Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 194: 403-411, 2016 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-27717908

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps militaris was recorded in the classic traditional Chinese medicine book with the main functions of "protecting liver and enhancing kidney functions", influencing serum uric acid levels. AIM OF STUDY: The aim is to investigate the hypouricemic effects and possible mechanism of C. militaris in hyperuricemic mice. MATERIALS AND METHODS: A water extract (WECM) was prepared by decocting C. militaris directly at 80 °C in water bath, followed by lyophilization. WECM at 50, 100 and 200mg/kg was orally administered to hyperuricemic mice induced by potassium oxonate and hypoxanthine combinedly and allopurinol (5mg/kg) was served as a positive control. RESULTS: WECM exhibited excellent hypouricemic activity, which could decrease the serum uric acid levels of the hyperuricemic mice (306µmol/L) to 189, 184 and 162µmol/L at different doses respectively (P<0.01), approaching the levels of normal mice (184µmol/L). The urate transporter 1 (URAT1) protein levels of kidney at different doses of WECM were 28.15, 17.43, 9.03pg/mL respectively, much lower than that in the hyperuricemia group (93.45pg/mL, P<0.01); and suggested WECM may interact with URAT1. Docking simulations using modeled structure of URAT1 suggested that LYS145, ARG325, ARG477 and ASP168 of URAT1 are key functional residues of URAT1. Four active compounds in C. militaris were identified and their interaction energies with target were estimated between -200 and -400kcal/mol. CONCLUSIONS: These findings suggested that C. militaris produced significant hypouricemic actions and the hypouricemic effects of WECM may be attributed to the inhibitive effect of WECM on URAT1 protein levels. The results of blood urine nitrogen and serum creatinine levels and liver, kidney and spleen coefficients showed that WECM have no negative impacts on liver, renal and spleen functions. The screened four active compounds using molecular docking method deserve further investigation in other work.


Asunto(s)
Cordyceps/química , Hiperuricemia/prevención & control , Hipoxantina/efectos adversos , Ácido Oxónico/efectos adversos , Extractos Vegetales/farmacología , Animales , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Relación Dosis-Respuesta a Droga , Hiperuricemia/inducido químicamente , Hipoxantina/administración & dosificación , Pruebas de Función Renal , Masculino , Ratones , Ácido Oxónico/administración & dosificación , Agua
2.
Anim Sci J ; 83(1): 31-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22250736

RESUMEN

Erythrocytes were recently found to improve the early development of mice embryos by their antioxidant effect. The purpose of the present study was to examine the effect of erythrocytes on the in vitro development of bovine in vitro fertilized (IVF) embryos in medium supplemented with reactive oxygen species (ROS). IVF embryos were cultured in CR1aa medium supplemented with oxidizing agents, 0.5mmol/L hypoxanthine and 0.01U/mL xanthine oxidase (HX/XOD), in the presence and absence of erythrocytes (5×10(4) , 5×10(5) , 5×10(6) and 5×10(7) erythrocytes/mL). After 8 days, blastocysts were examined with a stereomicroscope. HX/XOD blocked development to the blastocyst stage (HX/XOD: 0%, control: 33%), but in the presence of both erythrocytes and HX/XOD, blastocyst development was restored to about one-third to two-thirds the normal rate (5×10(5) to 5×10(7) erythrocytes/mL: 12 to 23%). Furthermore, adding erythrocytes or erythrocyte hemolysate to medium without HX/XOD increased the blastocyst rate. These results suggest that the addition of erythrocytes can attenuate the detrimental effects of ROS on embryo development in bovine species as well as in mice.


Asunto(s)
Antioxidantes , Blastocisto/fisiología , Medios de Cultivo , Desarrollo Embrionario/fisiología , Eritrocitos/fisiología , Fertilización In Vitro , Especies Reactivas de Oxígeno/efectos adversos , Animales , Blastocisto/efectos de los fármacos , Bovinos , Células Cultivadas , Embrión de Mamíferos , Desarrollo Embrionario/efectos de los fármacos , Hipoxantina/efectos adversos , Técnicas In Vitro , Ratones , Oxidantes/efectos adversos , Superóxido Dismutasa/metabolismo , Xantina Oxidasa/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA