, the pathogenesis of hyperuricemia and gout, and both modern medicine and TCM strategies for this commonly metabolic disorder. We hope these will provide the good references for treating hyperuricemia and gout.


Asunto(s)
Gota , Homeostasis , Hiperuricemia , Transducción de Señal , Ácido Úrico , Humanos , Gota/metabolismo , Gota/tratamiento farmacológico , Ácido Úrico/metabolismo , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
2.
J Ethnopharmacol ; 327: 118014, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38460576

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chronic kidney disease can be caused by numerous diseases including obesity and hyperuricemia (HUA). Obesity may exacerbate the renal injury caused by HUA. Red ginseng, a steamed products of Panax ginseng Meyer root, is known for its remarkable efficacy in improving metabolic syndrome, such as maintaining lipid metabolic balance. However, the role of red ginseng on hyperuricemia-induced renal injury in obese cases remains unclear. AIM OF THE STUDY: This study aimed to investigate the action of red ginseng extract (RGE) on lipotoxicity-induced renal injury in HUA mice. MATERIALS AND METHODS: A high-fat diet (HFD)-induced obesity model was employed to initially investigate the effects of RGE on body weight, TC, OGTT, renal lipid droplets, and renal function indices such as uric acid, creatinine, and urea nitrogen. Renal structural improvement was demonstrated by H&E staining. Subsequently, an animal model combining obesity and HUA was established to further study the impact of RGE on OAT1 and ACC1 expression levels. The mechanisms underlying renal injury regulation by RGE were postulated on the basis of RNA sequencing, which was verified by immunohistochemical (including F4/80, Ki67, TGF-ß1, α-SMA, and E-cadherin), Masson, and Sirius red staining. RESULTS: RGE modulated HFD-induced weight gain, glucose metabolism, and abnormalities of uric acid, urea nitrogen, and creatinine. RGE alleviated the more severe renal histopathological changes induced by obesity combined with HUA, with down-regulated the protein levels of ACC1, F4/80, Ki67, TGF-ß1, and α-SMA, and up-regulated OAT1 and E-cadherin. CONCLUSIONS: RGE has ameliorative effects on chronic kidney disease caused by obesity combined with HUA by maintaining lipid balance and reducing renal inflammation and fibrosis.


Asunto(s)
Hiperuricemia , Panax , Insuficiencia Renal Crónica , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/patología , Factor de Crecimiento Transformador beta1 , Ácido Úrico , Creatinina , Antígeno Ki-67 , Obesidad/tratamiento farmacológico , Fibrosis , Panax/química , Cadherinas , Nitrógeno , Lípidos , Urea
3.
Sci Rep ; 14(1): 6991, 2024 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523180

RESUMEN

Gout and hyperuricemia are characterized by high uric acid levels, and their treatment involves medications that have adverse effects. In this study, we evaluated oral liposomal formulations with eremantholide C and goyazensolide as a novel approach to reduce the toxicity associated with these substances while maintaining their anti-hyperuricemic activity. We characterized the formulations and evaluated them based on encapsulation efficiency and stability over 12 months and under simulated physiological environments. We determined the toxicity of the liposomal formulations in Caco-2 cells and the anti-hyperuricemic activity in rats. The formulations exhibited nanometric size, a narrow size distribution, and a negative zeta potential, indicating their stability and uniformity. The efficient encapsulation of the sesquiterpene lactones within the liposomes emphasizes their potential for sustained release and therapeutic efficacy. Stability evaluation revealed a small decrease in the eremantholide C concentration and a remarkable stability in the goyazensolide concentration. In Caco-2 cells, the liposomes did not exert toxicity, but did exhibit an antiproliferative effect. In vivo assays demonstrated that the liposomes reduced serum uric acid levels. Our study represents an advancement in gout and hyperuricemia treatment. The liposomal formulations effectively reduced the toxicity associated with the sesquiterpene lactones while maintaining their therapeutic effects.


Asunto(s)
Artritis Gotosa , Hidrocarburos Aromáticos con Puentes , Furanos , Gota , Hiperuricemia , Sesquiterpenos , Sesterterpenos , Humanos , Ratas , Animales , Liposomas/uso terapéutico , Ácido Úrico/uso terapéutico , Hiperuricemia/tratamiento farmacológico , Células CACO-2 , Gota/tratamiento farmacológico , Lactonas/farmacología , Lactonas/uso terapéutico
4.
J Med Food ; 27(4): 312-329, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377550

RESUMEN

Hyperuricemia (HUA) is a metabolic disease and contributes to renal injury (RI). Vine grape tea polyphenols (VGTP) have been widely used to treat HUA and RI. However, the potential mechanism of VGTP activity remains unclear. To explore the underlying mechanism of VGTP treatment for HUA-induced RI based on network pharmacology that is confirmed by an in vivo study. All ingredients of VGTP were retrieved using a Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Comparative Toxicogenomics Database systems. The related targets of HUA and RI were obtained from GeneCards and National Center for Biotechnology Information (NCBI) databases. Some ingredients and targets were selected for molecular docking verification. One hour after administering potassium oxonate (300 mg/kg), VGTP (50, 100, and 200 mg/kg/d) was orally administered to HUA mice for 4 weeks. Histopathology and western blotting were performed in renal tissue. Our results showed that VGTP significantly reduced blood urea nitrogen, creatinine, uric acid, and significantly improved the RI and fibrosis of HUA mice. There were 54 active ingredients and 62 targets of HUA-induced RI. Further studies showed that VGTP decreased the expression of Bax, cleaved caspase 3, transforming growth factor-ß (TGF-ß1), CHOP, p-STAT3, and P53, and increased Bcl-2 expression in renal tissue. The related signaling pathways have apoptosis, TGF-ß1, P53 and STAT, and endoplasmic reticulum stress (ERS). In this study, VGTP exerted antihyperuricemic and anti fibrosis effects by regulating the apoptosis and ERS signaling pathways. VGTP is expected to become a drug for combating HUA and RI.


Asunto(s)
Hiperuricemia , Vitis , Animales , Ratones , Hiperuricemia/tratamiento farmacológico , Farmacología en Red , Factor de Crecimiento Transformador beta1 , Simulación del Acoplamiento Molecular , Proteína p53 Supresora de Tumor , Riñón
5.
J Tradit Chin Med ; 44(1): 182-187, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38213253

RESUMEN

OBJECTIVE: To evaluate the effect of Dahuang Mudan Tang (, DHMD) and allopurinol on the treatment of chronic kidney disease staged G1-G3b patients with hyperuricemia and to provide novel insights into the clinical management of chronic kidney disease complications. METHODS: A total of 80 chronic kidney patients staged G1-G3b with hyperuricemia were randomly grouped to receive single allopurinol treatment (control) and combined treatment with DHMD (treated) for 8 weeks. The kidney function and proteinuria indicators of patients were compared between pre-and post-treatment. The oxidative stress and inflammation responses were evaluated by corresponding indicators and cytokines. The clinical efficiency rate and adverse reaction events were also summarized to assess the therapeutic efficiency and safety. RESULTS: The kidney function and proteinuria of enrolled patients were alleviated after their therapies, behaved as the increasing estimated glomerular filtration rate and decreasing serum creatinine, serum uric acid, urea nitrogen, 24 h urine protein levels. On the other hand, the malondialdehyde level and pro-inflammation cytokines were suppressed by the therapies, and the superoxide dismutase was found to be significantly enhanced. Patients in the treated groups showed a better recovery in kidney function, proteinuria, oxidative stress, and inflammation response. Moreover, patients in the treated group showed a higher efficiency rate (95%) and fewer adverse reaction events (5%). CONCLUSIONS: The combination of allopurinol with DHMD significantly promoted the recovery of chronic kidney disease stage G1-G3b patients with hyperuricemia, which can be considered a novel clinical therapeutic strategy.


Asunto(s)
Hiperuricemia , Insuficiencia Renal Crónica , Humanos , Alopurinol/uso terapéutico , Alopurinol/farmacología , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/complicaciones , Ácido Úrico , Resultado del Tratamiento , Insuficiencia Renal Crónica/tratamiento farmacológico , Proteinuria/complicaciones , Proteinuria/tratamiento farmacológico , Estrés Oxidativo , Riñón , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Citocinas
6.
Molecules ; 29(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38257230

RESUMEN

Hazel leaf, a by-product of hazelnuts, is commonly used in traditional folk medicine in Portugal, Sweden, Iran and other regions for properties such as vascular protection, anti-bleeding, anti-edema, anti-infection, and pain relief. Based on our previous studies, the polyphenol extract from hazel leaf was identified and quantified via HPLC fingerprint. The contents of nine compounds including kaempferol, chlorogenic acid, myricetin, caffeic acid, p-coumaric acid, resveratrol, luteolin, gallic acid and ellagic acid in hazel leaf polyphenol extract (ZP) were preliminary calculated, among which kaempferol was the highest with 221.99 mg/g, followed by chlorogenic acid with 8.23 mg/g. The inhibition of ZP on α-glucosidase and xanthine oxidase activities was determined via the chemical method, and the inhibition on xanthine oxidase was better. Then, the effect of ZP on hyperuricemia zebrafish was investigated. It was found that ZP obviously reduced the levels of uric acid, xanthine oxidase, urea nitrogen and creatinine, and up-regulated the expression ofOAT1 and HPRT genes in hyperuricemia zebrafish. Finally, the targeted network pharmacological analysis and molecular docking of nine polyphenol compounds were performed to search for relevant mechanisms for alleviating hyperuricemia. These results will provide a valuable basis for the development and application of hazel leaf polyphenols as functional ingredients.


Asunto(s)
Corylus , Hiperuricemia , Animales , Polifenoles/farmacología , Ácido Clorogénico/farmacología , Simulación del Acoplamiento Molecular , Pez Cebra , Farmacología en Red , Quempferoles , Hiperuricemia/tratamiento farmacológico , Xantina Oxidasa , Extractos Vegetales/farmacología
7.
Fitoterapia ; 172: 105718, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931719

RESUMEN

The strategies or drugs for preventing and treating Hyperuricemia (HUA) are still lacking. As a traditional Chinese medicine (TCM) with a profound history, Ampelopsis grossedentata has been shown to play diverse biological roles. The purpose of the present study was to evaluate hypouricemic effect of A. grossedentata, and investigate its involved material basis and mechanism. A HUA mice model was established to evaluate the therapeutic effects of A. grossedentata. And then some extracts from A. grossedentata were prepared, isolated and analyzed. Furthermore, network pharmacology, based on the above results, was used to discover potential active ingredients and therapeutic targets, and they were further verified and explored by molecular docking and in vitro experiments. In vivo experiments showed that A. grossedentata exerted hypouricemic effect on mice of HUA. The core active ingredients (quercetin, myricetin and dihydromyricetin etc.) and core targets (PTGS2, XOD and ABCG2 etc.) for A. grossedentata to treat HUA were predicted by network pharmacology. And molecular docking showed that the spontaneous binding activities of above components and targets were marvelous. In vitro experiments further demonstrated that A. grossedentata exerted hypouricemic effect by decreasing the levels of UA, XOD, antioxidant factors, inflammatory factors, GLUT9 and URAT1 in HK-2 cells of HUA. Taken together, this study integrates multi-level interaction network with in vivo/vitro experiments to systematically reveal the material basis and mechanism of A. grossedentata in treating HUA, which provides a scientific basis for further study of A. grossedentata and HUA.


Asunto(s)
Ampelopsis , Hiperuricemia , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Ampelopsis/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Antioxidantes/farmacología
8.
Int J Rheum Dis ; 27(1): e14986, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38014453

RESUMEN

BACKGROUND: Studies have demonstrated the association of hyperuricemia with hypertension, metabolic syndrome, cardiovascular disease, and chronic renal disease. Although Western medicine presents promising effects for treating hyperuricemia and gout, identifying a safe and effective alternative to traditional Chinese medicine (TCM) for treating hyperuricemia is essential. OBJECTIVE: To evaluate the efficacy and safety of TCM formulas, "Wu-Ling San" and "Yin Chen Wu-Ling San," in patients with hyperuricemia. METHODS: A randomized, double-blinded, placebo-controlled clinical trial in adults with hyperuricemia was conducted. Sixty patients with serum urate level higher than 8 mg/dL were enrolled in the study. Patients were then randomized into three arms: "Wu-Ling San," "Yin Chen Wu-Ling San," and placebo for 4 weeks. Efficacy and safety were evaluated at weeks 2, 4, and 8. Primary and secondary endpoints were set to evaluate the serum urate concentration and related indicators at weeks 2, 4, and 8. RESULTS: No significant differences were observed among the three arms in terms of the serum urate level (<6 mg/dL) at week 4. The serum urate level was lower in the "Yin Chen Wi-Ling" arm at week 8 (8.1 mg/dL vs. 9.1 mg/dL, p = .034). The serum urate levels were significantly different in both the "Wu-Ling San" and "Yin Chen Wu-Ling San" arms from those at the baseline (p < .05). CONCLUSIONS: Two TCM formulas were found to be relatively safe for the short-term treatment of the patients with hyperuricemia. No statistically significant difference was observed in reaching the target-serum urate level <6 mg/dL.


Asunto(s)
Gota , Hiperuricemia , Adulto , Humanos , Hiperuricemia/diagnóstico , Hiperuricemia/tratamiento farmacológico , Ácido Úrico , Medicina Tradicional China , Gota/diagnóstico , Gota/tratamiento farmacológico , Supresores de la Gota/efectos adversos , Resultado del Tratamiento
9.
Biomed Chromatogr ; 38(3): e5807, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38118432

RESUMEN

This study seeks to investigate the therapeutic effects of Si Miao San (SMS) on hyperuricemia and its underlying mechanisms, particularly focusing on the role of intestinal flora. The key components of SMS were identified using high-performance liquid chromatography (HPLC). To establish a rat model of hyperuricemia, an intraperitoneal injection of potassium oxonate was performed, followed by oral administration of various concentrations of SMS. The study evaluated the status of hyperuricemia, renal pathology, xanthine oxidase (XO) activity, and intestinal flora. Utilizing HPLC, we identified five active components of SMS. Following SMS intervention, there was a significant reduction in serum levels of uric acid (UA), blood urea nitrogen, and creatinine, accompanied by an increase in urine UA levels in rats with hyperuricemia. Distinct pathological injuries were evident in the renal tissues of hyperuricemic rats, and these were partially alleviated following SMS intervention. Moreover, SMS exhibited a dose-dependent reduction in XO activity both in the serum and hepatic tissues. Notably, SMS contributed to an enhancement in the diversity of intestinal flora in hyperuricemic rats. The intervention of SMS resulted in a reduction in the abundance of certain bacterial species, including Parabacteroides johnsonii, Corynebacterium urealyticum, and Burkholderiales bacterium. This suggests that SMS may exert anti-hyperuricemia effects, potentially by modulating the composition of intestinal flora.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Hiperuricemia , Ratas , Animales , Hiperuricemia/tratamiento farmacológico , Riñón , Ácido Úrico , Xantina Oxidasa
10.
J Ethnopharmacol ; 322: 117678, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159820

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperuricemic nephropathy (HN) is a renal injury caused by hyperuricemia and is the main cause of chronic kidney disease and end-stage renal disease. ShiWeiHeZiSan, which is composed mainly of components of Terminalia chebula Retz. And is recorded in the Four Medical Tantras, is a typical traditional Tibetan medicinal formula for renal diseases. Although T. chebula has been reported to improve renal dysfunction and reduce renal cell apoptosis, the specific mechanism of the nephroprotective effects of T. chebula on HN is still unclear. AIM OF THE STUDY: This study was conducted to evaluate the effects and specific mechanism of T. chebula extract on HN through network pharmacology and in vivo and in vitro experiments. MATERIALS AND METHODS: Potassium oxalate (1.5 g/kg) and adenine (50 mg/kg) were combined for oral administration to establish the HN rat model, and the effects of T. chebula extract on rats in the HN model were evaluated by renal function indices and histopathological examinations. UPLC-Q-Exactive Orbitrap/MS analysis was also conducted to investigate the chemical components of T. chebula extract, and the potential therapeutic targets of T. chebula in HN were predicted by network pharmacology analysis. Moreover, the activation of potential pathways and the expression of related mRNAs and proteins were further observed in HN model rats and uric acid-treated HK-2 cells. RESULTS: T. chebula treatment significantly decreased the serum uric acid (SUA), blood urea nitrogen (BUN) and serum creatinine (SCr) levels in HN rats and ameliorated renal pathological injury and fibrosis. A total of 25 chemical components in T. chebula extract were identified by UPLC-Q-Exactive Orbitrap/MS analysis, and network pharmacology analysis indicated that the NF-κB pathway was the potential pathway associated with the therapeutic effects of T. chebula extract on HN. RT‒PCR analysis, immunofluorescence staining and ELISA demonstrated that the mRNA and protein levels of TLR4 and MyD88 were significantly decreased in the renal tissue of HN rats after treatment with T. chebula extract at different concentrations, while the phosphorylation of P65 and the secretion of TNF-α and IL-6 were significantly inhibited. The results of in vitro experiments showed that T. chebula extract significantly decreased the protein levels of TLR4, MyD88, p-IκBα and p-P65 in uric acid-treated HK-2 cells and inhibited the nuclear translocation of p65 in these cells. In addition, the expression of inflammatory factors (IL-1ß, IL-6 and TNF-α) and fibrotic genes (α-SMA and fibronectin) was significantly downregulated by T. chebula extract treatment, while E-cadherin expression was significantly upregulated. CONCLUSION: T. chebula extract exerts nephroprotective effects on HN, such as anti-inflammatory effects and fibrosis improvement, by regulating the TLR4/MyD88/NF-κB axis, which supports the general use of T. chebula in the management of HN and other chronic kidney diseases.


Asunto(s)
Hiperuricemia , Terminalia , Ratas , Animales , FN-kappa B/metabolismo , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Ácido Úrico/farmacología , Receptor Toll-Like 4/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Terminalia/metabolismo , Fibrosis
11.
Pharm Biol ; 61(1): 1274-1285, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37599625

RESUMEN

CONTEXT: Clerodendranthus spicatus Thunb. (Labiatae) (CS), a perennial traditional Chinese medicinal herb that can reduce serum uric acid (sUA) levels and ameliorate renal function is widely used to treat hyperuricaemic nephropathy (HN). OBJECTIVE: To investigate the molecular mechanism of action of CS in HN treatment using in vivo and in vitro experiments. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into control, HN, CS and positive control allopurinol groups. The HN group was intraperitoneally injected with 750 mg/kg oxonic acid potassium (OA), whereas the CS group was injected with OA along with a gavage of CS (low dose 3.125 g/kg, high dose 6.25 g/kg) for five weeks. For in vitro studies, uric acid-treated HK2 cells were used to verify the therapeutic mechanism of CS in HN. RESULTS: HN rats exhibit pathological phenotypes of elevated sUA levels and renal injury. CS significantly improved these symptoms and sUA (p < 0.05) and blood urea nitrogen (p < 0.01) levels, and dramatically improved renal tubular injury in HN rats. The IC50 value of UA (uric acid) in HK2 cells was 826.32 ± 3.55 µg/mL; however, 120 ng/mL CS had no significant cytotoxicity on HK2 cells. In vivo and in vitro studies showed that CS inhibited NF-κB phosphorylation and inhibited α-smooth muscle actin (α-SMA) and vimentin expression while increasing E-cadherin expression, suggesting that CS inhibited the fibrotic process in renal cells, thus protecting renal function. DISCUSSION AND CONCLUSIONS: These findings provide a fundamental understanding of the application of CS in HN treatment to better guide clinical interventions.


Asunto(s)
Hiperuricemia , FN-kappa B , Animales , Ratas , Ratas Sprague-Dawley , Hiperuricemia/tratamiento farmacológico , Ácido Úrico , Transición Epitelial-Mesenquimal , Riñón/fisiología
12.
Drug Des Devel Ther ; 17: 2287-2301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37551408

RESUMEN

Purpose: Dispelling dampness, relieving turbidity and dredging collaterals decoction (DED), is a traditional Chinese medicine used in the treatment of hyperuricemia. We aimed to explore the effect and mechanism of DED in the treatment of hyperuricemia. Methods: The effects of DED (9.48, 4.74, and 2.37 g/kg/d) on potassium oxonate (750 mg/kg/d)-induced hyperuricemia in rats were evaluated by serum uric acid (UA), creatinine (CRE), blood urea nitrogen (BUN), and renal pathological changes. Network pharmacology was used to identify the effective components and targets of DED, and the key targets and signaling pathways for its effects on hyperuricemia were screened. Molecular docking was used to predict the action of DED. H&E, immunohistochemistry, WB, and PCR were used to validate the network pharmacology results. Results: DED can effectively alleviate hyperuricemia, inhibit UA, CRE, BUN, and xanthine oxidase (XOD) activity, and reduce renal inflammatory cell infiltration and glomerular atrophy. The experiment identified 27 potential targets of DED for hyperuricemia, involving 9 components: wogonin, stigmasterol 3-O-beta-D-glucopyranoside, 3ß-acetoxyatractylone, beta-sitosterol, stigmasterol, diosgenin, naringenin, astilbin, and quercetin. DED can relieve hyperuricemia mainly by inhibiting RAGE, HMGB1, IL17R, and phospho-TAK1, and by regulating the AGE-RAGE and IL-17 signaling pathways. Conclusion: DED can alleviate hyperuricemia by inhibiting XOD activity and suppressing renal cell apoptosis and inflammation via the AGE-RAGE signaling pathway and IL-17 signaling pathway. This study provides a theoretical basis for the clinical application of DED.


Asunto(s)
Hiperuricemia , Ratas , Animales , Hiperuricemia/inducido químicamente , Hiperuricemia/tratamiento farmacológico , Interleucina-17/metabolismo , Ácido Úrico , Simulación del Acoplamiento Molecular , Riñón , Xantina Oxidasa/metabolismo , Xantina Oxidasa/farmacología
13.
Int J Med Mushrooms ; 25(8): 63-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560890

RESUMEN

Cordyceps chanhua has been widely used in traditional Chinese medicine. The uric acid-lowering effect of artificially cultivated fruiting bodies of C. chanhua (FBCC) was studied using the acute hyperuricemia (AH) and chronic gout (CG) animal models. The AH mice and CG rats were randomly divided into 6 groups: the negative control group, model group, positive control group, low-dose group, medium-dose group, and high-dose group of FBCC, respectively. Serum uric acid, creatinine, urea nitrogen, and liver xanthine oxidase (XOD) activity were detected. Renal tubulointerstitial injury and urate crystals in CG rats were evaluated. The results showed that the uric acid content in AH mice with the high-dose FBCC group decreased statistically (P < 0.05). In the CG rats, the serum uric acid level in all FBCC groups and the serum creatinine value in the high-dose group exhibited a significant decrease (P < 0.05); the scores of renal tubulointerstitial damage and urate deposit were reduced in the high-dose group of FBCC. FBCC can reduce uric acid and improve renal function, demonstrating it as a beneficial supplement for uric acid-lowering and gout-relieving drugs.


Asunto(s)
Cordyceps , Gota , Hiperuricemia , Ratas , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Ácido Úrico/farmacología , Ácido Úrico/uso terapéutico , Supresores de la Gota/farmacología , Supresores de la Gota/uso terapéutico , Roedores , Riñón/fisiología , Gota/tratamiento farmacológico , Cuerpos Fructíferos de los Hongos
14.
J Nat Med ; 77(4): 867-879, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37433989

RESUMEN

Hyperuricemia is an independent risk factor for chronic kidney disease. We have previously showed the uric-acid-lowering effect of Eurycoma longifolia Jack, yet the renal protective effect and mechanism of E. longifolia remain obscure. The mouse model of hyperuricemic nephropathy was induced by adenine combined with potassium oxonate in male C57BL/6 J mice. E. Longifolia alkaloid components could reduce the level of serum uric acid by regulating the expression of hepatic phosphoribosyl pyrophosphate synthase (PRPS), hypoxanthine-guanine phosphoribosyl transferase (HPRT), and renal urate transporter organic anion transporter 1 (OAT1) and ATP-binding box subfamily G member 2 (ABCG2) in HN mice. Additionally, E. Longifolia alkaloid components alleviated renal injury and function caused by hyperuricemia, which was characterized by improving renal histopathology, reducing urea nitrogen and creatinine levels. E. Longifolia alkaloid components treatment could reduce the secretion of pro-inflammatory factors by inhibiting the activation of NF-κB and NLRP3 inflammatory signaling pathways, including tumor necrosis factor α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interleukin-1 ß (IL-1ß), and regulated activated normal T cell expression and secretion proteins (RANTES). Meanwhile, E. longifolia alkaloid components improved renal fibrosis, inhibited the transformation of calcium-dependent cell adhesion molecule E (E-cadherin) to α-smooth muscle actin (α-SMA) transformation, and decreased collagen 1 expression in HN mice.


Asunto(s)
Eurycoma , Hiperuricemia , Masculino , Ratones , Animales , Hiperuricemia/inducido químicamente , Hiperuricemia/tratamiento farmacológico , Ácido Úrico , Ratones Endogámicos C57BL , Riñón/metabolismo , Riñón/patología , Inflamación/metabolismo
15.
Phytomedicine ; 118: 154957, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37478683

RESUMEN

BACKGROUND: Hyperuricemia is an important pathological basis of gout and a distinct hazard factor for metabolic syndromes and cardiovascular and chronic renal disease, but lacks safe and effective treatments currently. Paeonia × suffruticosa Andrews leaf effectively reduced serum uric acid in gout patients; however, the material foundation and the mechanism remain unclear. PURPOSE: To determine the primary active components and mechanism of P. suffruticosa leaf in hyperuricemic mice. METHODS: The chemical constituents of P. suffruticosa leaf was identified using high-performance liquid chromatographic analysis. The anti-hyperuricemic activity of P. suffruticosa leaf extract (12.5, 25, 50, 100, and 200 mg/kg) and its components was evaluated in hyperuricemic mice induced by a high purine diet for 14 days. Then, the urate-lowering effects of apigenin 7-O-glucoside (0.09, 0.18, and 0.36 mg/kg) were assessed in another hyperuricemic mice model built by administrating potassium oxonate and adenine for 4 weeks. The inhibitory effect of apigenin 7-O-glucoside on uric acid production was elucidated by investigating xanthine oxidase activity in vitro and in serum and the liver and through molecular docking. Immunofluorescence and western blot analyses of the expression of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), organic anion transporters 1 (OAT1), and ATP-binding cassette G member 2 (ABCG2) proteins elucidated how apigenin 7-O-glucoside promoted uric acid excretion. RESULTS: Six compounds were identified in P. suffruticosa leaf: gallic acid, methyl gallate, oxypaeoniflorin, paeoniflorin, galloylpaeoniflorin, and apigenin 7-O-glucoside. P. suffruticosa leaf extract significantly attenuated increased serum uric acid, creatinine, and xanthine oxidase activity in hyperuricemic mice. Apigenin 7-O-glucoside from P. suffruticosa leaf reduced uric acid, creatinine, and malondialdehyde serum levels, increased superoxide dismutase activity, and partially restored the spleen coefficient in hyperuricemic mice. Apigenin 7-O-glucoside inhibited xanthine oxidase activity in vitro and decreased serum and liver xanthine oxidase activity and liver xanthine oxidase protein expression in hyperuricemic mice. Molecular docking revealed that apigenin 7-O-glucoside bound to xanthine oxidase. Apigenin 7-O-glucoside facilitated uric acid excretion by modulating the renal urate transporters URAT1, GLUT9, OAT1, and ABCG2. Apigenin 7-O-glucoside protected against renal damage and oxidative stress caused by hyperuricemia by reducing serum creatinine, blood urea nitrogen, malondialdehyde, and renal reactive oxygen species levels; increasing serum and renal superoxide dismutase activity; restoring the renal coefficient; and reducing renal pathological injury. CONCLUSION: Apigenin 7-O-glucoside is the main urate-lowering active component of P. suffruticosa leaf extract in the hyperuricemic mice. It suppressed liver xanthine oxidase activity to decrease uric acid synthesis and modulated renal urate transporters to stimulate uric acid excretion, alleviating kidney damage caused by hyperuricemia.


Asunto(s)
Gota , Hiperuricemia , Transportadores de Anión Orgánico , Paeonia , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/inducido químicamente , Ácido Úrico , Xantina Oxidasa/metabolismo , Creatinina , Simulación del Acoplamiento Molecular , Apigenina/farmacología , Riñón , Transportadores de Anión Orgánico/metabolismo , Superóxido Dismutasa/metabolismo , Glucósidos/farmacología , Malondialdehído/metabolismo , Ácido Oxónico/efectos adversos
16.
J Ethnopharmacol ; 316: 116736, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37286117

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Qu-zhuo-tong-bi decoction (QZTBD) is a classic Chinese herbal medicine that has shown therapeutic efficacy in clinical practice against hyperuricemia and gout. However, the potential mechanisms of QZTBD remain poorly investigated. AIM OF THE STUDY: To assess the therapeutic effects of QZTBD on hyperuricemia and gout and to reveal its mechanisms of action. MATERIALS AND METHODS: A Uox-KO mouse model of hyperuricemia and gout was established, and QZTBD was administered at a dosage of 18.0 g/kg/d. Throughout the experimental period, the effects of QZTBD on gout symptoms were monitored and analyzed. The integrated network pharmacology and gut microbiota analysis strategy was conducted to explore the mechanism of QZTBD in the treatment of hyperuricemia and gout. Targeted metabolomic analysis was performed to investigate the variation of amino acids and Spearman's rank correlation analysis was conducted to reveal the relationship between the discrepant bacterial genera and the altered amino acid. Flow cytometry was utilized to analysis the proportion of Th17 and Treg cells, and the production of pro-inflammatory cytokines was measured by ELISA. qRT-PCR and Western blot assay were applied to detect the expression of mRNA and protein respectively. Autodock vina 1.1.2 was used to evaluate the docking interactions. RESULTS: QZTBD treatment showed remarkable efficacy against hyperuricemia and gout with respect to attenuation of disease activity metrics through gut microbiome recovery and intestinal immune homeostasis. The administration of QZTBD significantly elevated the abundance of Allobaculum and Candidatus sacchairmonas, corrected the aberrant amino acid patterns, repaired the impaired intestinal barrier, restored the balance of Th17/Treg cells via PI3K-AKT-mTOR pathway, and reduced the levels of inflammatory cytokines such as IL-1ß, IL-6, TNF-α and IL-17. Fecal microbiota transplantation from QZTBD treated mice demonstrated convincing evidence of efficacy and mechanism of QZTBD. CONCLUSION: Taken together, our study explores the therapeutic mechanism of an effective herbal formula, QZTBD, for gout treatment through remodeling gut microbiome and regulating the differentiation of CD4+ T cells via PI3K-AKT-mTOR pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Gota , Hiperuricemia , Ratones , Animales , Hiperuricemia/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Gota/tratamiento farmacológico , Citocinas , Serina-Treonina Quinasas TOR
17.
Pak J Biol Sci ; 26(2): 63-71, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37265037

RESUMEN

<b>Background and Objective:</b> Hyperuricemia is a disease triggered by disorders of uric acid metabolism. Therefore, this study evaluated the potential of leaves ethanolic extract of <i>Etlingera hemisphaerica</i> (LE3H) and fruits ethanolic extract <i>E. hemisphaerica</i> (FE3H) to restore hyperuricemia in mice. <b>Materials and Methods:</b> Six groups (A0, A1, A2, A3, A4 and A5) each consisted of four male mice. Hyperuricemia in mice was induced by giving 0.3 mL of fresh chicken liver juice (FCLJ) for seven days (A1, A2, A3, A4 and A5). The condition of hyperuricemia in A1 is not neutralized. Meanwhile, hyperuricemia conditions in A2, A3, A4 and A5 were neutralized for seven days by giving 0.01 mg g<sup></sup><sup>1</sup> body weight (BW) allopurinol, 0.13, 0.26 and 0.36 mg g<sup></sup><sup>1</sup> BW LE3H. The control group (A0) only received double-distilled water in the same way. Blood uric acid levels were measured with the GCU Meter Device before and after the induction of hyperuricemia and after efforts to neutralize the hyperuricemia condition. Six groups (B0, B1, B2, B3, B4, B5) each consisting of four male mice were also provided to test the potential of FE3H. The recovery potential FE3H against hyperuricemia was tested separately in the same way as was done for LE3H. <b>Results:</b> Giving FCLJ significantly increased (140.00-187.00%) uric acid compared to the control, so hyperuricemia was achieved. Doses of 0.13, 0.26 and 0.36 mg g<sup></sup><sup>1</sup> BW LE3H significantly recovered hyperuricemia as much as 54.09, 56.14 and 60.88%, respectively. Meanwhile, doses of 0.13, 0.26 and 0.36 mg g<sup></sup><sup>1</sup> FE3H significantly recovered hyperuricemia as much as 60.37, 62.24 and 65.572%, respectively. The LE3H and FE3H at the same dose showed that FE3H had a higher potential to restore hyperuricemia than LE3H. <b>Conclusion:</b> Leave and fruit ethanolic extract of <i>E. hemisphaerica</i> can potentially restore hyperuricemia in mice.


Asunto(s)
Hiperuricemia , Zingiberaceae , Masculino , Animales , Ratones , Supresores de la Gota , Frutas , Hiperuricemia/tratamiento farmacológico , Ácido Úrico , Peso Corporal , Etanol , Extractos Vegetales/farmacología
18.
J Ethnopharmacol ; 317: 116770, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37308029

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Astragali Radix (AR) is the dry root of the leguminous plants Astragalus membranaceus (Fisch) Beg. var. mongholicus (Beg) Hsiao, and Astragalus membranaceus (Fisch) Bge., being used as a medicinal and edible resource. AR is used in traditional Chinese medicine prescriptions to treat hyperuricemia, but this particular effect is rarely reported, and the associated mechanism of action is still need to be elucidated. AIM OF THE STUDY: To research the uric acid (UA)-lowering activity and mechanism of AR and the representative compounds through the constructed hyperuricemia mouse and cellular models. MATERIALS AND METHODS: In our study, the chemical profile of AR was analysed by UHPLC-QE-MS, as well as the mechanism of action of AR and the representative compounds on hyperuricemia was studied through the constructed hyperuricemia mouse and cellular models. RESULTS: The main compounds in AR were terpenoids, flavonoids and alkaloids. Mice group treated with the highest AR dosage showed significantly lower (p < 0.0001) serum uric acid (208 ± 9 µmol/L) than the control group (317 ± 11 µmol/L). Furthermore, UA increased in a dose-dependence manner in urine and faeces. Serum creatinine and blood urea nitrogen standards, as well as xanthine oxidase in mice liver, decreased (p < 0.05) in all cases, indicating that AR could relieve acute hyperuricemia. UA reabsorption protein (URAT1 and GLUT9) was down-regulated in AR administration groups, while the secretory protein (ABCG2) was up-regulated, indicating that AR could promote the excretion of UA by regulating UA transporters via PI3K/Akt signalling pathway. CONCLUSION: This study validated the activity, and revealed the mechanism of AR in reducing UA, which provided experimental and clinical basis for the treatment of hyperuricemia with it.


Asunto(s)
Medicamentos Herbarios Chinos , Hiperuricemia , Ratones , Animales , Ácido Úrico , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Proteínas de Transporte de Membrana
19.
Food Funct ; 14(12): 5663-5677, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37264705

RESUMEN

Gut microbiota is associated with hyperuricemia progression and can be regulated by Lactobacillus plantarum. However, the role of Lactobacillus plantarum in hyperuricemia is still unknown. Thus, we constructed the mouse model of hyperuricemia using potassium oxonate and hypoxanthine treatment to explore the effects of Lactobacillus plantarum LLY-606 supplementation on the development of hyperuricemia. The results showed that Lactobacillus plantarum LLY-606 significantly reduced the level of serum uric acid through inhibiting uric acid secretion and regulating uric acid transport. We also found that Lactobacillus plantarum LLY-606 supplementation inhibited the inflammatory response and the activation of the TLR4/MyD88/NF-κB signaling pathway in mice. Microbiome sequencing and analysis suggested the successful colonization of probiotics, which could regulate intestinal flora dysbiosis induced by hyperuricemia. The abundance of Lactobacillus plantarum was significantly negatively correlated with hyperuricemia-related indicators. Notably, the functional abundance prediction of microbiota indicated that lipopolysaccharide biosynthesis protein pathways and lipopolysaccharide biosynthesis pathways were inhibited after the probiotic intervention. In conclusion, Lactobacillus plantarum LLY-606 can serve as a potential functional probiotic to affect the development of hyperuricemia through modulating gut microbiota, downregulating renal inflammation, and regulating uric acid metabolism.


Asunto(s)
Hiperuricemia , Lactobacillus plantarum , Probióticos , Ratones , Animales , Lactobacillus plantarum/fisiología , Ácido Úrico/efectos adversos , Hiperuricemia/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Homeostasis , Suplementos Dietéticos , Probióticos/farmacología
20.
J Ethnopharmacol ; 317: 116805, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37355082

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Growing evidence indicates that hyperuricemia is closely associated with gut microbiota dysbiosis. Orthosiphon aristatus (Blume) Miq. (O. aristatus), as a traditional Chinese medicine, has been widely used to treat hyperuricemia in China. However, the mechanism by which O. aristatus treats hyperuricemia has not been clarified. AIM OF THE STUDY: In this study, we investigated whether the molecular mechanism underlying the anti-hyperuricemia effect of O. aristatus is related to the regulation of gut microbiota by 16S rDNA gene sequencing combined with widely targeted metabolomics. MATERIALS AND METHODS: Hyperuricemia was induced in rats by administration of 10% fructose and 20% yeast, and the uricosuric effect was assessed by measuring the uric acid (UA) levels in serum and cecal contents. Intestinal morphology was observed by hematoxylin and eosin (HE) staining. To explore the effects of O. aristatus on the gut microbiota and its metabolites, we utilized 16S rDNA gene sequencing combined with widely targeted metabolomics. Furthermore, metabolic pathway enrichment analysis was performed on the screened differential metabolites. The real time quantitative polymerase chain reaction (RT-PCR) and western blotting (WB) were used to detect the expression of relevant proteins in the key pathway. RESULTS: Our results indicated that O. aristatus intervention decreased serum UA levels and increased the UA levels in cecal contents in hyperuricemic rats. Additionally, O. aristatus improved intestinal morphology and altered the composition of the gut microbiota and its metabolites. Specifically, 16S rDNA revealed that O. aristatus treatment significantly reduced the abundance of unidentified-Ruminococcaceae and Lachnospiraceae-NK4A136-group. Meanwhile, widely targeted metabolomics showed that 17 metabolites, including lactose, 4-oxopentanoate and butyrate, were elevated, while 55 metabolites, such as flavin adenine dinucleotide and xanthine, were reduced. Metabolic pathway enrichment analysis found that O. aristatus was mainly involved in purine metabolism. Moreover, RT-PCR and WB suggested that O. aristatus could significantly up-regulate the expression of UA excretion transporter ATP-binding cassette subfamily G member 2 (ABCG2) in the intestine. CONCLUSION: O. aristatus exerts UA-lowering effect by regulating the gut microbiota and ABCG2 expression, indicating that this herb holds great promise in the treatment of hyperuricemia.


Asunto(s)
Microbioma Gastrointestinal , Hiperuricemia , Orthosiphon , Ratas , Animales , Orthosiphon/química , Orthosiphon/metabolismo , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Intestinos , Ácido Úrico/metabolismo , Metabolómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA