Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Diabetes ; 72(8): 1154-1160, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216640

RESUMEN

Lactate is an important metabolic substrate for sustaining brain energy requirements when glucose supplies are limited. Recurring exposure to hypoglycemia (RH) raises lactate levels in the ventromedial hypothalamus (VMH), which contributes to counterregulatory failure. However, the source of this lactate remains unclear. The current study investigates whether astrocytic glycogen serves as the major source of lactate in the VMH of RH rats. By decreasing the expression of a key lactate transporter in VMH astrocytes of RH rats, we reduced extracellular lactate concentrations, suggesting excess lactate was locally produced from astrocytes. To determine whether astrocytic glycogen serves as the major source of lactate, we chronically delivered either artificial extracellular fluid or 1,4-dideoxy-1,4-imino-d-arabinitol to inhibit glycogen turnover in the VMH of RH animals. Inhibiting glycogen turnover in RH animals prevented the rise in VMH lactate and the development of counterregulatory failure. Lastly, we noted that RH led to an increase in glycogen shunt activity in response to hypoglycemia and elevated glycogen phosphorylase activity in the hours following a bout of hypoglycemia. Our data suggest that dysregulation of astrocytic glycogen metabolism following RH may be responsible, at least in part, for the rise in VMH lactate levels. ARTICLE HIGHLIGHTS: Astrocytic glycogen serves as the major source of elevated lactate levels in the ventromedial hypothalamus (VMH) of animals exposed to recurring episodes of hypoglycemia. Antecedent hypoglycemia alters VMH glycogen turnover. Antecedent exposure to hypoglycemia enhances glycogen shunt activity in the VMH during subsequent bouts of hypoglycemia. In the immediate hours following a bout of hypoglycemia, sustained elevations in glycogen phosphorylase activity in the VMH of recurrently hypoglycemic animals contribute to sustained elevations in local lactate levels.


Asunto(s)
Hipoglucemia , Ácido Láctico , Ratas , Animales , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Glucógeno/metabolismo , Astrocitos/metabolismo , Ratas Sprague-Dawley , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Glucógeno Fosforilasa/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo
2.
Redox Biol ; 56: 102420, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35969998

RESUMEN

Vitamin C (VC, l-ascorbic acid) is an essential nutrient that plays a key role in metabolism and functions as a potent antioxidant in regulating the S-nitrosylation and denitrosylation of target proteins. The precise function of VC deprivation in glucose homeostasis is still unknown. In the absence of L-gulono-1,4-lactone oxidoreductase, an essential enzyme for the last step of VC synthesis, VC deprivation resulted in persistent hypoglycemia and subsequent impairment of cognitive functions in female but not male mouse pups. The cognitive disorders caused by VC deprivation were largely reversed when these female pups were given glucose. VC deprivation-induced S-nitrosylation of glycogen synthase kinase 3ß (GSK3ß) at Cys14, which activated GSK3ß and inactivated glycogen synthase to decrease glycogen synthesis and storage under the feeding condition, while VC deprivation inactivated glycogen phosphorylase to decrease glycogenolysis under the fasting condition, ultimately leading to hypoglycemia and cognitive disorders. Treatment with Nω-Nitro-l-arginine methyl ester (l-NAME), a specific inhibitor of nitric oxide synthase, on the other hand, effectively prevented S-nitrosylation and activation of GSK3ß in female pups in response to the VC deprivation and reversed hypoglycemia and cognitive disorders. Overall, this research identifies S-nitrosylation of GSK3ß and subsequent GSK3ß activation as a previously unknown mechanism controlling glucose homeostasis in female pups in response to VC deprivation, implying that VC supplementation in the prevention of hypoglycemia and cognitive disorders should be considered in the certain groups of people, particularly young females.


Asunto(s)
Deficiencia de Ácido Ascórbico , Cognición , Hipoglucemia , Trastornos Neurocognitivos , Animales , Antioxidantes , Ácido Ascórbico/farmacología , Deficiencia de Ácido Ascórbico/complicaciones , Deficiencia de Ácido Ascórbico/metabolismo , Femenino , Glucosa/metabolismo , Glucógeno/metabolismo , Glucógeno Fosforilasa , Glucógeno Sintasa/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Hipoglucemia/etiología , Hipoglucemia/metabolismo , Lactonas , Ratones , NG-Nitroarginina Metil Éster/farmacología , Trastornos Neurocognitivos/etiología , Trastornos Neurocognitivos/metabolismo , Óxido Nítrico Sintasa
3.
Mol Metab ; 61: 101479, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35339728

RESUMEN

OBJECTIVES: Glucagon secretion to stimulate hepatic glucose production is the first line of defense against hypoglycemia. This response is triggered by so far incompletely characterized central hypoglycemia-sensing mechanisms, which control autonomous nervous activity and hormone secretion. The objective of this study was to identify novel hypothalamic genes controlling insulin-induced glucagon secretion. METHODS: To obtain new information on the mechanisms of hypothalamic hypoglycemia sensing, we combined genetic and transcriptomic analysis of glucagon response to insulin-induced hypoglycemia in a panel of BXD recombinant inbred mice. RESULTS: We identified two QTLs on chromosome 8 and chromosome 15. We further investigated the role of Irak4 and Cpne8, both located in the QTL on chromosome 15, in C57BL/6J and DBA/2J mice, the BXD mouse parental strains. We found that the poor glucagon response of DBA/2J mice was associated with higher hypothalamic expression of Irak4, which encodes a kinase acting downstream of the interleukin-1 receptor (Il-1R), and of Il-ß when compared with C57BL/6J mice. We showed that intracerebroventricular administration of an Il-1R antagonist in DBA/2J mice restored insulin-induced glucagon secretion; this was associated with increased c-fos expression in the arcuate and paraventricular nuclei of the hypothalamus and with higher activation of both branches of the autonomous nervous system. Whole body inactivation of Cpne8, which encodes a Ca++-dependent regulator of membrane trafficking and exocytosis, however, had no impact on insulin-induced glucagon secretion. CONCLUSIONS: Collectively, our data identify Irak4 as a genetically controlled regulator of hypoglycemia-activated hypothalamic neurons and glucagon secretion.


Asunto(s)
Glucagón , Hipoglucemia , Hipotálamo , Quinasas Asociadas a Receptores de Interleucina-1 , Animales , Glucagón/metabolismo , Hipoglucemia/genética , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA
4.
Brain ; 145(7): 2332-2346, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35134125

RESUMEN

Metabolism regulates neuronal activity and modulates the occurrence of epileptic seizures. Here, using two rodent models of absence epilepsy, we show that hypoglycaemia increases the occurrence of spike-wave seizures. We then show that selectively disrupting glycolysis in the thalamus, a structure implicated in absence epilepsy, is sufficient to increase spike-wave seizures. We propose that activation of thalamic AMP-activated protein kinase, a sensor of cellular energetic stress and potentiator of metabotropic GABAB-receptor function, is a significant driver of hypoglycaemia-induced spike-wave seizures. We show that AMP-activated protein kinase augments postsynaptic GABAB-receptor-mediated currents in thalamocortical neurons and strengthens epileptiform network activity evoked in thalamic brain slices. Selective thalamic AMP-activated protein kinase activation also increases spike-wave seizures. Finally, systemic administration of metformin, an AMP-activated protein kinase agonist and common diabetes treatment, profoundly increased spike-wave seizures. These results advance the decades-old observation that glucose metabolism regulates thalamocortical circuit excitability by demonstrating that AMP-activated protein kinase and GABAB-receptor cooperativity is sufficient to provoke spike-wave seizures.


Asunto(s)
Epilepsia Tipo Ausencia , Hipoglucemia , Proteínas Quinasas Activadas por AMP/metabolismo , Epilepsia Tipo Ausencia/metabolismo , Humanos , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Receptores de GABA-B/metabolismo , Convulsiones , Tálamo
5.
Front Endocrinol (Lausanne) ; 12: 697445, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975743

RESUMEN

Aim: We evaluated the efficacy of a novel brain permeable "metformin-like" AMP-activated protein kinase activator, R481, in regulating glucose homeostasis. Materials and Methods: We used glucose sensing hypothalamic GT1-7 neuronal cells and pancreatic αTC1.9 α-cells to examine the effect of R481 on AMPK pathway activation and cellular metabolism. Glucose tolerance tests and hyperinsulinemic-euglycemic and hypoglycemic clamps were used in Sprague-Dawley rats to assess insulin sensitivity and hypoglycemia counterregulation, respectively. Results: In vitro, we demonstrate that R481 increased AMPK phosphorylation in GT1-7 and αTC1.9 cells. In Sprague-Dawley rats, R481 increased peak glucose levels during a glucose tolerance test, without altering insulin levels or glucose clearance. The effect of R481 to raise peak glucose levels was attenuated by allosteric brain permeable AMPK inhibitor SBI-0206965. This effect was also completely abolished by blockade of the autonomic nervous system using hexamethonium. During hypoglycemic clamp studies, R481 treated animals had a significantly lower glucose infusion rate compared to vehicle treated controls. Peak plasma glucagon levels were significantly higher in R481 treated rats with no change to plasma adrenaline levels. In vitro, R481 did not alter glucagon release from αTC1.9 cells, but increased glycolysis. Non brain permeable AMPK activator R419 enhanced AMPK activity in vitro in neuronal cells but did not alter glucose excursion in vivo. Conclusions: These data demonstrate that peripheral administration of the brain permeable "metformin-like" AMPK activator R481 increases blood glucose by activation of the autonomic nervous system and amplifies the glucagon response to hypoglycemia in rats. Taken together, our data suggest that R481 amplifies the counterregulatory response to hypoglycemia by a central rather than a direct effect on the pancreatic α-cell. These data provide proof-of-concept that central AMPK could be a target for future drug development for prevention of hypoglycemia in diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Sistema Nervioso Autónomo/efectos de los fármacos , Glucemia/efectos de los fármacos , Hipoglucemia/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Animales , Sistema Nervioso Autónomo/fisiología , Benzamidas/farmacología , Glucemia/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Hipoglucemia/patología , Hipoglucemia/fisiopatología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Permeabilidad/efectos de los fármacos , Piperidinas/farmacología , Pirimidinas/farmacología , Ratas , Ratas Sprague-Dawley
6.
J Mol Neurosci ; 71(5): 1082-1094, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33231812

RESUMEN

The ventromedial hypothalamic nucleus-ventrolateral part (VMNvl) is an estradiol-sensitive structure that controls sex-specific behavior. Electrical reactivity of VMNvl neurons to hypoglycemia infers that cellular energy stability is monitored there. Current research investigated the hypothesis that estradiol elicits sex-dimorphic patterns of VMNvl metabolic sensor activation and gluco-regulatory neurotransmission during hypoglycemia. Rostral-, middle-, and caudal-VMNvl tissue was separately micropunch-dissected from letrozole (Lz)- or vehicle-injected male and estradiol- or vehicle-implanted ovariectomized (OVX) female rats for Western blot analysis of total and phosphorylated 5'-AMP-activated protein kinase (AMPK) protein expression and gluco-stimulatory [neuronal nitric oxide synthase (nNOS); steroidogenic factor-1 (SF1) or -inhibitory (glutamate decarboxylase65/67 (GAD)] transmitter marker proteins after sc insulin (INS) or vehicle injection. In both sexes, hypoglycemic up-regulation of phosphoAMPK was estradiol-dependent in rostral and middle, but not caudal VMNvl. AMPK activity remained elevated after recovery from hypoglycemia over the rostro-caudal VMNvl in female, but only in the rostral segment in male. In each sex, hypoglycemia correspondingly augmented or suppressed nNOS profiles in rostral and middle versus caudal VMNvl; these segmental responses persisted longer in female. Rostral and middle segment SF1 protein was inhibited by estradiol-independent mechanisms in hypoglycemic males, but increased by estradiol-reliant mechanisms in female. After INS injection, GAD expression was inhibited in the male rostral VMNvl without estradiol involvement, but this hormone was required for broader suppression of this profile in the female. Neuroanatomical variability of VMNvl metabolic transmitter reactivity to hypoglycemia underscores the existence of functionally different subgroups in that structure. The regional distribution and estradiol sensitivity of hypoglycemia-sensitive VMNvl neurons of each neurochemical phenotype evidently vary between sexes.


Asunto(s)
Estradiol/metabolismo , Glucosa/metabolismo , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Proteínas Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Estradiol/farmacología , Femenino , Glutamato Descarboxilasa/genética , Glutamato Descarboxilasa/metabolismo , Hipotálamo/efectos de los fármacos , Insulina/metabolismo , Insulina/farmacología , Masculino , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteínas Quinasas/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal
7.
Redox Biol ; 37: 101709, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32905881

RESUMEN

OBJECTIVE: The trace element selenium (Se) is needed for regular biosynthesis of selenoproteins, which contribute to antioxidative defense systems and affect redox-regulated signaling. Elevated Se intake and selenoprotein expression levels have been associated with impaired hydrogen peroxide-dependent signaling by insulin, leading to hyperglycemia and insulin resistance. The relation of low Se intake with glucose status and carbohydrate metabolism is poorly known. RESEARCH DESIGN AND METHODS: A cross sectional analysis among healthy subjects residing in two Chinese counties with different habitual Se intakes was conducted. Fasted glucose levels were related to Se concentrations of 5686 adults by linear regression analysis with Se, body mass index, age, thyroid status, insulin and sex as independent variables. RESULTS: Serum Se correlated strongly and positively with glucose in the Se-deficient population. There was no strong relationship of Se and glucose in the non-deficient population. Overt hypoglycemia (serum glucose < 2.8 mM) was observed in 19.2% of this random sample of subjects in the Se-deficient and in 1.4% of the moderately supplied population, respectively. CONCLUSIONS: An adequate Se supply constitutes an important factor for glucose homeostasis in human subjects. The interaction between Se status and glucose control is not limited to hyperglycemia, but apparently extends to hypoglycemia risk in Se deficiency. This newly identified relationship may be of relevance for the course of severe disease including major trauma, sepsis and COVID-19, where Se deficiency has been associated with mortality risk.


Asunto(s)
Glucemia/metabolismo , Hipoglucemia/metabolismo , Selenio/deficiencia , Adulto , Glucemia/análisis , COVID-19/complicaciones , Estudios Transversales , Femenino , Humanos , Hipoglucemia/sangre , Hipoglucemia/complicaciones , Masculino , Persona de Mediana Edad , Selenio/metabolismo
8.
Mol Cell Endocrinol ; 518: 111000, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853745

RESUMEN

Hypoglycemia causes sex-reliant changes in hypothalamic astrocyte glycogen metabolism in vivo. The role of nuclear versus membrane astrocyte estrogen receptors (ER) in glucoprivic regulation of glycogen is unclear. Here, primary hypothalamic astrocyte cultures were treated with selective ER antagonists during glucoprivation to investigate the hypothesis that ER mediate sex-specific glycogen responses to glucoprivation. Results show that glucoprivic down-regulation of glycogen synthase expression is mediated by transmembrane G protein-coupled ER-1 (GPER) signaling in each sex and estrogen receptor (ER)-beta (ERß) activity in females. Glucoprivic inhibition of glycogen phosphorylase involves GPER and ERß in females, but ER-independent mechanisms in males. GPER, ERß, and ER-alpha (ERα) inhibit or stimulate AMPK protein expression in male versus female astrocytes, respectively. Glucoprivic augmentation of phospho-AMPK profiles in male glia was opposed by GPER activation, whereas GPER and ERß suppress this protein in females. Astrocyte ERα and GPER content was down-regulated in each sex during glucose deficiency, whereas ERß levels was unaltered (males) or increased (females). Glucoprivation correspondingly elevated or diminished male versus female astrocyte glycogen content; ER antagonism reversed this response in males, but not females. Results identify distinctive ER variants involved in sex-similar versus sex-specific astrocyte protein responses to withdrawal of this substrate fuel. Notably, glucoprivation elicits a directional switch or gain-of-effect of GPER and ERß on specific glial protein profiles. Outcomes infer that ERs are crucial for glucoprivic regulation of astrocyte glycogen accumulation in males. Alternatively, estradiol may act independently of ER signaling to disassemble this reserve in females.


Asunto(s)
Astrocitos/metabolismo , Glucógeno/metabolismo , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Animales , Astrocitos/citología , Células Cultivadas , Estradiol/farmacología , Femenino , Glucosa/deficiencia , Glucosa/farmacología , Glucogenólisis/fisiología , Hipotálamo/citología , Masculino , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/fisiología , Caracteres Sexuales , Transducción de Señal/efectos de los fármacos
9.
Mol Cell Biochem ; 473(1-2): 39-50, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32779041

RESUMEN

Hypoglycemia is a detrimental complication of rigorous management of type 1 diabetes mellitus. Moderate hypoglycemia (MH) preconditioning of male rats partially affords protection from loss of vulnerable brain neurons to severe hypoglycemia (SH). Current research investigated whether MH preconditioning exerts sex-dimorphic effects on hippocampal CA1 neuron bio-energetic and anti-oxidant responses to SH. SH up-regulated CA1 glucose or monocarboxylate transporter proteins in corresponding hypoglycemia-naïve male versus female rats; precedent MH amplified glucose transporter expression in SH irrespective of sex. Sex-differentiating SH effects on glycolytic and tricarboxylic pathway markers correlated with elevated tissue ATP content and diminished CA1 5'-AMP-activated protein kinase (AMPK) activation in females. MH-preconditioned suppression of mitochondrial energy pathway enzyme profiles and tissue ATP in SH rats coincided with amplified CA1 AMPK activity in both sexes. Anti-oxidative stress enzyme protein responses to SH were primarily sex-contingent; preconditioning amplified most of these profiles, yet exacerbated expression of lipid and protein oxidation markers in SH male and female rats, respectively. Results show that MH preconditioning abolishes female CA1 neuron neuroprotection of positive energy balance through SH, resulting in augmented CA1 AMPK activity and oxidative injury and diminished tissue ATP in hypoglycemia-conditioned versus naïve rats in each sex. It is unclear if SH elicits differential rates of CA1 neuronal destruction in the two sexes, or how MH may impact sex-specific cell loss. Further research is needed to determine if molecular mechanism(s) that maintain female CA1 neuron metabolic stability in the absence of MH preconditioning can be leveraged for therapeutic prevention of hypoglycemic nerve cell damage.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Glucólisis , Hipoglucemia/metabolismo , Neuronas/metabolismo , Caracteres Sexuales , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Región CA1 Hipocampal/patología , Femenino , Hipoglucemia/patología , Masculino , Neuronas/patología , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley
10.
J Neurochem ; 154(1): 71-83, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32306383

RESUMEN

Hypoglycemia is critical condition during diabetic treatment that involves intensive insulin therapy, and it may impair brain function. We aimed to compare cortical responses of three hypoglycemic phases and the restoration of glycemia to control levels after a severe episode in rats using non-invasive perfusion magnetic resonance (MR) imaging and localized 1 H MR spectroscopy. Under light α-chloralose anesthesia, cortical blood flow (cCBF) was 42 ± 3 ml/100 g/min at euglycemia (~ 5 mM plasma glucose), was not altered at mild hypoglycemia I (42 ± 4 ml/100 g/min, 2-3.5 mM), increased to 60 ± 8 ml/100 g/min under moderate hypoglycemia II (1-2 mM) and amplified to 190 ± 35 ml/100 g/min at severe hypoglycemia III (< 1 mM). 1 H MRS revealed metabolic changes at hypoglycemia I without any perfusion alteration. At hypoglycemia III, glutamine and glutamate decreased, whereas aspartate increased. When animals subsequently regained glycemic control, not all metabolites returned to their control levels, for example, glutamine. Meanwhile, ascorbate was increased with amplified hypoglycemic severity, whereas glutathione was reduced; these compounds did not return to normal levels upon the restoration of glycemia. Our study is the first to report cCBF and neurochemical changes in cortex upon five glycemic stages. The cortical responses of different hypoglycemic phases would explain variable neuronal damages after hypoglycemia and might help identify the degrees of hypoglycemic insults and further improve alternative therapies.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/metabolismo , Circulación Cerebrovascular/fisiología , Hipoglucemia/metabolismo , Animales , Corteza Cerebral/fisiopatología , Hipoglucemia/fisiopatología , Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Masculino , Ratas , Ratas Sprague-Dawley
11.
J Cell Biochem ; 121(5-6): 3221-3234, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31894610

RESUMEN

The current study was designed to explore the therapeutic effect and mechanism of different extraction, which came from hypoglycemic granule on diabetes-induced liver injury. The ethanol fraction (HGEF) and aqueous fraction (HGAF) from hypoglycemic granule were prepared and administered p.o. to diabetic mice for 17 weeks after 6 weeks of constructing the model. Hematoxylin-eosin (HE) staining and periodic acid-Schiff (PAS) staining were individually applied to observe the morphological change and glycogen deposition. In addition, Oil Red O staining was adopted in lipid droplets detection. Western blot analysis was performed to evaluate the protein expression. The commercial biochemical kits were used to determine the fasting blood glucose value, enzyme activity, and some biochemical indicators. HGEF not only significantly decreased the levels of blood glucose, the content of triglycerides, total cholesterol, low-density lipoprotein, and lipid droplet accumulation, but also remarkably enhanced the high-density lipoprotein, glycogen synthesis, and further improved the hepatic function in diabetic mice. Moreover, HGEF increased the superoxide dismutase (SOD) activity and inhibited the malondialdehyde production, so did HGAF. HGAF performed potential to modulate lipid metabolism via decreasing TG and LDL levels. Further, the protein expressions of SOD, nuclear factor erythroid 2-related factor 2 (Nrf2), and forkhead box O3 (Foxo3a) were increased by HGEF, whereas the receptor-interacting serine-threonine kinase 3 (RIP3), calcium/calmodulin-dependent protein kinase II (CaMKII), and cytochrome c (Cyt c) expressions were inhibited. Our present results suggest that HGEF has superiority in ameliorating oxidative stress via modulating hepatic glycolipid metabolism homeostasis in low-dose streptozotocin-induced liver tissue of diabetic mice.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Glucolípidos/metabolismo , Hipoglucemia/metabolismo , Hipoglucemiantes/farmacología , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Glucemia/química , Glucemia/metabolismo , Diabetes Mellitus Experimental/metabolismo , Etanol/química , Metabolismo de los Lípidos , Lípidos/química , Hígado/metabolismo , Masculino , Medicina Tradicional China , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales , Polvos , Superóxido Dismutasa/metabolismo , Triglicéridos/química
12.
Can J Diabetes ; 44(1): 37-43.e1, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31477521

RESUMEN

OBJECTIVE: There is a growing market for diabetes-alert dogs but little has been published regarding their ability to reliably detect hypoglycemia. We aimed to determine whether 2 dogs could detect hypoglycemic breath samples from people with type 1 diabetes (T1D) and then transfer detection to novel hypoglycemic breath samples. METHODS: Breath samples were collected from individuals with T1D during times of normo-, hypo- and hyperglycemia. Two dogs, previously trained (3 alternative forced choice) with breath samples from 3 different individuals with T1D, were presented with 3 breath samples from the same individual: 1 hypoglycemic, 1 normoglycemic and 1 hyperglycemic, and trained to identify the hypoglycemic sample using a "yes/no" procedure. The dogs' ability to transfer detection was then tested by presenting them with a novel sample set from the same individual. Then we tested whether 1 dog could transfer detection of the odour of hypoglycemia by presenting new samples from a different individual. RESULTS: One dog was able to transfer detection of the odour of hypoglycemia to samples from the same individual (specificity 89%, sensitivity 62%), but a second dog was not. Results were inconclusive regarding the ability of 1 dog to transfer detection of the odour of hypoglycemia across 2 individuals. CONCLUSIONS: The results suggest that some dogs can be trained to detect hypoglycemic breath of an individual with T1D, but detection may not transfer to novel samples from other individuals. Results should be interpreted with caution, as the dogs were trained with only a small number of breath samples before testing.


Asunto(s)
Biomarcadores/análisis , Diabetes Mellitus Tipo 1/metabolismo , Hiperglucemia/diagnóstico , Hipoglucemia/diagnóstico , Hipoglucemiantes/uso terapéutico , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Adulto , Glucemia/análisis , Pruebas Respiratorias , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Femenino , Estudios de Seguimiento , Humanos , Hiperglucemia/metabolismo , Hipoglucemia/metabolismo , Masculino , Compuestos Orgánicos Volátiles/metabolismo
13.
Cell Metab ; 31(2): 313-326.e5, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31839488

RESUMEN

Glucose is the essential energy source for the brain, whose deficit, triggered by energy deprivation or therapeutic agents, can be fatal. Increased appetite is the key behavioral defense against hypoglycemia; however, the central pathways involved are not well understood. Here, we describe a glucoprivic feeding pathway by tyrosine hydroxylase (TH)-expressing neurons from nucleus of solitary tract (NTS), which project densely to the hypothalamus and elicit feeding through bidirectional adrenergic modulation of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons. Acute chemogenetic inhibition of arcuate nucleus (ARC)-projecting NTSTH neurons or their target, AgRP neurons, impaired glucoprivic feeding induced by 2-Deoxy-D-glucose (2DG) injection. Neuroanatomical tracing results suggested that ARC-projecting orexigenic NTSTH neurons are largely distinct from neighboring catecholamine neurons projecting to parabrachial nucleus (PBN) that promotes satiety. Collectively, we describe a circuit organization in which an ascending pathway from brainstem stimulates appetite through key hunger neurons in the hypothalamus in response to hypoglycemia.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Regulación del Apetito , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Núcleo Solitario/metabolismo , Animales , Femenino , Hipotálamo/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Núcleo Solitario/citología
14.
Neuropeptides ; 77: 101962, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31488323

RESUMEN

Hindbrain energy state shapes hypothalamic control of glucostasis. Dorsal vagal complex (DVC) L-lactate deficiency is a potent glucose-stimulatory signal that triggers neuronal transcriptional activation in key hypothalamic metabolic loci. The energy gauge AMPK is activated in DVC metabolic-sensory A2 noradrenergic neurons by hypoglycemia-associated lactoprivation, but sensor reactivity is diminished by antecedent hypoglycemia (AH). Current research addressed the premise that AH alters hindbrain lactoprivic regulation of hypothalamic metabolic transmitter function. AH did not modify reductions in A2 dopamine-beta-hydroxylase and monocarboxylate-2 (MCT2) protein expression elicited by caudal fourth ventricular delivery of the MCT inhibitor alpha-cyano-4-hydroxycinnamic acid (4CIN), but attenuated 4CIN activation of A2 AMPK. 4CIN constraint of hypothalamic norepinephrine (NE) activity was averted by AH in a site-specific manner. 4CIN induction of Fos immunolabeling in hypothalamic arcuate (ARH), ventromedial (VMN), dorsomedial (DMN) and paraventricular (PVN) nuclei and lateral hypothalamic area (LHA) was avoided by AH. AH affected reactivity of select hypothalamic metabolic neurotransmitter/enzyme marker proteins, e.g. ARH neuropeptide Y, VMN glutamate decarboxylase, DMN RFamide-related peptide-1 and -3, and LHA orexin-A profiles to 4CIN, but did not alleviate drug inhibition of ARH proopiomelanocortin. AH prevented 4CIN augmentation of circulating glucagon, but did not alter hyperglycemic or hypocorticosteronemic responses to that treatment. Results identify hindbrain lactate deficiency as a stimulus for glucagon secretion, and imply that habituation of this critical counter-regulatory hormone to recurring hypoglycemia may involve one or more hypothalamic neurotransmitters characterized here by acclimation to this critical sensory stimulus.


Asunto(s)
Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Rombencéfalo/metabolismo , Animales , Glucemia/metabolismo , Hipoglucemia/inducido químicamente , Insulina , Masculino , Neuropéptido Y/metabolismo , Norepinefrina/metabolismo , Proopiomelanocortina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Ratas Sprague-Dawley , Activación Transcripcional
15.
Int J Mol Sci ; 20(3)2019 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-30691220

RESUMEN

Serine protease dipeptidyl peptidase 4 (DPP-4) is involved in self/non-self-recognition and insulin sensitivity. DPP-4 inhibitors are conventional choices for diabetic treatment; however, side effects such as headache, bronchus infection, and nasopharyngitis might affect the daily lives of diabetic patients. Notably, natural compounds are believed to have a similar efficacy with lower adverse effects. This study aimed to validate the DPP-4 inhibitory activity of clerodane diterpene 16-hydroxycleroda-3,13-dien-15,16-olide (HCD) from Polyalthia longifolia, rutin, quercetin, and berberine, previously selected through molecular docking. The inhibitory potency of natural DPP-4 candidates was further determined by enzymatic, in vitro Caco-2, and ERK/PKA activation in myocyte and pancreatic cells. The hypoglycemic efficacy of the natural compounds was consecutively analyzed by single-dose and multiple-dose administration in diet-induced obese diabetic mice. All the natural-compounds could directly inhibit DPP-4 activity in enzymatic assay and Caco-2 inhibition assay, and HCD showed the highest inhibition of the compounds. HCD down-regulated LPS-induced ERK phosphorylation in myocyte but blocked GLP-1 induced PKA expression. For in vivo tests, HCD showed hypoglycemic efficacy only in single-dose administration. After 28-days administration, HCD exhibited hypolipidemic and hepatoprotective efficacy. These results revealed that HCD performed potential antidiabetic activity via inhibition of single-dose and long-term administrations, and could be a new prospective anti-diabetic drug candidate.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/administración & dosificación , Diterpenos de Tipo Clerodano/administración & dosificación , Hipoglucemia/tratamiento farmacológico , Polyalthia/química , Animales , Células CACO-2 , Línea Celular , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Diterpenos de Tipo Clerodano/farmacología , Humanos , Hipoglucemia/inducido químicamente , Hipoglucemia/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Lipopolisacáridos/efectos adversos , Masculino , Ratones , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Ratas , Transducción de Señal/efectos de los fármacos
16.
Brain Res ; 1711: 48-57, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30629946

RESUMEN

The ventromedial hypothalamic energy sensor AMP-activated protein kinase (AMPK) maintains glucostasis via neurotransmitter signals that diminish [γ-aminobutyric acid] or enhance [nitric oxide] counter-regulation. Ventromedial hypothalamic nucleus (VMN) 'fuel-inhibited' neurons are sensitive to astrocyte-generated metabolic substrate stream. Norepinephrine (NE) regulates astrocyte glycogen metabolism in vitro, and hypoglycemia intensifies VMN NE activity in vivo. Current research investigated the premise that NE elicits AMPK-dependent adjustments in VMN astrocyte glycogen metabolic enzyme [glycogen synthase (GS); glycogen phosphorylase (GP)] and gluco-regulatory neuron biomarker [glutamate decarboxylase65/67 (GAD); neuronal nitric oxide synthase (nNOS); SF-1] protein expression in male rats. We also examined whether VMN astrocytes are directly receptive to NE and if noradrenergic input regulates cellular sensitivity to the neuro-protective steroid estradiol. Intra-VMN NE correspondingly augmented or reduced VMN tissue GAD and nNOS protein despite no change in circulating glucose, data that imply that short-term exposure to NE promotes persistent improvement in VMN nerve cell energy stability. The AMPK inhibitor Compound C (Cc) normalized VMN nNOS, GS, and GP expression in NE-treated animals. NE caused AMPK-independent down-regulation of alpha2-, alongside Cc-reversible augmentation of beta1-adrenergic receptor protein profiles in laser-microdissected astrocytes. NE elicited divergent adjustments in astrocyte estrogen receptor-beta (AMPK-unrelated reduction) and GPR-30 (Cc-revocable increase) proteins. Outcomes implicate AMPK in noradrenergic diminution of VMN nitrergic metabolic-deficit signaling and astrocyte glycogen shunt activity. Differentiating NE effects on VMN astrocyte adrenergic and estrogen receptor variant expression suggest that noradrenergic regulation of glycogen metabolism may be mediated, in part, by one or more receptors characterized here by sensitivity to this catecholamine.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Astrocitos/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Animales , Catecolaminas/metabolismo , Estradiol/farmacología , Estrógenos/farmacología , Glucosa/metabolismo , Glucógeno/metabolismo , Glucógeno Fosforilasa/metabolismo , Glucógeno Sintasa/metabolismo , Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Masculino , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo
17.
Brain Res Bull ; 144: 171-179, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30481553

RESUMEN

Pharmacologic activation of the hindbrain dorsal vagal complex energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) causes site-specific adjustments in hypothalamic AMPK activity. DVC A2 noradrenergic neurons are a likely source of metabolo-sensory cues to downstream network components as they express substrate fuel-sensitive AMPK. This study investigated the hypothesis that DVC AMPK controls hypothalamic sensor, metabolic effector transmitter, and counter-regulatory hormone responses to insulin-induced hypoglycemia. Male rats were injected into the caudal fourth ventricle with the AMPK inhibitor compound C (Ccor vehicle before hypoglycemia. Arcuate (ARH), ventromedial (VMN), and dorsomedial (DMN) nuclei and lateral hypothalamic area (LHA) were micropunch-dissected for norepinephrine ELISA and Western blot analyses. Hypoglycemic stimulation of norepinephrine activity in each site was impeded by compound C. Hypoglycemia caused drug-revocable (ARH) or -refractory (VMN, DMN) reductions in AMPK, alongside hindbrain AMPK-dependent augmentation of phospho-AMPK expression in each location. Compound C prevented hypoglycemic augmentation of gluco-stimulatory ARH neuropeptide Y, VMN neuronal nitric oxide synthase, and LHA orexin-A expression, while hypoglycemic suppression of the catabolic neuron protein markers ARH pro-opiomelanocortin and VMN glutamate decarboxylase65/67 was respectively averted or unaffected by drug treatment. DMN RFamide-related peptide-1 and -3 profiles were correspondingly amplified or suppressed hindbrain AMPK-reliant mechanisms during hypoglycemia. Results show that DVC AMPK is required for hypoglycemic intensification of norepinephrine activity in characterized hypothalamic gluco-regulatory structures, and that this sensor regulates AMPK activation and metabolic effector transmission in those sites.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Hipoglucemia/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Neuronas Adrenérgicas , Animales , Hipoglucemia/fisiopatología , Área Hipotalámica Lateral/metabolismo , Hipotálamo/metabolismo , Masculino , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Norepinefrina/metabolismo , Orexinas/metabolismo , Ratas , Ratas Sprague-Dawley , Rombencéfalo/metabolismo , Núcleo Solitario/metabolismo , Nervio Vago/metabolismo
18.
Curr Opin Clin Nutr Metab Care ; 22(1): 91-95, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30461450

RESUMEN

PURPOSE OF REVIEW: Recent literature suggests dietary glutamine supplementation may lower blood glucose in patients with type 1 diabetes (T1D), who have no residual insulin secretion. The mechanisms and potential relevance to the care of T1D remain unclear. RECENT FINDINGS: Glutamine is involved in multiple pathways including gluconeogenesis, lipolysis, antioxidant defense, the production of nitric oxide, the secretion of peptides (e.g., glucagon-like peptide 1, GLP-1), or neuromediators (e.g., [Latin Small Letter Gamma]-aminobutyric acid), all processes that may impact insulin sensitivity and/or glucose homeostasis. The article reviews potential mechanisms and literature evidence suggesting a role in improving glucose tolerance in patients with illness associated with insulin resistance, as well as the preliminary evidence for the increased incidence of postexercise hypoglycemia in T1D after oral glutamine. SUMMARY: Further studies are warranted to determine whether the lowering effect of glutamine on blood glucose is sustained over time. If so, long-term randomized trials would be warranted to determine whether there is a role for glutamine as an adjunct dietary supplement to improve glucose control in patients with T1D.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Glutamina/metabolismo , Glutamina/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Gluconeogénesis , Glutatión/metabolismo , Homeostasis , Humanos , Hipoglucemia/tratamiento farmacológico , Hipoglucemia/metabolismo , Hipoglucemiantes/farmacología , Secreción de Insulina , Ensayos Clínicos Controlados Aleatorios como Asunto
19.
Mol Metab ; 20: 194-204, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30503832

RESUMEN

OBJECTIVE: Life-threatening hypoglycemia is a major limiting factor in the management of diabetes. While it is known that counterregulatory responses to hypoglycemia are impaired in diabetes, molecular mechanisms underlying the reduced responses remain unclear. Given the established roles of the hypothalamic proopiomelanocortin (POMC)/melanocortin 4 receptor (MC4R) circuit in regulating sympathetic nervous system (SNS) activity and the SNS in stimulating counterregulatory responses to hypoglycemia, we hypothesized that hypothalamic POMC as well as MC4R, a receptor for POMC derived melanocyte stimulating hormones, is required for normal hypoglycemia counterregulation. METHODS: To test the hypothesis, we induced hypoglycemia or glucopenia in separate cohorts of mice deficient in either POMC or MC4R in the arcuate nucleus (ARC) or the paraventricular nucleus of the hypothalamus (PVH), respectively, and measured their circulating counterregulatory hormones. In addition, we performed a hyperinsulinemic-hypoglycemic clamp study to further validate the function of MC4R in hypoglycemia counterregulation. We also measured Pomc and Mc4r mRNA levels in the ARC and PVH, respectively, in the streptozotocin-induced type 1 diabetes mouse model and non-obese diabetic (NOD) mice to delineate molecular mechanisms by which diabetes deteriorates the defense systems against hypoglycemia. Finally, we treated diabetic mice with the MC4R agonist MTII, administered stereotaxically into the PVH, to determine its potential for restoring the counterregulatory response to hypoglycemia in diabetes. RESULTS: Stimulation of epinephrine and glucagon release in response to hypoglycemia or glucopenia was diminished in both POMC- and MC4R-deficient mice, relative to their littermate controls. Similarly, the counterregulatory response was impaired in association with decreased hypothalamic Pomc and Mc4r expression in the diabetic mice, a phenotype that was not reversed by insulin treatment which normalized glycemia. In contrast, infusion of an MC4R agonist in the PVH restored the counterregulatory response in diabetic mice. CONCLUSION: In conclusion, hypothalamic Pomc as well as Mc4r, both of which are reduced in type 1 diabetic mice, are required for normal counterregulatory responses to hypoglycemia. Therefore, enhancing MC4R function may improve hypoglycemia counterregulation in diabetes.


Asunto(s)
Hipoglucemia/metabolismo , Hipotálamo/metabolismo , Proopiomelanocortina/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Epinefrina/metabolismo , Glucagón/metabolismo , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Proopiomelanocortina/deficiencia , Proopiomelanocortina/genética , Receptor de Melanocortina Tipo 4/deficiencia , Receptor de Melanocortina Tipo 4/genética
20.
Prep Biochem Biotechnol ; 48(10): 920-929, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30388917

RESUMEN

Imbalance of free radicals over antioxidants in human body may result in oxidative damage to biomolecules (lipids, proteins, DNA) that causes severe chronic diseases. The aim of this proposed research was to examine the hypoglycemic and oxidative stress potential of fava bean (Vicia faba L.) seed extract. Acetone extract showed a significant effect on glucose uptake rate (77.28 ± 2.42%) in yeast cells at 25 mM glucose concentration. Minimum glucose uptake rate was found to be 52.36 ± 2.06% % by chloroform seed extract. Atomic force microscopy revealed that 3% hydrogen peroxide concentration results in roughness was found to be maximum (441 ± 6.7 nm) and along with extract treatment showed a significant reduction in roughness (251 ± 6.2 nm). Propidium iodide and DAPI staining showed apoptotic ratio as 0.40 (40 ± 1.18%,) and 0.42 (42 ± 1.16%) in hydrogen peroxide treated cell only as compared to other treatments. MTT assay showed that acetone extract had maximum survival rate (82.067%) and least survival rate was found in chloroform extract (70.48%). Hypoglycaemic potential and oxidative stress might be polyphenols (phenolics, flavonoids) present in seed extract or synergistic effect.


Asunto(s)
Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales , Saccharomyces cerevisiae/metabolismo , Semillas/química , Vicia faba/química , Hipoglucemia/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA