Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(6): 1224-1236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467717

RESUMEN

The root of Aconitum carmichaelii Debx. (Fuzi) is an herbal medicine used in China that exerts significant efficacy in rescuing patients from severe diseases. A key toxic compound in Fuzi, aconitine (AC), could trigger unpredictable cardiotoxicities with high-individualization, thus hinders safe application of Fuzi. In this study we investigated the individual differences of AC-induced cardiotoxicities, the biomarkers and underlying mechanisms. Diversity Outbred (DO) mice were used as a genetically heterogeneous model for mimicking individualization clinically. The mice were orally administered AC (0.3, 0.6, 0.9 mg· kg-1 ·d-1) for 7 d. We found that AC-triggered cardiotoxicities in DO mice shared similar characteristics to those observed in clinic patients. Most importantly, significant individual differences were found in DO mice (variation coefficients: 34.08%-53.17%). RNA-sequencing in AC-tolerant and AC-sensitive mice revealed that hemoglobin subunit beta (HBB), a toxic-responsive protein in blood with 89% homology to human, was specifically enriched in AC-sensitive mice. Moreover, we found that HBB overexpression could significantly exacerbate AC-induced cardiotoxicity while HBB knockdown markedly attenuated cell death of cardiomyocytes. We revealed that AC could trigger hemolysis, and specifically bind to HBB in cell-free hemoglobin (cf-Hb), which could excessively promote NO scavenge and decrease cardioprotective S-nitrosylation. Meanwhile, AC bound to HBB enhanced the binding of HBB to ABHD5 and AMPK, which correspondingly decreased HDAC-NT generation and led to cardiomyocytes death. This study not only demonstrates HBB achievement a novel target of AC in blood, but provides the first clue for HBB as a novel biomarker in determining the individual differences of Fuzi-triggered cardiotoxicity.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aconitina , Cardiotoxicidad , Histona Desacetilasas , Animales , Ratones , Cardiotoxicidad/metabolismo , Cardiotoxicidad/etiología , Histona Desacetilasas/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Masculino , Humanos , Aconitum/química , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Medicamentos Herbarios Chinos/farmacología
2.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296560

RESUMEN

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Evaluación Preclínica de Medicamentos , Histona Desacetilasas/metabolismo , Antineoplásicos/farmacología , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/química , Aprendizaje Automático , Proteínas Represoras
3.
Phytother Res ; 38(4): 1761-1780, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37922559

RESUMEN

In hospitals, contrast-induced acute kidney injury (CI-AKI) is a major cause of renal failure. This study evaluates berberine's (BBR) renal protection and its potential HDAC4 mechanism. CI-AKI in rats was induced with 10 mL kg-1 ioversol. Rats were divided into five groups: Ctrl, BBR, CI-AKI, CI-AKI + BBR, and CI-AKI + Tasq. The renal function of CI-AKI rats was determined by measuring serum creatinine and blood urea nitrogen. Histopathological changes and apoptosis of renal tubular epithelial cells were observed by HE and terminal deoxynucleotidyl transferase (TdTase)-mediated dUTP-biotin nick end labeling (TUNEL) staining. Transmission electron microscopy was used to observe autophagic structures. In vitro, a CI-AKI cell model was created with ioversol-treated HK-2 cells. Treatments included BBR, Rapa, HCQ, and Tasq. Analyses focused on proteins and genes associated with kidney injury, apoptosis, autophagy, and the HDAC4-FoxO3a axis. BBR showed significant protective effects against CI-AKI both in vivo and in vitro. It inhibited apoptosis by increasing Bcl-2 protein levels and decreasing Bax levels. BBR also activated autophagy, as indicated by changes in autophagy-related proteins and autophagic flux. The study further revealed that the contrast agent ioversol increased the expression of HDAC4, which led to elevated levels of phosphorylated FoxO3a (p-FoxO3a) and acetylated FoxO3a (Ac-FoxO3a). However, BBR inhibited HDAC4 expression, resulting in decreased levels of p-FoxO3a and Ac-FoxO3a. This activation of autophagy-related genes, regulated by the transcription factor FoxO3a, played a role in BBR's protective effects. BBR, a traditional Chinese medicine, shows promise against CI-AKI. It may counteract CI-AKI by modulating HDAC4 and FoxO3a, enhancing autophagy, and limiting apoptosis.


Asunto(s)
Lesión Renal Aguda , Berberina , Ácidos Triyodobenzoicos , Animales , Ratas , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Apoptosis , Autofagia , Berberina/farmacología , Histona Desacetilasas
4.
J Nat Med ; 78(1): 236-245, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37991632

RESUMEN

Chrysin (5,7-dihydroxyflavone, 6) and galangin 3-methyl ether (5,7-dihydroxy-3-methoxy flavone, 7) were obtained from the leaves of Oroxylum indicum (L.) Kurz in 4% and 6% yields, respectively. Both compounds could act as pan-histone deacetylase (HDAC) inhibitors. Structural modification of these lead compounds provided thirty-eight derivatives which were further tested as HDAC inhibitors. Compounds 6b, 6c, and 6q were the most potent derivatives with the IC50 values of 97.29 ± 0.63 µM, 91.71 ± 0.27 µM, and 96.87 ± 0.45 µM, respectively. Molecular docking study indicated the selectivity of these three compounds toward HDAC8 and the test against HDAC8 showed IC50 values in the same micromolar range. All three compounds were further evaluated for the anti-proliferative activity against HeLa and A549 cell lines. Compound 6q exhibited the best activity against HeLa cell line with the IC50 value of 13.91 ± 0.34 µM. Moreover, 6q was able to increase the acetylation level of histone H3. These promising HDAC inhibitors deserve investigation as chemotherapeutic agents for treating cancer.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Células HeLa , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Flavonoides/farmacología , Relación Estructura-Actividad , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Represoras/metabolismo , Proteínas Represoras/farmacología
5.
Cells ; 12(21)2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37947639

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with a high morbidity and mortality rate. Leucine supplementation has been demonstrated to attenuate cardiac dysfunction in animal models of cachexia and heart failure with reduced ejection fraction (HFrEF). So far, no data exist on leucine supplementation on cardiac function in HFpEF. Thus, the current study aimed to investigate the effect of leucine supplementation on myocardial function and key signaling pathways in an established HFpEF rat model. Female ZSF1 rats were randomized into three groups: Control (untreated lean rats), HFpEF (untreated obese rats), and HFpEF_Leu (obese rats receiving standard chow enriched with 3% leucine). Leucine supplementation started at 20 weeks of age after an established HFpEF was confirmed in obese rats. In all animals, cardiac function was assessed by echocardiography at baseline and throughout the experiment. At the age of 32 weeks, hemodynamics were measured invasively, and myocardial tissue was collected for assessment of mitochondrial function and for histological and molecular analyses. Leucine had already improved diastolic function after 4 weeks of treatment. This was accompanied by improved hemodynamics and reduced stiffness, as well as by reduced left ventricular fibrosis and hypertrophy. Cardiac mitochondrial respiratory function was improved by leucine without alteration of the cardiac mitochondrial content. Lastly, leucine supplementation suppressed the expression and nuclear localization of HDAC4 and was associated with Protein kinase A activation. Our data show that leucine supplementation improves diastolic function and decreases remodeling processes in a rat model of HFpEF. Beneficial effects were associated with HDAC4/TGF-ß1/Collagenase downregulation and indicate a potential use in the treatment of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Ratas , Femenino , Animales , Insuficiencia Cardíaca/metabolismo , Leucina/farmacología , Volumen Sistólico/fisiología , Obesidad/complicaciones , Suplementos Dietéticos , Histona Desacetilasas
6.
Int J Biol Sci ; 19(15): 4849-4864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781518

RESUMEN

Heat stress, clinically known as hyperthermia, is a promising adjunctive modality in cancer treatment. However, the efficacy of hyperthermia as a monotherapy is limited and the underlying mechanism remains poorly understood. Targeting histone modifications is an emerging strategy for cancer therapy, but little is known regarding the role of heat stress in altering these modifications. Here, we report that heat shock inhibits H3K9 acetylation (H3K9ac) via histone deacetylase 6 (HDAC6) regulation. Heat shock inhibits the interaction between HDAC6 and heat shock protein 90 (HSP90), enhances nuclear localization of HDAC6, and promotes HDAC6 phosphorylation, which is regulated by protein phosphatase 2A (PP2A). Combining hyperthermia with HDAC inhibitors vorinostat or panobinostat leads to better anti-cancer effects compared to monotherapy. KEAP1 and DPP7 as genes affected by heat-induced inhibition of H3K9ac, and combining them with hyperthermia can better induce apoptosis in tumor cells. This study reveals previously unknown mechanisms of H3K9ac decreased by heat shock in cancer cells and highlights a potential combinational therapy involving hyperthermia and targeting of these new mechanisms.


Asunto(s)
Hipertermia Inducida , Neoplasias , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Histona Desacetilasas/metabolismo , Acetilación , Ácidos Hidroxámicos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Respuesta al Choque Térmico , Neoplasias/terapia
7.
J Med Chem ; 66(15): 10528-10557, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37463500

RESUMEN

Idiopathic pulmonary fibrosis is incurable, and its progression is difficult to control and thus can lead to pulmonary deterioration. Pan-histone deacetylase inhibitors such as SAHA have shown potential for modulating pulmonary fibrosis yet with off-target effects. Therefore, selective HDAC inhibitors would be beneficial for reducing side effects. Toward this goal, we designed and synthesized 24 novel HDAC6, HDAC8, or dual HDAC6/8 inhibitors and established a two-stage screening platform to rapidly screen for HDAC inhibitors that effectively mitigate TGF-ß-induced pulmonary fibrosis. The first stage consisted of a mouse NIH-3T3 fibroblast prescreen and yielded five hits. In the second stage, human pulmonary fibroblasts (HPFs) were used, and four out of the five hits were tested for caco-2 permeability and liver microsome stability to give two potential leads: J27644 (15) and 20. This novel two-stage screen platform will accelerate the discovery and reduce the cost of developing HDAC inhibitors to mitigate TGF-ß-induced pulmonary fibrosis.


Asunto(s)
Inhibidores de Histona Desacetilasas , Fibrosis Pulmonar Idiopática , Ratones , Animales , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Factor de Crecimiento Transformador beta , Histona Desacetilasas/uso terapéutico , Evaluación Preclínica de Medicamentos , Células CACO-2 , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Histona Desacetilasa 6 , Proteínas Represoras
8.
Nat Commun ; 14(1): 3548, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322067

RESUMEN

Lipoic acid is an essential enzyme cofactor in central metabolic pathways. Due to its claimed antioxidant properties, racemic (R/S)-lipoic acid is used as a food supplement but is also investigated as a pharmaceutical in over 180 clinical trials covering a broad range of diseases. Moreover, (R/S)-lipoic acid is an approved drug for the treatment of diabetic neuropathy. However, its mechanism of action remains elusive. Here, we performed chemoproteomics-aided target deconvolution of lipoic acid and its active close analog lipoamide. We find that histone deacetylases HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, and HDAC10 are molecular targets of the reduced form of lipoic acid and lipoamide. Importantly, only the naturally occurring (R)-enantiomer inhibits HDACs at physiologically relevant concentrations and leads to hyperacetylation of HDAC substrates. The inhibition of HDACs by (R)-lipoic acid and lipoamide explain why both compounds prevent stress granule formation in cells and may also provide a molecular rationale for many other phenotypic effects elicited by lipoic acid.


Asunto(s)
Inhibidores de Histona Desacetilasas , Ácido Tióctico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Ácido Tióctico/farmacología , Histona Desacetilasas/metabolismo , Antioxidantes/farmacología
9.
Biomolecules ; 13(6)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37371463

RESUMEN

BACKGROUND: Metastasis-associated protein 2 (MTA2) is a member of the metastasis-associated transcriptional regulator family and is a core component of the nucleosome remodeling and histone deacetylation complex. Despite growing evidence that MTA2 plays a crucial role in the tumorigenesis of certain cancers, no systematic pan-cancer analysis of MTA2 is available to date. Therefore, the aim of our study is to explore the prognostic value of MTA2 in 33 cancer types and to investigate its potential immune function. METHODS: by comprehensive use of databases from TCGA, GTEx, GEO, UCSC xena, cBioPortal, comPPI, GeneMANIA, TCIA, MSigDB, and PDB, we applied various bioinformatics approaches to investigate the potential role of MTA2, including analyzing the association of MTA2 with MSI, prognosis, gene mutation, and immune cell infiltration in different tumors. We constructed a nomogram in TCGA-LIHC, performed single-cell sequencing (scRNA-seq) analysis of MTA2 in hepatocellular carcinoma (HCC), and screened drugs for the treatment of HCC. Finally, immunohistochemical experiments were performed to verify the expression and prognostic value of MTA2 in HCC. In vitro experiments were employed to observe the growth inhibition effects of MK-886 on the HCC cell line HepG2. RESULTS: The results suggested that MTA2 was highly expressed in most cancers, and MTA2 expression was associated with the prognosis of different cancers. In addition, MTA2 expression was associated with Tumor Mutation Burden (TMB) in 12 cancer types and MSI in 8 cancer types. Immunoassays indicated that MTA2 positively correlated with activated memory CD4 T cells and M0 macrophage infiltration levels in HCC. ScRNA-seq analysis based on the GEO dataset discovered that MTA2 was significantly expressed in T cells in HCC. Finally, the eXtreme Sum (Xsum) algorithm was used to screen the antitumor drug MK-886, and the molecular docking technique was utilized to reveal the binding capacity between MK-886 and the MTA2 protein. The results demonstrated excellent binding sites between them, which bind to each other through Π-alkyl and alkyl interaction forces. An immunohistochemistry experiment showed that MTA2 protein was highly expressed in HCC, and high MTA2 expression was associated with poor survival in HCC patients. MK-886 significantly inhibited the proliferation and induced cell death of HepG2 cells in a dose-dependent manner. CONCLUSIONS: Our study demonstrated that MTA2 plays crucial roles in tumor progression and tumor immunity, and it could be used as a prognostic marker for various malignancies. MK-886 might be a powerful drug for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Histona Desacetilasas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Simulación del Acoplamiento Molecular , Neoplasias/genética , Neoplasias/inmunología , Pronóstico , Proteínas Represoras/genética
10.
Int J Mol Sci ; 24(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37175799

RESUMEN

Histone deacetylases (HDACs), known as histone acetylation erasers, function crucially in plant growth and development. Although there are abundant reports focusing on HDACs of Arabidopsis and illustrating their important roles, the knowledge of HDAC genes in Tartary buckwheat (Polygonales Polygonaceae Fagopyrum tataricum (L.) Gaertn) is still scarce. In the study, a total of 14 HDAC genes were identified and divided into three main groups: Reduced Potassium Dependency-3/His-52 tone Deacetylase 1 (RPD3/HDA1), Silent Information Regulator 2 (SIR2), and the plant-53 specific HD2. Domain and motif composition analysis showed there were conserved domains and motifs in members from the same subfamilies. The 14 FtHDACs were distributed asymmetrically on 7 chromosomes, with three segmental events and one tandem duplication event identified. The prediction of the cis-element in promoters suggested that FtHDACs probably acted in numerous biological processes including plant growth, development, and response to environmental signals. Furthermore, expression analysis based on RNA-seq data displayed that all FtHDAC genes were universally and distinctly expressed in diverse tissues and fruit development stages. In addition, we found divergent alterations in FtHDACs transcript abundance in response to different light conditions according to RNA-seq and RT-qPCR data, indicating that five FtHDACs might be involved in light response. Our findings could provide fundamental information for the HDAC gene family and supply several targets for future function analysis of FtHDACs related with light response of Tartary buckwheat.


Asunto(s)
Fagopyrum , Fagopyrum/metabolismo , Filogenia , Histona Desacetilasas/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
Molecules ; 28(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36985402

RESUMEN

Finding structurally similar compounds in compound databases is highly efficient and is widely used in present-day drug discovery methodology. The most-trusted and -followed similarity indexing method is Tanimoto similarity indexing. Epigenetic proteins like histone deacetylases (HDACs) inhibitors are traditionally used to target cancer, but have only been investigated very recently for their possible effectiveness against rheumatoid arthritis (RA). The synthetic drugs that have been identified and used for the inhibition of HDACs include SAHA, which is being used to inhibit the activity of HDACs of different classes. SAHA was chosen as a compound of high importance as it is reported to inhibit the activity of many HDAC types. Similarity searching using the UNPD database as a reference identified aglaithioduline from the Aglaia leptantha compound as having a ~70% similarity of molecular fingerprints with SAHA, based on the Tanimoto indexing method using ChemmineR. Aglaithioduline is abundantly present in the shell and fruits of A. leptantha. In silico studies with aglaithioduline were carried out against the HDAC8 protein target and showed a binding affinity of -8.5 kcal mol. The complex was further subjected to molecular dynamics simulation using Gromacs. The RMSD, RMSF, compactness and SASA plots of the target with aglaithioduline, in comparison with the co-crystallized ligand (SAHA) system, showed a very stable configuration. The results of the study are supportive of the usage of A. leptantha and A. edulis in Indian traditional medicine for the treatment of pain-related ailments similar to RA. Our study therefore calls for further investigation of A. leptantha and A. edulis for their potential use against RA by targeting epigenetic changes, using in vivo and in vitro studies.


Asunto(s)
Artritis Reumatoide , Inhibidores de Histona Desacetilasas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Amidas , Simulación de Dinámica Molecular , Epigénesis Genética , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Simulación del Acoplamiento Molecular , Histona Desacetilasas/genética , Proteínas Represoras
12.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902164

RESUMEN

Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Ácidos Hidroxámicos , Oxadiazoles , Humanos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Procesamiento Proteico-Postraduccional , Acetilación , Oxadiazoles/química , Oxadiazoles/farmacología , Línea Celular Tumoral
13.
J Ethnopharmacol ; 307: 116240, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36764560

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The regulation of epigenetic factors is considered a crucial target for solving complex chronic diseases such as cardio-cerebrovascular diseases. HuangqiGuizhiWuwu Decoction (HGWWD), a classic Chinese prescription, is mainly used to treat various vascular diseases. Although our previous studies reported that HGWWD could effectively prevent vascular dysfunction in diabetic rodent models, the precise mechanism is still elusive. AIM OF THE STUDY: In this study, we investigated the epigenetic mechanisms of modulating the damage of vascular endothelial cells in diabetes by HGWWD. METHODS: We first analyzed common active components of HGWWD by using HPLC-Q-TOF-MS/MS analysis, and predicted the isoforms of histone deacetylase (HDAC) that can potentially combine the above active components by systems pharmacology. Next, we screened the involvement of specific HDAC isoforms in the protective effect of HGWWD on vascular injury by using pharmacological blockade combined with the evaluation of vascular function in vivo and in vitro. RESULTS: Firstly, HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, SIRT2, and SIRT3 have been implicated with the possibility of binding to the thirty-one common active components in HGWWD. Furthermore, the protective effect of HGWWD is reversed by both TSA (HDAC inhibitor) and MC1568 (class II HDAC inhibitor) on vascular impairment accompanied by reduced aortic HDAC activity in STZ mice. Finally, inhibition of HDAC4 blocked the protective effect of HGWWD on microvascular and endothelial dysfunction in diabetic mice. CONCLUSIONS: These results prove the key role of HDAC4 in diabetes-induced microvascular dysfunction and underlying epigenetic mechanisms for the protective effect of HGWWD in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Enfermedades Vasculares , Ratones , Animales , Inhibidores de Histona Desacetilasas/farmacología , Células Endoteliales/metabolismo , Microcirculación , Espectrometría de Masas en Tándem , Histona Desacetilasas/metabolismo
14.
Ecotoxicol Environ Saf ; 253: 114660, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36812872

RESUMEN

After intensive research on the gut-brain axis, intestinal dysbiosis is considered to be one of the important pathways of cognitive decline. Microbiota transplantation has long been thought to reverse the behavioral changes in the brain caused by colony dysregulation, but in our study, microbiota transplantation seemed to improve only behavioral brain function, and there was no reasonable explanation for the high level of hippocampal neuron apoptosis that remained. Butyric acid is one of the short-chain fatty acids of intestinal metabolites and is mainly used as an edible flavoring. It is commonly used in butter, cheese and fruit flavorings, and is a natural product of bacterial fermentation of dietary fiber and resistant starch in the colon, acting similarly to the small-molecule HDAC inhibitor TSA. The effect of butyric acid on HDAC levels in hippocampal neurons in the brain remains unclear. Therefore, this study used rats with low bacterial abundance, conditional knockout mice, microbiota transplantation, 16S rDNA amplicon sequencing, and behavioral assays to demonstrate the regulatory mechanism of short-chain fatty acids on the acetylation of hippocampal histones. The results showed that disturbance of short-chain fatty acid metabolism led to high HDAC4 expression in the hippocampus and regulated H4K8ac, H4K12ac, and H4K16ac to promote increased neuronal apoptosis. However, microbiota transplantation did not change the pattern of low butyric acid expression, resulting in maintained high HDAC4 expression in hippocampal neurons with continued neuronal apoptosis. Overall, our study shows that low levels of butyric acid in vivo can promote HDAC4 expression through the gut-brain axis pathway, leading to hippocampal neuronal apoptosis, and demonstrates that butyric acid has great potential value for neuroprotection in the brain. In this regard, we suggest that patients with chronic dysbiosis should pay attention to changes in the levels of SCFAs in their bodies, and if deficiencies occur, they should be promptly supplemented through diet and other means to avoid affecting brain health.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Ratones , Ratas , Animales , Ácido Butírico/farmacología , Ácidos Grasos Volátiles/metabolismo , Bacterias/genética , Bacterias/metabolismo , Hipocampo/metabolismo , Apoptosis , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología
15.
Phytother Res ; 37(1): 295-309, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36070933

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of hepatic malignancies with high mortality and poor prognosis. Baicalein, one of the major and bioactive flavonoids isolated from Scutellaria baicalensis Georgi, which is reported to have anti-proliferation effect in varying cancers, including HCC, whose underlying molecular mechanism is still largely unknown. In this study, we found that baicalein significantly inhibited proliferation and colony formation, blocked cell cycle, and promoted apoptosis in HCC cells MHCC-97H and SMMC-7721 in vitro and reduced tumor volume and weight in vivo. Increased microRNA (miR)-3,178 levels and decreased histone deacetylase 10 (HDAC10) expression were found in cells treated with baicalein and in patients' HCC tissues. HDAC10 was identified as a target gene of miR-3,178 by luciferase activity and western blot. Both baicalein treatment and overexpression of miR-3,178 could downregulate HDAC10 protein expression and inactivated AKT, MDM2/p53/Bcl2/Bax and FoxO3α/p27/CDK2/Cyclin E1 signal pathways. Not only that, knockdown of miR-3,178 could partly abolish the effects of baicalein and the restoration of HDAC10 could abated miR-3,178-mediated role in HCC cells. Collectively, baicalein inhibits cell viability, blocks cell cycle, and induces apoptosis in HCC cells by regulating the miR-3,178/HDAC10 pathway. This finding indicated that baicalein might be promising for treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , MicroARNs/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Apoptosis , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología
16.
Phytother Res ; 37(2): 645-657, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36218239

RESUMEN

Diabetic peripheral neuropathy (DPN) is a chronic complication associated with nerve dysfunction and uncontrolled hyperglycemia. Unfortunately, due to its complicated etiology, there has been no successful therapy for DPN. Our research recently revealed that jatrorrhizine (JAT), one of the active constituents of Rhizoma Coptidis, remarkably ameliorated DPN. This work highlighted the potential mechanism through which JAT relieves DPN using db/db mice. The results indicated that JAT treatment significantly decreased the threshold for thermal and mechanical stimuli and increased nerve conduction velocity. Histopathological analysis revealed that JAT significantly increased the number of sciatic nerve fibers and axons, myelin thickness, and axonal diameters. Additionally, JAT markedly elevated the expression of myelination-associated proteins (MBP, MPZ, and Pmp22). The screening of histone deacetylases (HDAC) determined that histone deacetylase 3 (HDAC3) is an excellent target for JAT-induced myelination enhancement. Liquid chromatography-mass spectrometry-(MS)/MS and coimmunoprecipitation analyses further confirmed that HDAC3 antagonizes the NRG1-ErbB2-PI3K-AKT signaling axis by interacting with Atxn2l to augment SCs myelination. Thus, JAT ameliorates SCs myelination in DPN mice via inhibiting the recruitment of Atxn2l by HDAC3 to regulate the NRG1-ErbB2-PI3K-AKT pathway.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neuropatías Diabéticas/tratamiento farmacológico , Células de Schwann , Histona Desacetilasas/metabolismo , Nervio Ciático , Diabetes Mellitus/patología , Neurregulina-1/metabolismo
17.
Cancer Lett ; 553: 215971, 2023 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-36257380

RESUMEN

Ovarian cancer (OC) is a malignant tumor that seriously threatens women's health. Due to the difficulty of early diagnosis, most patients exhibit advanced disease or peritoneal metastasis at diagnosis. We discovered that IFFO1 is a novel tumor suppressor, but its role in tumorigenesis, development and chemoresistance is unknown. In this study, IFFO1 levels were downregulated across cancers, leading to the acceleration of tumor development, metastasis and/or cisplatin resistance. Overexpression of IFFO1 inhibited the translocation of ß-catenin to the nucleus and decreased tumor metastasis and cisplatin resistance. Furthermore, we demonstrated that IFFO1 was regulated at both the transcriptional and posttranscriptional levels. At the transcriptional level, the recruitment of HDAC5 inhibited IFFO1 expression, which is mediated by the transcription factor YY1, and the METTL3/YTHDF2 axis regulated the mRNA stability of IFFO1 in an m6A-dependent manner. Mice injected with IFFO1-overexpressing cells had lower ascites volumes and tumor weights throughout the peritoneal cavity than those injected with parental cells expressing the vector control. In conclusion, we demonstrated that IFFO1 is a novel tumor suppressor that inhibits tumor metastasis and reverses drug resistance in ovarian cancer. IFFO1 was downregulated at both the transcriptional level and posttranscriptional level by histone deacetylase and RNA methylation, respectively, and the IFFO1 signaling pathway was identified as a potential therapeutic target for cancer.


Asunto(s)
Resistencia a Antineoplásicos , Proteínas de Filamentos Intermediarios , Metiltransferasas , Neoplasias Ováricas , Animales , Femenino , Humanos , Ratones , Adenosina/farmacología , Carcinogénesis , Cisplatino/farmacología , Regulación hacia Abajo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo
18.
Plant Sci ; 326: 111501, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36257410

RESUMEN

α-Farnesene accumulated in tea plants following infestations by most insects, and mechanical wounding is the common factor. However, the specific mechanism underlying the wounding-regulated accumulation of α-farnesene in tea plants remains unclear. In this study, we observed that histone deacetylase inhibitor treatment induced the accumulation of α-farnesene. The histone deacetylase CsHDA6 interacted directly with CsMYC2, which was an important transcription factor in the jasmonic acid (JA) pathway, and co-regulated the expression of the key α-farnesene synthesis gene CsAFS. Wounding caused by insect infestation affected CsHDA6 production at the transcript and protein levels, while also inhibited the binding of CsHDA6 to the CsAFS promoter. The resulting increased acetylation of histones H3/H4 in CsAFS enhanced the expression of CsAFS and the accumulation of α-farnesene. In conclusion, our study demonstrated the effect of histone acetylation on the production of tea plant HIPVs and revealed the importance of the CsHDA6-CsMYC2 transcriptional regulatory module.


Asunto(s)
Camellia sinensis , Sesquiterpenos , Animales , Camellia sinensis/genética , Camellia sinensis/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Sesquiterpenos/metabolismo , Insectos
19.
Proc Natl Acad Sci U S A ; 119(45): e2206846119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322735

RESUMEN

Heat stress limits plant growth, development, and crop yield, but how plant cells precisely sense and transduce heat stress signals remains elusive. Here, we identified a conserved heat stress response mechanism to elucidate how heat stress signal is transmitted from the cytoplasm into the nucleus for epigenetic modifiers. We demonstrate that HISTONE DEACETYLASE 9 (HDA9) transduces heat signals from the cytoplasm to the nucleus to play a positive regulatory role in heat responses in Arabidopsis. Heat specifically induces HDA9 accumulation in the nucleus. Under heat stress, the phosphatase PP2AB'ß directly interacts with and dephosphorylates HDA9 to protect HDA9 from 26S proteasome-mediated degradation, leading to the translocation of nonphosphorylated HDA9 to the nucleus. This heat-induced enrichment of HDA9 in the nucleus depends on the nucleoporin HOS1. In the nucleus, HDA9 binds and deacetylates the target genes related to signaling transduction and plant development to repress gene expression in a transcription factor YIN YANG 1-dependent and -independent manner, resulting in rebalance of plant development and heat response. Therefore, we uncover an HDA9-mediated positive regulatory module in the heat shock signal transduction pathway. More important, this cytoplasm-to-nucleus translocation of HDA9 in response to heat stress is conserved in wheat and rice, which confers the mechanism significant implication potential for crop breeding to cope with global climate warming.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Células Vegetales/metabolismo , Fitomejoramiento , Arabidopsis/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
20.
Cancer Res ; 82(24): 4542-4554, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36102738

RESUMEN

HDAC5 is a class IIa histone deacetylase member that is downregulated in multiple solid tumors, including pancreatic cancer, and loss of HDAC5 is associated with unfavorable prognosis. In this study, assessment of The Cancer Genome Atlas pancreatic adenocarcinoma dataset revealed that expression of HDAC5 correlates negatively with arachidonic acid (AA) metabolism, which has been implicated in inflammatory responses and cancer progression. Nontargeted metabolomics analysis revealed that HDAC5 knockdown resulted in a significant increase in AA and its downstream metabolites, such as eicosanoids and prostaglandins. HDAC5 negatively regulated the expression of the gene encoding calcium-dependent phospholipase A2 (cPLA2), the key enzyme in the production of AA from phospholipids. Mechanistically, HDAC5 repressed cPLA2 expression via deacetylation of GATA1. HDAC5 knockdown in cancer cells enhanced sensitivity to genetic or pharmacologic inhibition of cPLA2 in vitro and in vivo. Fatty acid supplementation in the diet reversed the sensitivity of HDAC5-deficient tumors to cPLA2 inhibition. These data indicate that HDAC5 loss in pancreatic cancer results in the hyperacetylation of GATA1, enabling the upregulation of cPLA2, which contributes to overproduction of AA. Dietary management plus cPLA2-targeted therapy could serve as a viable strategy for treating HDAC5-deficient pancreatic cancer patients. SIGNIFICANCE: The HDAC5-GATA1-cPLA2-AA signaling axis regulates sensitivity to fat restriction plus cPLA2 inhibition in pancreatic ductal adenocarcinoma, proposing dietary management as a feasible strategy for treating a subset of patients with pancreatic cancer.


Asunto(s)
Adenocarcinoma , Ácido Araquidónico , Histona Desacetilasas , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/genética , Ácido Araquidónico/metabolismo , Citosol/metabolismo , Histona Desacetilasas/genética , Neoplasias Pancreáticas/genética , Fosfolipasas A2 Citosólicas/genética , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA