Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Rep ; 39(7): 953-969, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32314045

RESUMEN

KEY MESSAGE: Seed-specific down-regulation of AtCESA1 and AtCESA9, which encode cellulose synthase subunits, differentially affects seed storage compound accumulation in Arabidopsis. High amounts of cellulose can negatively affect crop seed quality, and, therefore, diverting carbon partitioning from cellulose to oil, protein and/or starch via molecular breeding may improve seed quality. To determine the effect of seed cellulose content reduction on levels of storage compounds, Arabidopsis thaliana CELLULOSE SYNTHASE1 (AtCESA1) and AtCESA9 genes, which both encode cellulose synthase subunits, were individually down-regulated using seed-specific intron-spliced hairpin RNA (hpRNAi) constructs. The selected seed-specific AtCESA1 and AtCESA9 Arabidopsis RNAi lines displayed reduced cellulose contents in seeds, and exhibited no obvious visual phenotypic growth defects with the exception of a minor effect on early root development in AtCESA1 RNAi seedlings and early hypocotyl elongation in the dark in both types of RNAi line. The seed-specific down-regulation of AtCESA9 resulted in a reduction in seed weight compared to empty vector controls, which was not observed in AtCESA1 RNAi lines. In terms of effects on carbon partitioning, AtCESA1 and AtCESA9 RNAi lines exhibited distinct effects. The down-regulation of AtCESA1 led to a ~ 3% relative increase in seed protein content (P = 0.04) and a ~ 3% relative decrease in oil content (P = 0.02), but caused no alteration in soluble glucose levels. On the contrary, AtCESA9 RNAi lines did not display a significant reduction in seed oil, protein or soluble glucose content. Taken together, our results indicate that the seed-specific down-regulation of AtCESA1 causes alterations in seed storage compound accumulation, while the effect of AtCESA9 on carbon partitioning is absent or minor in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Carbono/metabolismo , Celulosa/metabolismo , Regulación hacia Abajo , Glucosiltransferasas/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosa/metabolismo , Glucosiltransferasas/genética , Homocigoto , Hipocótilo/anatomía & histología , Especificidad de Órganos , Fenotipo , Aceites de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Interferencia de ARN , Semillas/enzimología , Solubilidad , Almidón/metabolismo
2.
Ann Bot ; 122(3): 485-499, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-29982363

RESUMEN

Background and Aims: Root architecture is a primary determinant of soil resource acquisition. We hypothesized that root architectural phenes will display both positive and negative interactions with each other for soil resource capture because of competition for internal resources and functional trade-offs in soil exploration. Methods: We employed the functional-structural plant model SimRoot to explore how interactions among architectural phenes in common bean determine the acquisition of phosphate and nitrate, two key soil resources contrasting in mobility. We evaluated the utility of basal root whorl number (BRWN) when basal root growth angle, hypocotyl-borne roots and lateral root branching density (LRBD) were varied, under varying availability of phosphate and nitrate. Key Results: Three basal root whorls were optimal in most phenotypes. This optimum shifted towards greater values when LRBD decreased and to smaller numbers when LRBD increased. The maximum biomass accumulated for a given BRWN phenotype in a given limiting nutrient scenario depended upon root growth angle. Under phosphorus stress shallow phenotypes grew best, whereas under nitrate stress fanned phenotypes grew best. The effect of increased hypocotyl-borne roots depended upon BRWN as well as the limiting nutrient. Greater production of axial roots due to BRWN or hypocotyl-borne roots reduced rooting depth, leading to reduced biomass under nitrate-limiting conditions. Increased BRWN as well as greater LRBD increased root carbon consumption, resulting in reduced shoot biomass. Conclusions: We conclude that the utility of a root architectural phenotype is determined by whether the constituent phenes are synergistic or antagonistic. Competition for internal resources and trade-offs for external resources result in multiple phenotypes being optimal under a given nutrient regime. We also find that no single phenotype is optimal across contrasting environments. These results have implications for understanding plant evolution and also for the breeding of more stress-tolerant crop phenotypes.


Asunto(s)
Carbono/metabolismo , Modelos Biológicos , Nitrógeno/metabolismo , Phaseolus/anatomía & histología , Fósforo/metabolismo , Suelo/química , Biomasa , Simulación por Computador , Hipocótilo/anatomía & histología , Hipocótilo/crecimiento & desarrollo , Hipocótilo/fisiología , Nitratos/metabolismo , Phaseolus/crecimiento & desarrollo , Phaseolus/fisiología , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología
3.
Ann Bot ; 112(6): 973-82, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23925972

RESUMEN

BACKGROUND AND AIMS: Root architectural phenes enhancing topsoil foraging are important for phosphorus acquisition. In this study, the utility of a novel phene is described, basal root whorl number (BRWN), that has significant effects on topsoil foraging in common bean (Phaseolus vulgaris). METHODS: Whorls are defined as distinct tiers of basal roots that emerge in a tetrarch fashion along the base of the hypocotyl. Wild and domesticated bean taxa as well as two recombinant inbred line (RIL) populations were screened for BRWN and basal root number (BRN). A set of six RILs contrasting for BRWN was evaluated for performance under low phosphorus availability in the greenhouse and in the field. In the greenhouse, plants were grown in a sand-soil media with low or high phosphorus availability. In the field, plants were grown in an Oxisol in Mozambique under low and moderate phosphorus availability. KEY RESULTS: Wild bean accessions tended to have a BRWN of one or two, whereas cultivated accessions had BRWN reaching four and sometimes five. BRWN and BRN did not vary with phosphorus availability, i.e. BRWN was not a plastic trait in these genotypes. Greater BRWN was beneficial for phosphorus acquisition in low phosphorus soil. Genotypes with three whorls had almost twice the shoot biomass, greater root length and greater leaf area than related genotypes with two whorls. In low phosphorus soil, shoot phosphorus content was strongly correlated with BRWN (R(2) = 0.64 in the greenhouse and R(2) = 0.88 in the field). Genotypes with three whorls had shallower root systems with a greater range of basal root growth angles (from 10 to 45 ° from horizontal) than genotypes with two whorls (angles ranged from 60 to 85 ° from horizontal). CONCLUSIONS: The results indicate that BRWN is associated with increased phosphorus acquisition and that this trait may have value for selection of genotypes with better performance in low phosphorus soils.


Asunto(s)
Phaseolus/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Transporte Biológico , Biomasa , Genotipo , Hipocótilo/anatomía & histología , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Hipocótilo/metabolismo , Modelos Lineales , Phaseolus/anatomía & histología , Phaseolus/efectos de los fármacos , Phaseolus/crecimiento & desarrollo , Fenotipo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Suelo
4.
Planta ; 224(3): 485-95, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16482437

RESUMEN

The storage root (taproot) of sugar beet (Beta vulgaris L.) originates from hypocotyl and primary root and contains many different tissues such as central xylem, primary and secondary cambium, secondary xylem and phloem, and parenchyma. It was the aim of this work to characterize the promoters of three taproot-expressed genes with respect to their tissue specificity. To investigate this, promoters for the genes Tlp, His1-r, and Mll were cloned from sugar beet, linked to reporter genes and transformed into sugar beet and tobacco. Reporter gene expression analysis in transgenic sugar beet plants revealed that all three promoters are active in the storage root. Expression in storage root tissues is either restricted to the vascular zone (Tlp, His1-r) or is observed in the whole organ (Mll). The Mll gene is highly organ specific throughout different developmental stages of the sugar beet. In tobacco, the Tlp and Mll promoters drive reporter gene expression preferentially in hypocotyl and roots. The properties of the Mll promoter may be advantageous for the modification of sucrose metabolism in storage roots.


Asunto(s)
Beta vulgaris/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Regiones Promotoras Genéticas , Beta vulgaris/anatomía & histología , Beta vulgaris/metabolismo , Clonación Molecular , Genes Reporteros , Hipocótilo/anatomía & histología , Hipocótilo/metabolismo , Luciferasas/análisis , Proteínas de Plantas/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/anatomía & histología , Nicotiana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA