Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.265
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Behav Neurosci ; 138(2): 125-141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661671

RESUMEN

Selenium is an essential trace element that is delivered to the brain by the selenium transport protein selenoprotein P (SEPP1), primarily by binding to its receptor low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), at the blood-brain barrier. Selenium transport is required for several important brain functions, with transgenic deletion of either Sepp1 or Lrp8 resulting in severe neurological dysfunction and death in mice fed a selenium-deficient diet. Previous studies have reported that although feeding a standard chow diet can prevent these severe deficits, some motor coordination and cognitive dysfunction remain. Importantly, no single study has directly compared the motor and cognitive performance of the Sepp1 and Lrp8 knockout (KO) lines. Here, we report the results of a comprehensive parallel analysis of the motor and spatial learning and memory function of Sepp1 and Lrp8 knockout mice fed a standard mouse chow diet. Our results revealed that Sepp1 knockout mice raised on a selenium-replete diet displayed motor and cognitive function that was indistinguishable from their wild-type littermates. In contrast, we found that although Lrp8-knockout mice fed a selenium-replete diet had normal motor function, their spatial learning and memory showed subtle deficits. We also found that the deficit in baseline adult hippocampal neurogenesis exhibited by Lrp8-deficit mice could not be rescued by dietary selenium supplementation. Taken together, these findings further highlight the importance of selenium transport in maintaining healthy brain function. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Proteínas Relacionadas con Receptor de LDL , Ratones Noqueados , Selenio , Aprendizaje Espacial , Animales , Ratones , Dieta , Hipocampo/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Aprendizaje por Laberinto/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/fisiología , Memoria/efectos de los fármacos , Selenio/administración & dosificación , Selenio/deficiencia , Selenio/farmacología , Selenoproteína P/genética , Selenoproteína P/metabolismo , Aprendizaje Espacial/fisiología , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Memoria Espacial/efectos de los fármacos
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 447-454, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597435

RESUMEN

OBJECTIVE: To investigate the neuroprotective effect of Huangpu Tongqiao Capsule (HPTQ) in a rat model of Wilson disease (WD) and explore the underlying mechanisms. METHODS: SD rat models of WD were established by feeding of coppersupplemented chow diet and drinking water for 12 weeks, and starting from the 9th week, the rats were treated with low-, moderate- and high-dose HPTQ, penicillamine, or normal saline by gavage on a daily basis for 3 weeks. Copper levels in the liver and 24-h urine of the rats were detected, and their learning and memory abilities were evaluated using Morris water maze test. HE staining was used to observe morphological changes of CA1 region neurons in the hippocampus, and neuronal apoptosis was detected with TUNEL staining. Hippocampal expressions of endoplasmic reticulum stress (ERS)-mediated apoptosis pathway-related proteins GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 at both the mRNA and protein levels were detected using RT-qPCR, immunofluorescence assay or Western blotting. RESULTS: Compared with normal control rats, the rat models with copper overload-induced WD exhibited significantly increased copper levels in both the liver and 24-h urine, impaired learning and memory abilities, obvious hippocampal neuronal damage in the CA1 region and increased TUNEL-positive neurons (P<0.01), with also lowered mRNA and protein expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the hippocampus (all P<0.01). Treatments with HPTQ and penicillamine significantly lowered copper level in the liver but increased urinary copper level, improved learning and memory ability, alleviated neuronal damage and apoptosis in the hippocampus, and decreased hippocampal expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the rat models (P<0.01 or 0.05). CONCLUSION: HPTQ Capsule has neuroprotective effects in rat models of WD possibly by inhibiting ERS-mediated apoptosis pathway.


Asunto(s)
Disfunción Cognitiva , Degeneración Hepatolenticular , Ratas , Animales , Ratas Sprague-Dawley , Degeneración Hepatolenticular/tratamiento farmacológico , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Caspasa 12/metabolismo , Cobre/metabolismo , Cobre/farmacología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Apoptosis , Hipocampo/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Penicilamina/farmacología , Disfunción Cognitiva/tratamiento farmacológico , ARN Mensajero
3.
Sci Rep ; 14(1): 7766, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565927

RESUMEN

The occurrence of major depressive disorder is widespread and can be observed in individuals belonging to all societies. It has been suggested that changes in the NO pathway and heightened oxidative stress may play a role in developing this condition. Anethole is a diterpene aromatic compound found in the Umbelliferae, Apiaceae, and Schisandraceae families. It has potential pharmacological effects like antioxidant, anxiolytic, analgesic, anti-inflammatory, antidiabetic, gastroprotective, anticancer, estrogenic, and antimicrobial activities. This study aimed to investigate the potential antidepressant properties of Anethole in a mouse model experiencing maternal separation stress while also examining its impact on oxidative stress and nitrite levels. The research involved the participation of 40 male NMRI mice, separated into five distinct groups to conduct the study. The control group was administered 1 ml/kg of normal saline, while the MS groups were given normal saline and Anethole at 10, 50, and 100 mg/kg doses. The study comprised various behavioural tests, including the open field test (OFT), forced swimming test (FST), and splash test, to assess the effects of Anethole on the mice. In addition to the behavioural tests, measurements were taken to evaluate the total antioxidant capacity (TAC), malondialdehyde (MDA), and nitrite levels in the hippocampus of the mice. According to the findings, maternal separation stress (MS) led to depressive-like conduct in mice, including a rise in immobility duration during the FST and a reduction in the duration of grooming behaviour in the splash test. Additionally, the results indicated that MS correlated with an increase in the levels of MDA and nitrite and a reduction in the TAC in the hippocampus. However, the administration of Anethole resulted in an increase in grooming activity time during the splash test and a decrease in immobility time during the FST. Anethole also exhibited antioxidant characteristics, as demonstrated by its ability to lower MDA and nitrite levels while increasing the TAC in the hippocampus. The results suggest that Anethole may have an antidepressant-like impact on mice separated from their mothers, likely partly due to its antioxidant properties in the hippocampus.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Antioxidantes , Trastorno Depresivo Mayor , Humanos , Ratones , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Nitritos/metabolismo , Trastorno Depresivo Mayor/tratamiento farmacológico , Privación Materna , Solución Salina/farmacología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Estrés Oxidativo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Conducta Animal
4.
Zhen Ci Yan Jiu ; 49(4): 391-397, 2024 Apr 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38649207

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the rats' behavior and the transforming precursor of brain-derived neurotrophic factor (proBDNF) into mature brain-derived neurotrophic factor (mBDNF) in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia-reperfusion (IR), so as to explore its mechanisms underlying improvement of learning and memory ability. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 6 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (1 Hz/20 Hz) was applied to GV24 and GV20 for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria 24 h after modeling and after intervention. Morris water maze test was used to detect the learning and memory function of the rats. TTC staining was used to evaluate the cerebral infarction volume on the affected side. The protein expression levels of proBDNF, mBDNF, tissue plasminogen activator (tPA), tyrosine kinase receptor B (TrkB) and p75 neurotrophin receptor (p75NTR) in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score, the percentage of cerebral infarction volume and the expression levels of proBDNF and p75NTR protein in hippocampus were increased (P<0.01), while the times of crossing the original platform and the total distance in the target quadrant, the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were decreased (P<0.01, P<0.05) in the model group. Compared with the model group, the neurological function score, the percentage of cerebral infarction volume, and the expression levels of proBDNF and p75NTR protein in hippocampus were decreased (P<0.01, P<0.05), while the times of crossing the original platform, the total distance in the target quadrant, and the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were increased (P<0.05, P<0.01) in the EA group. CONCLUSIONS: EA can alleviate learning and memory impairment in IR rats, which may be related to its function in up-regulating the expression of tPA protein and promoting the transformation of proBDNF to mBDNF, thus improving the synaptic plasticity.


Asunto(s)
Isquemia Encefálica , Factor Neurotrófico Derivado del Encéfalo , Electroacupuntura , Trastornos de la Memoria , Plasticidad Neuronal , Precursores de Proteínas , Daño por Reperfusión , Animales , Humanos , Masculino , Ratas , Puntos de Acupuntura , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Hipocampo/metabolismo , Aprendizaje , Memoria , Trastornos de la Memoria/terapia , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/etiología , Ratas Sprague-Dawley , Receptor trkB/metabolismo , Receptor trkB/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/terapia , Daño por Reperfusión/genética
5.
Neuroscience ; 545: 185-195, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38522660

RESUMEN

Post-stroke cognitive impairment is a significant challenge with limited treatment options. Electroacupuncture (EA) has shown promise in improving cognitive function after stroke. Our study explores the underlying mechanism of EA in alleviating cognitive impairment through the inhibition of autophagy. We utilized a rat model of stroke induced by middle cerebral artery occlusion (MCAO) to evaluate the efficacy of EA. Treatment with EA was observed to markedly improve cognitive function and reduce inflammation in MCAO rats, as evidenced by decreased neurological deficit scores, shorter latencies in the water maze test, and diminished infarct volumes. EA also attenuated tissue damage in the hippocampus and lowered the levels of pro-inflammatory cytokines and oxidative stress markers. Although autophagy was upregulated in MCAO rats, EA treatment suppressed this process, indicated by a reduction in autophagosome formation and alteration of autophagy-related protein expression. The protective effects of EA were reversed by the autophagy activator rapamycin. EA treatment elevated the levels of microRNA (miR)-135a-5p expression, and suppression of this elevation attenuated the remedial efficacy of EA in addressing cognitive impairment and inflammation. MiR-135a-5p targeted mammalian target of rapamycin (mTOR)/NOD-like receptor protein 3 (NLRP3) signaling to repress autophagy. EA treatment inhibits autophagy and alleviates cognitive impairment in post-stroke rats. It exerts its beneficial effects by upregulating miR-135a-5p and targeting the mTOR/NLRP3 axis.


Asunto(s)
Autofagia , Disfunción Cognitiva , Electroacupuntura , MicroARNs , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Accidente Cerebrovascular , Serina-Treonina Quinasas TOR , Animales , Electroacupuntura/métodos , MicroARNs/metabolismo , Autofagia/fisiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Masculino , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Disfunción Cognitiva/metabolismo , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Ratas , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Transducción de Señal/fisiología , Hipocampo/metabolismo , Modelos Animales de Enfermedad
6.
Sci Total Environ ; 923: 171474, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447734

RESUMEN

Manganese (Mn), a common environmental and occupational risk factor for Parkinson's disease (PD), can cause central nervous system damage and gastrointestinal dysfunction. The melatonin has been shown to effectively improve neural damage and intestinal microbiota disturbances in animal models. This research investigated the mechanism by which exogenous melatonin prevented Mn-induced neurogenesis impairment and neural damage. Here, we established subchronic Mn-exposed mice model and melatonin supplement tests to evaluate the role of melatonin in alleviating Mn-induced neurogenesis impairment. Mn induced neurogenesis impairment and microglia overactivation, behavioral dysfunction, gut microbiota dysbiosis and serum metabolic disorder in mice. All these events were reversed with the melatonin supplement. The behavioral tests revealed that melatonin group showed approximately 30 % restoration of motor activity. According to quantitative real time polymerase chain reaction (qPCR) results, melatonin group showed remarkable restoration of the expression of dopamine neurons and neurogenesis markers, approximately 46.4 % (TH), 68.4 % (DCX in hippocampus) and 48 % (DCX in striatum), respectively. Interestingly, melatonin increased neurogenesis probably via the gut microbiota and metabolism modulation. The correlation analysis of differentially expressed genes associated with hippocampal neurogenesis indicated that Firmicutes-lipid metabolism might mediate the critical repair role of melatonin in neurogenesis in Mn-exposed mice. In conclusion, exogenous melatonin supplementation can promote neurogenesis, and restore neuron loss and neural function in Mn-exposed mice, and the multi-omics results provide new research ideas for future mechanistic studies.


Asunto(s)
Microbioma Gastrointestinal , Melatonina , Ratones , Animales , Melatonina/farmacología , Melatonina/metabolismo , Manganeso/metabolismo , Hipocampo/metabolismo , Neuronas Dopaminérgicas
7.
Zhen Ci Yan Jiu ; 49(3): 265-273, 2024 Mar 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38500323

RESUMEN

OBJECTIVES: To observe the effects of electroacupuncture (EA) on the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/cAMP response element binding protein (CREB) signaling pathway-related proteins and hippocampal neuron apoptosis in diabetic cognitive impairment (DCI) rats, and to explore the mechanisms of EA in treating DCI. METHODS: Adult male SD rats were randomly divided into normal, model, and EA groups, with 12 rats in each group. The animal model of DCI was replicated using a high-fat, high-sugar diet combined with low-dose streptozotocin. The EA group received EA stimulation at "Yishu" (EX-B6), "Zusanli" (ST36), "Baihui" (GV20), and "Dazhui" (GV14). Blood glucose contents of the rats in each group were measured. The Morris water maze test was used to assess the learning and memory abilities of rats. Transmission electron microscopy was used to observe the ultrastructure of hippocampal CA1 neurons. Nissl staining was used to observe the pathological changes in hippocampal CA1 neurons. TUNEL staining was used to detect the apoptosis in hippocampal CA1 neurons. Western blot was used to detect the protein expression levels of p-PI3K/PI3K and p-Akt/Akt, as well as CREB, p-CREB, cysteine aspartate pro-tease (Caspase)-3, B-cell lymphoma-2 (Bcl-2), and Bcl-2 related X protein (Bax) in the hippocampal tissue of rats. RESULTS: Compared with the normal group, the rats' random blood glucose contents were significantly increased (P<0.01), the escape latency prolonged (P<0.01), and the original platform crossing counts reduced (P<0.01) in the model group. Significant damage to hippocampal CA1 neurons, a significantly increased neuronal apoptosis index (P<0.01), decreased ratio of p-PI3K/PI3K and p-Akt/Akt and expression of CREB, p-CREB and Bcl-2 proteins, increased expression of Caspase-3 and Bax proteins (P<0.01) were observed in the hippocampal tissue of rats in the model group. Compared with the model group, the rats in the EA group showed decreased random blood glucose content (P<0.01), shortened escape latency (P<0.01), increased original platform crossing counts (P<0.01), improved quantity and pathological morphology and ultrastructure of hippocampal CA1 neurons, reduced neuronal apoptosis index (P<0.01), increased ratio of p-PI3K/PI3K and p-Akt/Akt, and expression of CREB, p-CREB and Bcl-2 proteins (P<0.05, P<0.01) in the hippocampal tissue, and decreased expression of Caspase-3 and Bax proteins (P<0.01). CONCLUSIONS: EA can improve the learning and memory abilities of rats with DCI, and the mechanism may be related to the regulation of the expression of PI3K/Akt/CREB signaling pathway-related proteins, which attenuates the neuronal apoptosis in the hippocampus of rats, and improves the neural function.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus , Electroacupuntura , Ratas , Masculino , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Fosfatidilinositol 3-Quinasas/genética , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Glucemia , Transducción de Señal , Hipocampo/metabolismo , Apoptosis , Disfunción Cognitiva/genética , Disfunción Cognitiva/terapia
8.
Phytomedicine ; 128: 155531, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492366

RESUMEN

BACKGROUND: Cognitive dysfunction (CD) is a neurodegenerative disease characterized primarily by the decline of learning and memory abilities. The physiological and pathological mechanisms of CD are very complex, which is mainly related to normal function of the hippocampus. Lancao decoction (LC) is a Chinese medicine formula, which has been used to treat neurodegenerative disorders. However, the potential of LC for the treatment of CD, as well as its underlying mechanisms, is unclear. PURPOSE: In the study, we aimed to reveal the functional and neuronal mechanisms of LC's treatments for CD in scopolamine-induced mice. METHODS: Gas chromatography (GC) was used to determine the stability of LC's extraction. CD model was established by the chronic induction of scopolamine (Scop, 1 mg/kg/day) for 1 week. Behavioral tests including morris water maze (MWM) and y-maze were used to evaluate learning and memory abilities of mice after LC's treatments. Immunofluorescence was used to detected the expressions of cFOS, Brdu and Ki67 after LC's treatments. Pharmacological blockade experiments explored the role of α-Amino-3­hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in LC's treatments for CD and its relationships with regeneration, activities and differentiation of neurons. RESULTS: The results showed that LC was capable of improving spatial learning and memory and spontaneous alternating abilities in Scop-induced mice, which was similar to donepezil. LC could increase the number of cFOS positive cells, which was used as a marker of neuronal activity to upregulate by neuronal activities in hippocampus, but donepezil did not. Moreover, LC could strengthen neurogenesis and neuro-differentiation by increasing the number of Brdu and Ki67 positive cells in hippocampal dentate gyrus (DG), meanwhile, donepezil could only enhance the number of Ki67 positive cells. Transient inhibition of AMPAR by NBQX blunted the function of LC's treatment for CD and inhibited the enhanced effect of LC on Scop-induced hippocampal neuronal excitability and neurogenesis in mice. CONCLUSION: To sum up, our study demonstrated that LC had the function of treating CD by enhancing content of acetylcholine (ACh) to activate AMPAR, which further up-regulated neurogenesis and neuronal differentiation to strengthen neuroactivities in hippocampus.


Asunto(s)
Disfunción Cognitiva , Medicamentos Herbarios Chinos , Hipocampo , Aprendizaje por Laberinto , Animales , Disfunción Cognitiva/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Escopolamina , Modelos Animales de Enfermedad , Memoria/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Ratones Endogámicos ICR
9.
Environ Toxicol Pharmacol ; 107: 104417, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493879

RESUMEN

The present study was designed to evaluate whether AuNPs (gold nanoparticles) synthesized with the Cynara scolymus (CS) leaf exert protective and/or alleviative effects on arsenic (As)-induced hippocampal neurotoxicity in mice. Neurotoxicity in mice was developed by orally treating 10 mg/kg/day sodium arsenite (NaAsO2) for 21 days. 10 µg/g AuNPs, 1.6 g/kg CS, and 10 µg/g CS-AuNPs were administered orally simultaneously with 10 mg/kg As. CS and CS-AuNPs treatments showed down-regulation of TNF-α and IL-1ß levels. CS and CS-AuNPs also ameliorated apoptosis and reduced the alterations in the expression levels of D1 and D2 dopamine receptors induced by As. Simultaneous treatment with CS and CS-AuNPs improved As-induced learning, memory deficits, and motor coordination in mice assessed by water maze and locomotor tests, respectively. The results of this study provide evidence that CS-AuNPs demonstrated neuroprotective roles with antioxidant, anti-inflammatory, and anti-apoptotic effects, as well as improving D1 and D2 signaling, and eventually reversed neurobehavioral impairments.


Asunto(s)
Arsénico , Cynara scolymus , Nanopartículas del Metal , Extractos Vegetales , Ratones , Animales , Arsénico/metabolismo , Oro , Ratones Endogámicos BALB C , Nanopartículas del Metal/toxicidad , Hipocampo/metabolismo
10.
J Affect Disord ; 354: 574-588, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490587

RESUMEN

BACKGROUND: Chronic stress is an important risk factor for the development of major depressive disorder (MDD). Recent studies have shown microbiome dysbiosis as one of the pathogenic mechanisms associated with MDD. Thus, it is important to find novel non-pharmacological therapeutic strategies that can modulate gut microbiota and brain activity. One such strategy is photobiomodulation (PBM), which involves the non-invasive use of light. OBJECTIVE/HYPOTHESIS: Brain-gut PBM could have a synergistic beneficial effect on the alterations induced by chronic stress. METHODS: We employed the chronic unpredictable mild stress (CUMS) protocol to induce a depressive-like state in mice. Subsequently, we administered brain-gut PBM for 6 min per day over a period of 3 weeks. Following PBM treatment, we examined behavioral, structural, molecular, and cellular alterations induced by CUMS. RESULTS: We observed that the CUMS protocol induces profound behavioral alterations and an increase of sirtuin1 (Sirt1) levels in the hippocampus. We then combined the stress protocol with PBM and found that tissue-combined PBM was able to rescue cognitive alterations induced by CUMS. This rescue was accompanied by a restoration of hippocampal Sirt1 levels, prevention of spine density loss in the CA1 of the hippocampus, and the modulation of the gut microbiome. PBM was also effective in reducing neuroinflammation and modulating the morphology of Iba1-positive microglia. LIMITATIONS: The molecular mechanisms behind the beneficial effects of tissue-combined PBM are not fully understood. CONCLUSIONS: Our results suggest that non-invasive photobiomodulation of both the brain and the gut microbiome could be beneficial in the context of stress-induced MDD.


Asunto(s)
Trastorno Depresivo Mayor , Terapia por Luz de Baja Intensidad , Ratones , Animales , Depresión/psicología , Sirtuina 1/metabolismo , Enfermedades Neuroinflamatorias , Encéfalo/metabolismo , Hipocampo/metabolismo , Cognición , Estrés Psicológico/terapia , Estrés Psicológico/tratamiento farmacológico , Modelos Animales de Enfermedad
11.
Phytother Res ; 38(5): 2462-2481, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444049

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder where oxidative stress, induced by ferroptosis, has been linked to neuronal damage and cognitive deficits. The objective of this study is to investigate if the potential therapeutic agent, Curculigoside (CUR), could ameliorate AD by inhibiting ferroptosis. The potential therapeutic targets, such as GPX4 and SLC7A11, were identified using weighted gene co-expression network analysis (WGCNA). Concurrently, CUR was also screened against these potential targets using various analytical methods. For the in vivo studies, intragastric administration of CUR significantly ameliorated cognitive impairment in AD model mice induced by scopolamine and okadaic acid (OA). In vitro, CUR protected neuronal cells by altering the levels of ferroptosis-related specific markers in OA and scopolamine-induced neurotoxicity. The administration of CUR through intragastric route significantly reduced the levels of AD-promoting factors (such as Aß1-42, p-tau) and ferroptosis-promoting factors in the hippocampus and cortex of AD mice. Furthermore, CUR up-regulated the expression of GPX4 and decreased the expression of SLC7A11 in the ferroptosis signaling pathway, thereby increasing the ratio of glutathione (GSH)/oxidized glutathione (GSSG) in vivo and vitro. In conclusion, the cumulative results suggest that the natural compound CUR may serve as a promising therapeutic agent to ameliorate AD by inhibiting ferroptosis.


Asunto(s)
Enfermedad de Alzheimer , Benzoatos , Modelos Animales de Enfermedad , Ferroptosis , Glucósidos , Lignanos , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Ferroptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones , Glucósidos/farmacología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Masculino , Lignanos/farmacología , Sistema de Transporte de Aminoácidos y+/metabolismo , Péptidos beta-Amiloides/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Medicina Tradicional China , Ratones Endogámicos C57BL , Medicamentos Herbarios Chinos/farmacología
12.
Phytomedicine ; 128: 155519, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492365

RESUMEN

BACKGROUND: Depression is a common mental illness characterised by abnormal and depressed emotions. Total paeony glycoside (TPG) is a naturally active saponin extracted from the traditional Chinese medicine Radix Paeoniae rubra. However, the antidepressant and neuroinflammatory effects of TPG have not been thoroughly studied. PURPOSE: To study the therapeutic potential of TGP in depression caused by neuronal injury and neuroinflammation and to explore the mechanism of TGP and the relationship between the NLRP3 inflammasome, pyroptosis, and autophagy. STUDY DESIGN: A chronic unpredictable mild stress (CUMS)-induced depression model and a cell model of corticosterone (CORT)-induced hippocampal neuron injury were established to evaluate the therapeutic effects of TPG. METHODS: The composition of TPG was analysed using high-performance liquid chromatography and mass spectrometry. The effects of TPG and fluoxetine on depression-like behaviour, neuronal injury, neuroinflammation, pyroptosis, and mitochondrial autophagy in the mice models were evaluated. RESULTS: TGP alleviated depression-like behaviours in mice and inhibited hippocampal neuronal apoptosis. The secretion of inflammatory cytokines was significantly reduced in CORT-induced hippocampal neuron cells and in the serum of a mouse model of CUMS-induced depression. In addition, TGP treatment reduced the levels of NLRP3 family pyrin structural domains, including NLRP3, pro-caspase-1, caspase-1, and IL-1ß, and the pyroptosis related proteins such as GSDMD-N. Importantly, TPG attenuated mitochondrial dysfunction, promoted the clearance of damaged mitochondria, and the activation of mitochondrial autophagy, which reduced ROS accumulation and NLRP3 inflammasome activation. An in-depth study observed that the regulatory effect of TPG on autophagy was attenuated by the autophagy inhibitor 3-methyladenine (3-MA) in vitro and in vivo. However, administration of the caspase-1 inhibitor Belnacasan (VX-765) successfully inhibited pyroptosis and showed a synergistic therapeutic effect with TPG. CONCLUSION: These results indicate that TPG can repair neuronal damage by activating autophagy, restoring mitochondrial function, and reducing inflammation-mediated pyroptosis, thereby playing an important role in the alleviation of neuroinflammation and depression. This study suggests new potential drugs and treatment strategies for neuroinflammation-related diseases and depression.


Asunto(s)
Antidepresivos , Autofagia , Depresión , Modelos Animales de Enfermedad , Glicósidos , Hipocampo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Paeonia , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Autofagia/efectos de los fármacos , Antidepresivos/farmacología , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Ratones , Masculino , Glicósidos/farmacología , Piroptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Depresión/tratamiento farmacológico , Paeonia/química , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología
13.
Phytomedicine ; 128: 155433, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547621

RESUMEN

BACKGROUND: Post-stroke depression (PSD) affects approximately one-third of stroke survivors, leading to adverse outcomes in rehabilitation, reduced quality of life, and increased mortality rates. Despite these implications, the underlying causes of PSD remain unclear, posing challenges for prevention and treatment. Echinacoside (ECH), a natural compound with known neuroprotective and antidepressant properties, holds significant therapeutic potential for PSD. However, the precise mechanism of its action remains unknown. PURPOSE: To unravel the specific mechanism through which ECH alleviates PSD by exploring the intricate interplay between ECH and Nrf2, as well as its impact on the BDNF/TrkB signaling axis. STUDY DESIGN AND METHODS: A rat PSD model was established though middle cerebral artery occlusion coupled with chronic unpredictable mild stress, followed by ECH treatment. The rats' depressive state was evaluated using the sucrose preference test and force swimming test. Brain damage was assessed through TTC staining, Nissl staining, and TUNEL assay. The multifaceted mechanism of ECH in PSD was investigated using immunofluorescence, immunohistochemistry, RT-qPCR, dual-luciferase assay, and western blotting. Additionally, the interaction between ECH and Nrf2 was explored through molecular docking and microscale thermophoresis. RESULTS: Our findings unveiled a novel facet of ECH action, demonstrating its unique ability to upregulate Nrf2 through acetylation within the hippocampus of PSD-affected rats (p < 0.05). Moreover, ECH showcased its distinctive potential by enhancing BDNF transcriptional activity, activating the BDNF/TrkB signaling axis, and orchestrating a comprehensive response against oxidative stress and apoptosis, thereby alleviating PSD symptoms in rats (p < 0.05). CONCLUSIONS: This study not only provides insights into the pivotal role of Nrf2 in mediating the BDNF/TrkB axis activation by ECH but also highlights the novelty of ECH's mechanism in addressing PSD. The elucidation of these unique aspects positions ECH as a groundbreaking candidate for further exploration and development in the realm of PSD intervention.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Glicósidos , Factor 2 Relacionado con NF-E2 , Ratas Sprague-Dawley , Transducción de Señal , Accidente Cerebrovascular , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/etiología , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/complicaciones , Ratas , Glicósidos/farmacología , Acetilación , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Antidepresivos/farmacología , Simulación del Acoplamiento Molecular , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico
14.
Phytomedicine ; 128: 155518, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38552431

RESUMEN

BACKGROUND: Gastrodia elata (Orchidaceae) is a medicinal plant used in traditional Chinese medicine. The rhizomes contain numerous active components, of which Gastrodin (p-hydroxymethylphenyl-B-D-glucopyranoside) forms the basis of the traditional medicine Gastrodiae Rhizoma. Gastrodin is also found in other medicinal plants and has neuroprotective, antioxidant, and anti-inflammatory effects. Neuroinflammation plays a crucial role in neurodegeneration. Research indicates that consuming meals and drinks containing Gastrodiaelata can enhance cognitive functioning and memory in elderly patients. The mechanisms relevant to the problem have not been completely understood. PURPOSE: The aim was to examine the in vivo and in vitro anti-neuroinflammatory effects of Gastrodin. STUDY DESIGN: The neuroprotective effects of Gastrodin on the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation in LPS-treated C57BL/6 mice and BV-2 cells were investigated. METHODS: 1. C57BL/6 mice were assigned to model, gastrodin, donepezil, and control groups (n = 10 per group). The Gastrodin group received 100 mg/kg/d for five days, and the Dopenezil group 1.3 mg/kg/d. A neuroinflammation model was established by administering intraperitoneal injections of 2 mg/kg LPS to all groups, excluding the control. To induce microglial activation in Gastrodin-treated mouse microglial BV-2 cells, 1 µg/ml LPS was introduced for 24 h Morris water mazes were utilized to evaluate learning and spatial memory. Expression and subcellular localization of TLR4/TRAF6/NF-κB axis-related proteins and p-Stat3, Iba-1, GFAP, iNOS, and CD206 were assessed by immunofluorescence, western blots, and ELISA. qRT-PCR was performed to determine and measure IL-1ß, TNF-α, cell migration, and phagocytosis. Overexpression of TRAF6 was induced by transfection, and the effect of Gastrodin on IL-1ß and p-NF-κB p65 levels was assessed. RESULTS: 1. In mice, gastrodin treatment mitigated LPS-induced deficits in learning and spatial memory, as well as reducing neuroinflammation in the hippocampus, expression of TLR4/TRAF6/NF-κB pathway proteins, activation of microglia and astrocytes, and phosphorylation of Stat3. 2. Gastrodin pretreatment improved LPS-induced inflammation in vitro, reducing expression of TLR4/TRAF6/NF-κB-associated proteins and p-Stat3, inducing microglial transformation from M1 to M2, and inhibiting migration and phagocytosis. Overexpression of TRAF6 inhibited the Gastrodin-induced effects. CONCLUSION: Gastrodin suppresses neuroinflammation and microglial activation by modifying the TLR4/TRAF6/NF-κB pathway and Stat3 phosphorylation.


Asunto(s)
Enfermedad de Alzheimer , Alcoholes Bencílicos , Modelos Animales de Enfermedad , Glucósidos , Ratones Endogámicos C57BL , Microglía , FN-kappa B , Enfermedades Neuroinflamatorias , Factor 6 Asociado a Receptor de TNF , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Alcoholes Bencílicos/farmacología , Glucósidos/farmacología , Factor 6 Asociado a Receptor de TNF/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , FN-kappa B/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Ratones , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Masculino , Fármacos Neuroprotectores/farmacología , Gastrodia/química , Transducción de Señal/efectos de los fármacos , Lipopolisacáridos , Factor de Transcripción STAT3/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Línea Celular , Fosforilación/efectos de los fármacos , Antiinflamatorios/farmacología
15.
J Chem Neuroanat ; 137: 102398, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342332

RESUMEN

Diazinon (DZN) an organophosphate (OP), with the most important mechanism of action of DZN being induction of oxidative stress (OS) and inhibition of the enzyme acetylcholinesterase (AChE). Verbascum cheiranthifolium (VER) and Biebersteinia multifida (BM) belong to the Scrophulariaceae and Biebersteiniaceae family respectively. These plants are widely used in Iranian traditional medicine due to their beneficial effects. Thus, this research aimed to appraise the protective effects of the methanolic extract of the VER and BM on changes in the level of expression of α7 and α4 subunits of nicotinic acetylcholine receptors (nAChRs) in hippocampus (HPC) of DZN-treated rats. In this research, 36 male Wistar rats were used and randomly divided into six groups: Control, DZN (40 mg/kg), VER (1 g/kg), DZN+VER (40 mg/kg+1 g/kg), BM (150 mg/kg), and DZN+BM (40 mg/kg+150 mg/kg). At the end of treatment periods, the animals of all groups underwent the Morris water maze (MWM) test. The rats were anesthetized, and blood sampling was performed. Eventually, the brain was removed for histological study and evaluation of OS parameters. The results indicated that DZN increased the extent of expression of nAChRs in the HPC and significantly inhibited cholinesterase (ChEs) activity plus OS parameters. Also, in MWM, the time to find the platform was significantly longer in the DZN group, while the time and the distance in the probe test were lower than in the control groups. VER and BM extract in the treatment groups simultaneously improved the extent of expression of nAChRs, ChEs activity, as well as the parameters of OS and spatial memory significantly. In conclusion, our results support the neuroprotective properties of VER and BM extract versus DZN in rats. Accordingly, the extracts of VER and BM may be useful as an approach for the treatment of learning disorders and memory enhancement.


Asunto(s)
Diazinón , Hipocampo , Extractos Vegetales , Ratas Wistar , Animales , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Diazinón/toxicidad , Ratas , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Fármacos Neuroprotectores/farmacología , Insecticidas/toxicidad , Metanol/química , Estrés Oxidativo/efectos de los fármacos , Inhibidores de la Colinesterasa/farmacología
16.
J Ethnopharmacol ; 327: 117973, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38403002

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: It has been found that pilose antler peptide has an antidepressant effect on depression. However, the exact molecular mechanism of its antidepressant effect is still unclear. AIM OF THE STUDY: The study sought to determine the impact of monomeric pilose antler peptide (PAP; sequence LVLVEAELRE) on depression as well as investigate potential molecular mechanisms. MATERIALS AND METHODS: Chronic unexpected mild stress (CUMS) was used to establish the model, and the effect of PAP on CUMS mice was detected by the behavioral test. The influence of PAP on neuronal cells and dendritic spine density was observed by immunofluorescence and Golgi staining. FGFR3 and the CaMKII-associated pathway were identified using quantitative real-time polymerase chain reaction, and Western blot analysis was utilized to measure their proteins and gene expression levels. Molecular docking and microscale thermophoresis were applied to detect the binding of PAP and FGFR3. Finally, the effect of FGFR3's overexpression on PAP treatment of depression was detected. RESULTS: PAP alleviated the changes in depressive behavior induced by CUMS, promoted the growth of nerve cells, and the density of dendritic spines was increased to its original state. PAP therapy successfully downregulated the expression of FGFR3 and ERK1/2 while upregulating the expression of CREB, BDNF, and CaMKII. CONCLUSION: Based on the current research, PAP has a therapeutic effect on depression brought on by CUMS by inhibiting FGFR3 expression and enhancing synaptic plasticity.


Asunto(s)
Depresión , Péptidos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Ratones , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Simulación del Acoplamiento Molecular , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad
17.
J Nutr ; 154(4): 1141-1152, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408730

RESUMEN

BACKGROUND: Developmental iron deficiency (ID) is associated with long-term cognitive and affective behavioral impairments in humans. Preclinical studies have shown that developmental ID has short- and long-term effects on gene regulation. Prenatal choline supplementation partially rescues early-life ID-induced cognitive deficits in adult male rats. OBJECTIVES: To identify acute and long-term changes in biological processes regulated by developmental ID and modifiable by choline. METHODS: This study compares the hippocampal transcriptomes of postnatal day (P) 15 iron-deficient (acute) and P65 formerly ID (persistent) rats with or without prenatal choline treatment. Pregnant rats were fed an ID (4 mg/kg Fe) or iron-sufficient (IS) (200 mg/kg Fe) diet from gestational day (G) 2 to P7 with or without choline supplementation (5 g/kg choline) from G11 to G18. Hippocampi were collected from P15 or P65 offspring and analyzed for gene expression by RNA sequencing. RESULTS: Developmental ID-induced changes suggested modified activity of oxidative phosphorylation and fatty acid metabolism. Prenatal choline supplementation induced robust changes in gene expression, particularly in iron-deficient animals, where it partially mitigated the early-life ID-dysregulated genes. Choline supplementation also altered the hippocampal transcriptome in the IS rats, with indications for both beneficial and adverse effects. CONCLUSIONS: This study provided global assessments of gene expression regulated by iron and choline. Our new findings highlight genes responding to iron or choline treatments, including a potentially novel choline-regulated transporter (IPO7), with shared effects on neuroinflammation in the male rat hippocampus.


Asunto(s)
Deficiencias de Hierro , Efectos Tardíos de la Exposición Prenatal , Embarazo , Humanos , Femenino , Ratas , Animales , Masculino , Hierro/metabolismo , Transcriptoma , Colina , Animales Recién Nacidos , Ratas Sprague-Dawley , Vitaminas/farmacología , Hipocampo/metabolismo
18.
Neuroscience ; 542: 47-58, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38364964

RESUMEN

This study aimed to investigate the anti-depressant effect of traditional pediatric massage (TPM) in adolescent rats and its possible mechanism. The adolescent depression model in rats was established by using chronic unpredictable mild stress (CUMS). All rats were randomly divided into five groups (seven per group), including the groups of control (CON), CUMS, CUMS with TPM, CUMS with back stroking massage (BSM) and CUMS with fluoxetine (FLX). The tests of sucrose preference, Morris water maze and elevated plus maze were used to evaluate depression-related behaviors. Plasma corticosterone (CORT) level was measured by ELISA. The gene and protein expressions of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) were measured by RT-qPCR and IHC respectively. The results showed that CUMS induced depression-related behaviors in the adolescent rats, along with decreased weight gain and reduced hippocampal expressions of GR, IGF-1 and BDNF. TPM could effectively prevent depression-related behaviors in CUMS-exposed adolescent rats, manifested as increasing weight gain, sucrose consumption, ratio of open-arm entry, times of crossing the specific quadrant and shortening escape latency. TPM also decreased CORT level in plasma, together with enhancing expressions of GR, IGF-1 and BDNF in the hippocampus. These results may support the clinical application of TPM to prevent and treat adolescent depression.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Depresión , Humanos , Niño , Ratas , Animales , Adolescente , Depresión/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Antidepresivos/metabolismo , Receptores de Glucocorticoides/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hipocampo/metabolismo , Estrés Psicológico/metabolismo , Masaje , Sacarosa/metabolismo , Aumento de Peso , Modelos Animales de Enfermedad
19.
CNS Neurosci Ther ; 30(2): e14612, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334030

RESUMEN

AIMS: Numerous studies on animals have shown that exposure to general anesthetics in infant stage may cause neurocognitive impairment. However, the exact mechanism is not clear. The dysfunction of iron metabolism can cause neurodevelopmental disorders. Therefore, we investigated the effect of iron metabolism disorder induced by sevoflurane (Sev) on cognitive function and the proliferation of neural precursor cells (NPCs) and neural stem cells (NSCs) in infant mice. METHODS: C57BL/6 mice of postnatal day 14 and neural stem cells NE4C were treated with 2% Sev for 6 h. We used the Morris water maze (MWM) to test the cognitive function of infant mice. The proliferation of NPCs was measured using bromodeoxyuridine (BrdU) label and their markers Ki67 and Pax6 in infant brain tissues 12 h after anesthesia. Meanwhile, we used immunohistochemical stain, immunofluorescence assay, western blot, and flow cytometer to evaluate the myelinogenesis, iron levels, and cell proliferation in cortex and hippocampus or in NE4C cells. RESULTS: The results showed that Sev significantly caused cognitive deficiency in infant mice. Further, we found that Sev inhibited oligodendrocytes proliferation and myelinogenesis by decreasing MBP and CC-1 expression and iron levels. Meanwhile, Sev also induced the iron deficiency in neurons and NSCs by downregulating FtH and FtL expression and upregulating the TfR1 expression in the cortex and hippocampus, which dramatically suppressed the proliferation of NSCs and NPCs as indicated by decreasing the colocalization of Pax6+ and BrdU+ cells, and caused the decrease in the number of neurons. Interestingly, iron supplementation before anesthesia significantly improved iron deficiency in cortex and hippocampus and cognitive deficiency induced by Sev in infant mice. Iron therapy inhibited the decrease of MBP expression, iron levels in neurons and oligodendrocytes, and DNA synthesis of Pax6+ cells in hippocampus induced by Sev. Meanwhile, the number of neurons was partially recovered in hippocampus. CONCLUSION: The results from the present study demonstrated that Sev-induced iron deficiency might be a new mechanism of cognitive impairment caused by inhaled anesthetics in infant mice. Iron supplementation before anesthesia is an effective strategy to prevent cognitive impairment caused by Sev in infants.


Asunto(s)
Disfunción Cognitiva , Deficiencias de Hierro , Células-Madre Neurales , Humanos , Ratones , Animales , Sevoflurano/toxicidad , Células-Madre Neurales/metabolismo , Bromodesoxiuridina/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Proliferación Celular , Hierro/metabolismo , Hipocampo/metabolismo
20.
Environ Toxicol ; 39(5): 3198-3210, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351887

RESUMEN

In this presentation, we explored the molecular mechanisms of N. nucifera leaf water extracts (NLWEs) and polyphenol extract (NLPE) on scopolamine-induced cell apoptosis and cognition defects. The administration of NLWE and NLPE did not alter the body weight and serum biomarker rs and significantly ameliorated scopolamine-induced cognition impairment according to Y-maze test analysis. In mice, treatment with scopolamine disrupted normal histoarchitecture in the hippocampus, whereas the administration of NLWE and NLPE reversed the phenomenon. Western blot analysis revealed that scopolamine mitigated the expression of doublecortin (DCX), nestin, and NeuN, and cotreatment with NLWE or NLPE significantly recovered the expression of these proteins. NLWE and NLPE upregulated DCX and NeuN expression in the hippocampus region, as evidenced by immunohistochemical staining analysis of scopolamine-treated mice. NLWE and NLPE obviously elevated brain-derived neurotrophic factor (BDNF) and enhanced its downstream proteins activity. NLWE and NLPE attenuated scopolamine-induced apoptosis by reducing Bax and increased Bcl-2 expression. In addition, scopolamine also triggered apoptosis in human neuroblastoma SH-SY5Y cells whereas co-treatment with NLWE or quercetin-3-glucuronide (Q3G) reversed the phenomenon. NLWE or Q3G enhanced Bcl-2 and reduced Bax expression in the presence of scopolamine in SH-SY5Y cells. NLWE or Q3G recovered the inhibitory effects of scopolamine on neurogenesis and BDNF signals in SH-SY5Y cells. Overall, our results revealed that N. nucifera leaf extracts and Q3G promoted adult hippocampus neurogenesis and prevented apoptosis to mitigate scopolamine-induced cognition dysfunction through the regulation of BDNF signaling pathway.


Asunto(s)
Nelumbo , Neuroblastoma , Ratones , Humanos , Animales , Escopolamina/farmacología , Escopolamina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Nelumbo/química , Nelumbo/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Neuroblastoma/metabolismo , Hipocampo/metabolismo , Neurogénesis , Aprendizaje por Laberinto , Extractos Vegetales/química , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA