Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(4): 96, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480545

RESUMEN

KEY MESSAGE: Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hordeum/genética , Hordeum/metabolismo , ARN Interferente Pequeño/genética , Nucleótidos/metabolismo , Adenina/metabolismo , Metilación de ADN/genética , ARN de Planta/genética
2.
BMC Plant Biol ; 24(1): 43, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38200422

RESUMEN

BACKGROUND: The development of the plant in vitro techniques has brought about the variation identified in regenerants known as somaclonal or tissue culture-induced variation (TCIV). S-adenosyl-L-methionine (SAM), glutathione (GSH), low methylated pectins (LMP), and Cu(II) ions may be implicated in green plant regeneration efficiency (GPRE) and TCIV, according to studies in barley (Hordeum vulgare L.) and partially in triticale (× Triticosecale spp. Wittmack ex A. Camus 1927). Using structural equation models (SEM), these metabolites have been connected to the metabolic pathways (Krebs and Yang cycles, glycolysis, transsulfuration), but not for triticale. Using metabolomic and (epi)genetic data, the study sought to develop a triticale regeneration efficiency statistical model. The culture's induction medium was supplemented with various quantities of Cu(II) and Ag(I) ions for regeneration. The period of plant regeneration has also changed. The donor plant, anther-derived regenerants, and metAFLP were utilized to analyze TCIV concerning DNA in symmetric (CG, CHG) and asymmetric (CHH) sequence contexts. Attenuated Total Reflectance-Fourier Transfer Infrared (ATR-FTIR) spectroscopy was used to gather the metabolomic information on LMP, SAM, and GSH. To frame the data, a structural equation model was employed. RESULTS: According to metAFLP analysis, the average sequence change in the CHH context was 8.65%, and 0.58% was de novo methylation. Absorbances of FTIR spectra in regions specific for LMP, SAM, and GSH were used as variables values introduced to the SEM model. The average number of green regenerants per 100 plated anthers was 2.55. CONCLUSIONS: The amounts of pectin demethylation, SAM, de novo methylation, and GSH are connected in the model to explain GPRE. By altering the concentration of Cu(II) ions in the medium, which influences the amount of pectin, triticale's GPRE can be increased.


Asunto(s)
Hordeum , Triticale , Suplementos Dietéticos , Glutatión , Hordeum/genética , Pectinas , Iones
3.
Int J Mol Sci ; 24(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38139020

RESUMEN

Organic phosphorus (OP) is an essential component of the soil P cycle, which contributes to barley nutrition after its mineralization into inorganic phosphorus (Pi). However, the dynamics of OP utilization in the barley rhizosphere remain unclear. In this study, phytin was screened out from six OP carriers, which could reflect the difference in OP utilization between a P-inefficient genotype Baudin and a P-efficient genotype CN4027. The phosphorus utilization efficiency (PUE), root morphological traits, and expression of genes associated with P utilization were assessed under P deficiency or phytin treatments. P deficiency resulted in a greater root surface area and thicker roots. In barley fed with phytin as a P carrier, the APase activities of CN4027 were 2-3-fold lower than those of Baudin, while the phytase activities of CN4027 were 2-3-fold higher than those of Baudin. The PUE in CN4027 was mainly enhanced by activating phytase to improve the root absorption and utilization of Pi resulting from OP mineralization, while the PUE in Baudin was mainly enhanced by activating APase to improve the shoot reuse capacity. A phosphate transporter gene HvPHT1;8 regulated P transport from the roots to the shoots, while a purple acid phosphatase (PAP) family gene HvPAPhy_b contributed to the reuse of P in barley.


Asunto(s)
6-Fitasa , Hordeum , Fósforo/metabolismo , Hordeum/genética , Hordeum/metabolismo , 6-Fitasa/metabolismo , Ácido Fítico/metabolismo , Genotipo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
4.
NanoImpact ; 31: 100472, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37453617

RESUMEN

For safe and effective nutrient management, the cutting-edge approaches to plant fertilization are continuously developed. The aim of the study was to analyze the transcriptional response of barley suffering from Cu deficiency to foliar application of nanoparticulate Cu (nano-Cu) and its ionic form (CuSO4) at 100 and 1000 mg L-1 for the examination of their supplementing effect. The initial interactions of Cu-compounds with barley leaves were analyzed with spectroscopic (ICP-OES) and microscopic (SEM-EDS) methods. To determine Cu cellular status, the impact of Cu-compounds on the expression of genes involved in regulating Cu homeostasis (PAA1, PAA2, RAN1, COPT5), aquaporins (NIP2.1, PIP1.1, TIP1.1, TIP1.2) and antioxidant defense response (SOD CuZn, SOD Fe, SOD Mn, CAT) after 1 and 7 days of exposure was analyzed. Although Cu accumulation in plant leaves was detected overtime, the Cu content in leaves exposed to nano-Cu for 7 days was 44.5% lower than in CuSO4 at 100 mg L-1. However, nano-Cu aggregates remaining on the leaf surface indicated a potential difference between measured Cu content and the real Cu pool present in the plant. Our study revealed significant changes in the pattern of gene expression overtime depending on Cu-compound type and dose. Despite the initial puzzling patterns of gene expression, after 7 days all Cu transporters showed significant down-regulation under Cu-compounds exposure to prevent Cu excess in plant cells. Conversely, aquaporin gene expression was induced after 7 days, especially by nano-Cu and CuSO4 at 100 mg L-1 due to the stimulatory effect of low Cu doses. Our study revealed that the gradual release of Cu ions from nano-Cu at a lower rate provided a milder molecular response than CuSO4. It might indicate that nano-Cu maintained better metal balance in plants than the conventional compounds, thus may be considered as a long-term supplier of Cu.


Asunto(s)
Hordeum , Hordeum/genética , Antioxidantes/metabolismo , Homeostasis , Superóxido Dismutasa/genética
5.
Cells ; 12(10)2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37408231

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 µM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.


Asunto(s)
Hordeum , Melatonina , Fósforo , Raíces de Plantas , Estrés Fisiológico , Melatonina/farmacología , Melatonina/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Fósforo/deficiencia , Hordeum/efectos de los fármacos , Hordeum/genética , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Genotipo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Estrés Fisiológico/fisiología
6.
Cells ; 12(12)2023 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-37371126

RESUMEN

Drought stress inducing pollen sterility can reduce crop yield worldwide. The regulatory crosstalk associated with the effects of drought on pollen formation at the cellular level has not been explored in detail so far. In this study, we performed morphological and cytoembryological analysis of anther perturbations and examined pollen development in two spring barley genotypes that differ in earliness and drought tolerance. The Syrian breeding line CamB (drought-tolerant) and the European cultivar Lubuski (drought-sensitive) were used as experimental materials to analyze the drought-induced changes in yield performance, chlorophyll fluorescence kinetics, the pollen grain micromorphology and ultrastructure during critical stages of plant development. In addition, fluctuations in HvGAMYB expression were studied, as this transcription factor is closely associated with the development of the anther. In the experiments, the studied plants were affected by drought, as was confirmed by the analyses of yield performance and chlorophyll fluorescence kinetics. However, contrary to our expectations, the pollen development of plants grown under specific conditions was not severely affected. The results also suggest that growth modification, as well as the perturbation in light distribution, can affect the HvGAMYB expression. This study demonstrated that the duration of the vegetation period can influence plant drought responses and, as a consequence, the processes associated with pollen development as every growth modification changes the dynamics of drought effects as well as the duration of plant exposition to drought.


Asunto(s)
Hordeum , Hordeum/genética , Resistencia a la Sequía , Fitomejoramiento , Genotipo , Polen/genética , Clorofila
7.
J Agric Food Chem ; 71(13): 5240-5249, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961403

RESUMEN

Selenium (Se) is an essential trace element for human and animal health. Understanding the uptake and translocation of Se in crops is critical from the perspective of Se biofortification. In this study, barley was malted to investigate the uptake, translocation, and metabolism of exogenous Se including Na2SeO4, Na2SeO3, and selenomethionine (Se-Met). The results showed that the uptake rates of different forms of Se in barley decreased in the following order: Se-Met > Na2SeO3 > Na2SeO4, with the peak uptake occurring at the end of the steeping stages. In the early stages of germination, Se was mainly distributed in the husk and endosperm. Exogenous Se upregulated the transcription levels of Se transport and metabolic enzyme genes in the barley to varying degrees, which promoted Se transformation in various tissues, and improved Se bioeffectiveness. Compared to the Na2SeO3 and Se-Met groups, more Se was transferred from husk and endosperm to acrospire and rootlets in the Na2SeO4 group during the germination stage. Na2SeO4 and Se-Met stimulated the development of rootlets, and accelerated Se metabolism, resulting in a higher Se loss rate. Thus, these comparative findings provide new insights into Se uptake, transformation, and metabolization in barley.


Asunto(s)
Hordeum , Compuestos de Selenio , Selenio , Animales , Humanos , Selenometionina , Ácido Selénico/metabolismo , Selenio/metabolismo , Ácido Selenioso/metabolismo , Hordeum/genética , Hordeum/metabolismo
8.
Plant Physiol ; 190(4): 2260-2278, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36047839

RESUMEN

Despite the widespread prevalence of root loss in plants, its effects on crop productivity are not fully understood. While root loss reduces the capacity of plants to take up water and nutrients from the soil, it may provide benefits by decreasing the resources required to maintain the root system. Here, we simulated a range of root phenotypes in different soils and root loss scenarios for barley (Hordeum vulgare), common bean (Phaseolus vulgaris), and maize (Zea mays) using and extending the open-source, functional-structural root/soil simulation model OpenSimRoot. The model enabled us to quantify the impact of root loss on shoot dry weight in these scenarios and identify in which scenarios root loss is beneficial, detrimental, or has no effect. The simulations showed that root loss is detrimental for phosphorus uptake in all tested scenarios, whereas nitrogen uptake was relatively insensitive to root loss unless main root axes were lost. Loss of axial roots reduced shoot dry weight for all phenotypes in all species and soils, whereas lateral root loss had a smaller impact. In barley and maize plants with high lateral branching density that were not phosphorus-stressed, loss of lateral roots increased shoot dry weight. The fact that shoot dry weight increased due to root loss in these scenarios indicates that plants overproduce roots for some environments, such as those found in high-input agriculture. We conclude that a better understanding of the effects of root loss on plant development is an essential part of optimizing root system phenotypes for maximizing yield.


Asunto(s)
Hordeum , Phaseolus , Raíces de Plantas , Fósforo/farmacología , Suelo/química , Zea mays , Hordeum/genética , Nutrientes
9.
J Ethnobiol Ethnomed ; 18(1): 58, 2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36058958

RESUMEN

BACKGROUND: Farmers' knowledge has a role in maintaining barley (Hordeum vulgare L.) genetic resource, which plays an important role in food security, and provides socio-cultural value to the Ethiopian farmers. However, farmers' knowledge has been ignored in the decision-making process in Misha, Gumer, and Hetosa districts, Ethiopia. METHODS: In this study, a semi-structured interview guide was used to carry out comprehensive house-to-house interviews with 357 purposively selected farmers to document their knowledge of barley cultivation, utilization and conservation practices. RESULTS: The majority of farmers (57.1%) grow barley on 0.5-0.75 hectares. Farmers identified and described 68 barley varieties with various local names, which were given to barley based on different characteristics such as plant height, spikelet length, row type, seed size and color, yield, place of origin, and use-values. Farmers are familiar with the nature, characteristics, end-uses, and preparation of different well-appreciated local meals and drinks. Farmers noticed that the number of barley local varieties has been decreasing in recent years. Introduction of improved varieties was perceived by all farmers as the main cause for the decrease in the number of barley local varieties in their localities. Another factor for the reduction in local barley varieties, according to 24.2% of farmers, was soil fertility degradation. Most of the farmers (65.7%) use their own barley seeds, which they select and save for the next growing season for specific attributes. They have their own indigenous knowledge that they have acquired through experience by growing, selecting, and conserving barley for the last 20-30 years or more. CONCLUSION: The majority of farmers gave attention to commercial cultivars due to their better market value. Thus, the introduction of improved cultivars has imposed on local varieties. The indigenous knowledge that the famers acquired through experience could be considered an advantage for the conservation of barley genetic resources by using farmers' participatory approach to widen cultivation and to improve barley local varieties for future use.


Asunto(s)
Hordeum , Etiopía , Agricultores , Hordeum/genética , Humanos , Conocimiento , Semillas
10.
Int J Mol Sci ; 23(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806480

RESUMEN

Spectral quality, intensity and period of light modify many regulatory and stress signaling pathways in plants. Both nitrate and sulfate assimilations must be synchronized with photosynthesis, which ensures energy and reductants for these pathways. However, photosynthesis is also a source of reactive oxygen species, whose levels are controlled by glutathione and other antioxidants. In this study, we investigated the effect of supplemental far-red (735 nm) and blue (450 nm) lights on the diurnal expression of the genes related to photoreceptors, the circadian clock, nitrate reduction, glutathione metabolism and various antioxidants in barley. The maximum expression of the investigated four photoreceptor and three clock-associated genes during the light period was followed by the peaking of the transcripts of the three redox-responsive transcription factors during the dark phase, while most of the nitrate and sulfate reduction, glutathione metabolism and antioxidant-enzyme-related genes exhibited high expression during light exposure in plants grown in light/dark cycles for two days. These oscillations changed or disappeared in constant white light during the subsequent two days. Supplemental far-red light induced the activation of most of the studied genes, while supplemental blue light did not affect or inhibited them during light/dark cycles. However, in constant light, several genes exhibited greater expression in blue light than in white and far-red lights. Based on a correlation analysis of the gene expression data, we propose a major role of far-red light in the coordinated transcriptional adjustment of nitrate reduction, glutathione metabolism and antioxidant enzymes to changes of the light spectrum.


Asunto(s)
Hordeum , Antioxidantes , Ritmo Circadiano/genética , Glutatión , Hordeum/genética , Nitratos , Plantas , Sulfatos
11.
Curr Biol ; 32(8): 1798-1811.e8, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35316655

RESUMEN

Pollen grains become increasingly independent of the mother plant as they reach maturity through poorly understood developmental programs. We report that the hormone auxin is essential during barley pollen maturation to boost the expression of genes encoding almost every step of heterotrophic energy production pathways. Accordingly, auxin is necessary for the flux of sucrose and hexoses into glycolysis and to increase the levels of pyruvate and two tricarboxylic (TCA) cycle metabolites (citrate and succinate). Moreover, bioactive auxin is synthesized by the pollen-localized enzyme HvYUCCA4, supporting that pollen grains autonomously produce auxin to stimulate a specific cellular output, energy generation, that fuels maturation processes such as starch accumulation. Our results demonstrate that auxin can shift central carbon metabolism to drive plant cell development, which suggests a direct mechanism for auxin's ability to promote growth and differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hordeum , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Hordeum/metabolismo , Ácidos Indolacéticos/metabolismo , Polen/genética , Polen/metabolismo
12.
BMC Plant Biol ; 22(1): 62, 2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35120438

RESUMEN

BACKGROUND: For translational genomics, a roadmap is needed to know the molecular similarities or differences between species, such as model species and crop species. This knowledge is invaluable for the selection of target genes and pathways to alter downstream in response to the same stimuli. Here, the transcriptomic responses to six treatments including hormones (abscisic acid - ABA and salicylic acid - SA); treatments that cause oxidative stress (3-amino-1,2,4-triazole - 3AT, methyl viologen - MV); inhibit respiration (antimycin A - AA) or induce genetic damage (ultraviolet radiation -UV) were analysed and compared between Arabidopsis (Arabidopsis thaliana), barley (Hordeum vulgare) and rice (Oryza sativa). RESULTS: Common and opposite responses were identified between species, with the number of differentially expressed genes (DEGs) varying greatly between treatments and species. At least 70% of DEGs overlapped with at least one other treatment within a species, indicating overlapping response networks. Remarkably, 15 to 34% of orthologous DEGs showed opposite responses between species, indicating diversity in responses, despite orthology. Orthologous DEGs with common responses to multiple treatments across the three species were correlated with experimental data showing the functional importance of these genes in biotic/abiotic stress responses. The mitochondrial dysfunction response was revealed to be highly conserved in all three species in terms of responsive genes and regulation via the mitochondrial dysfunction element. CONCLUSIONS: The orthologous DEGs that showed a common response between species indicate conserved transcriptomic responses of these pathways between species. However, many genes, including prominent salt-stress responsive genes, were oppositely responsive in multiple-stresses, highlighting fundamental differences in the responses and regulation of these genes between species. This work provides a resource for translation of knowledge or functions between species.


Asunto(s)
Adaptación Fisiológica/genética , Arabidopsis/genética , Hordeum/genética , Oryza/genética , Estrés Oxidativo/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Adaptación Fisiológica/fisiología , Arabidopsis/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hordeum/fisiología , Oryza/fisiología , Especificidad de la Especie
13.
Theor Appl Genet ; 135(4): 1263-1277, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35192007

RESUMEN

KEY MESSAGE: Grain disarticulation in wild progenitor of wheat and barley evolved through a local duplication event followed by neo-functionalization resulting from changes in location of gene expression. One of the most critical events in the process of cereal domestication was the loss of the natural mode of grain dispersal. Grain dispersal in barley is controlled by two major genes, Btr1 and Btr2, which affect the thickness of cell walls around the disarticulation zone. The barley genome also encodes Btr1-like and Btr2-like genes, which have been shown to be the ancestral copies. While Btr and Btr-like genes are non-redundant, the biological function of Btr-like genes is unknown. We explored the potential biological role of the Btr-like genes by surveying their expression profile across 212 publicly available transcriptome datasets representing diverse organs, developmental stages and stress conditions. We found that Btr1-like and Btr2-like are expressed exclusively in immature anther samples throughout Prophase I of meiosis within the meiocyte. The similar and restricted expression profile of these two genes suggests they are involved in a common biological function. Further analysis revealed 141 genes co-expressed with Btr1-like and 122 genes co-expressed with Btr2-like, with 105 genes in common, supporting Btr-like genes involvement in a shared molecular pathway. We hypothesize that the Btr-like genes play a crucial role in pollen development by facilitating the formation of the callose wall around the meiocyte or in the secretion of callase by the tapetum. Our data suggest that Btr genes retained an ancestral function in cell wall modification and gained a new role in grain dispersal due to changes in their spatial expression becoming spike specific after gene duplication.


Asunto(s)
Grano Comestible , Hordeum , Grano Comestible/genética , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Hordeum/genética , Polen/genética
14.
J Med Food ; 25(1): 79-88, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35029509

RESUMEN

The mechanisms of action responsible for the reported hypolipidemic activity of barley sprouts have yet to be elucidated. The objective of this study was to compare the content of saponarin (the sole flavonoid present in barley sprout leaves), hypolipidemic activity between barley sprout water extract (BSW) and barley sprout ethanol extract (BSE), and the associated relevance to hypolipidemic activity in 3T3-L1 preadipocytes. BSW elicited superior antiadipogenic effects when compared with BSE in MDI mixture [IBMX 0.5 mM + dexamethasone 1 µM + insulin 1 µg/mL]-treated 3T3-L1 preadipocytes. BSW attenuated MDI-mediated triacylglycerol (TAG) accumulation by inhibiting fatty acid synthase (FAS). FAS protein expression was markedly and dose dependently attenuated by BSW, with higher doses suppressing expression to a level equivalent to the controls. BSW also significantly attenuated MDI-mediated increases in the expression of genes involved in TAG synthesis as well as FAS in 3T3-L1 preadipocytes. High-performance liquid chromatography analysis indicated that BSW contains more than four times more saponarin than BSE. Further investigation of saponarin-mediated hypotriacylglycerolemic activity and related gene expression revealed that saponarin significantly inhibited TAG accumulation, which was attributed to reductions in TAG synthesis-related gene expression. Taken together, these findings provide a basis for further development of barley sprout extract for functional health food purposes.


Asunto(s)
Hordeum , Células 3T3-L1 , Adipocitos , Adipogénesis , Animales , Apigenina , Diferenciación Celular , Glucósidos , Hordeum/genética , Ratones , Triglicéridos , Agua
15.
Food Chem ; 365: 130460, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34237573

RESUMEN

The ß-d-glucans are abundant cell wall polysaccharides in many cereals and contain both (1,3)- and (1,4)-bonds. The ß-1,3-1,4-glucanases (EC 3.2.1.73) hydrolyze ß-(1,4)-d-glucosidic linkages in glucans, and have applications in both animal and human food industries. A chimera between the family 11 carbohydrate-binding module from Ruminoclostridium (Clostridium)thermocellumcelH (RtCBM11), with the ß-1,3-1,4-glucanase from Bacillus subtilis (BglS) was constructed by end-to-end fusion (RtCBM11-BglS) to evaluate the effects on the catalytic function and its application in barley ß-glucan degradation for the brewing industry. The parental and chimeric BglS presented the same optimum pH (6.0) and temperature (50 °C) for maximum activity. The RtCBM11-BglS showed increased thermal stability and 30% higher hydrolytic efficiency against purified barley ß-glucan, and the rate of hydrolysis of ß-1,3-1,4-glucan in crude barley extracts was significantly increased. The enhanced catalytic performance of the RtCBM11-BglS may be useful for the treatment of crude barley extracts in the brewing industry.


Asunto(s)
Glucanos , Hordeum , Glicósido Hidrolasas/metabolismo , Hordeum/genética , Hordeum/metabolismo , Hidrólisis , Extractos Vegetales , Especificidad por Sustrato
16.
Planta ; 254(2): 38, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34312721

RESUMEN

MAIN CONCLUSION: Transcriptional activation of subfamily II PHT1 members in roots is associated with the enhanced phosphorus use efficiency and growth promotion of barley seedlings inoculated with Glomus species. The arbuscular mycorrhizal (AM) fungi symbiotic associations in cereal crops are known to regulate growth in cultivar-specific manner and induce phosphate (Pi) transporters (PHT1) in roots. In the present study, we observed that both AM colonization of roots by Glomus species and phosphate starvation enhanced phosphorus use efficiency (PUE) in barley seedlings. Our search for the full complement of PHT1 members in the recently sequenced barley genome identified six additional genes, totaling their number to 17. Both AM colonization and Pi starvation triggered activation of common as well as different PHT1s. Pi starvation led to the robust upregulation of HvPHT1;6.2/6.3 at 7d and weak activation of HvPHT1;1 in shoots at 3d time-point. In roots, only HvPHT1;1, HvPHT1;6.2/6.3, HvPHT1;7, HvPHT1;8, HvPHT1;11.2 and HvPHT12 were induced at least one of the time-points. AM colonization specifically upregulated HvPHT1;11, HvPHT1;11.2, HvPHT1;12 and HvPHT1;13.1/13.2, members belonging to subfamily II, in roots. Sucrose availability seems to be obligatory for the robust activation of HvPHT1;1 as unavailability of this metabolite generally weakened its upregulation under Pi starvation. Intriguingly, lack of sucrose supply also led to induction of HvPHT1;5, HvPHT1;8, and HvPHT1;11.2 in either roots or shoot or both. The mRNA levels of HvPHT1;5 and HvPHT1;11.2 were not severely affected under combined deficiency of Pi and sucrose. Taken together, this study not only identify additional PHT1 members in barley, but also ascertain their AM, Pi and sucrose-specific transcript accumulation. The beneficial role of AM fungi in the promotion of PUE and barley seedlings' growth is also demonstrated.


Asunto(s)
Hordeum , Micorrizas , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Hordeum/metabolismo , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/genética , Plantones/metabolismo
17.
Methods Mol Biol ; 2287: 187-197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270030

RESUMEN

The production of doubled haploids (DHs) has proved to be a highly valuable tool to obtain new cultivars. Among the cereals, barley (Hordeum vulgare L.) is the most successful species in large-scale haploid production. Techniques employed for this purpose are based on either the gynogenetic or the androgenetic pathway. Interspecific cross with Hordeum bulbosum L., haploid gene inducer (the hap gene), ovary culture, anther culture (AC), and isolated microspore culture (IMC) are the most used methods. Among all of them, IMC is regarded as a particularly effective system owing to the great increase in green plant numbers per spike and also the higher induction of chromosome doubling when compared with other methods. Thus, IMC provides the best way to mass scale production of new varieties.


Asunto(s)
Cromosomas de las Plantas , Gametogénesis en la Planta , Hordeum/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Medios de Cultivo , Haploidia , Hordeum/genética , Polen/genética , Polen/crecimiento & desarrollo
18.
Methods Mol Biol ; 2287: 199-214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270031

RESUMEN

In plant research and breeding, haploid technology is employed upon crossing, induced mutagenesis or genetic engineering to generate populations of meiotic recombinants that are themselves genetically fixed. Thanks to the speed and efficiency in producing true-breeding lines, haploid technology has become a major driver of modern crop improvement. In the present study, we used embryogenic pollen cultures of winter barley ( Hordeum vulgare ) for Cas9 endonuclease-mediated targeted mutagenesis in haploid cells, which facilitates the generation of homozygous primary mutant plants. To this end, microspores were extracted from immature anthers, induced to undergo cell proliferation and embryogenic development in vitro, and were then inoculated with Agrobacterium for the delivery of T-DNAs comprising expression units for Cas9 endonuclease and target gene-specific guide RNAs (gRNAs). Amongst the regenerated plantlets, mutants were identified by PCR amplification of the target regions followed by sequencing of the amplicons. This approach also enabled us to discriminate between homozygous and heterozygous or chimeric mutants. The heritability of induced mutations and their homozygous state were experimentally confirmed by progeny analyses. The major advantage of the method lies in the preferential production of genetically fixed primary mutants, which facilitates immediate phenotypic analyses and, relying on that, a particularly efficient preselection of valuable lines for detailed investigations using their progenies.


Asunto(s)
Endonucleasas/metabolismo , Haploidia , Hordeum/crecimiento & desarrollo , Hordeum/genética , Mutagénesis Sitio-Dirigida/métodos , Fitomejoramiento/métodos , ARN Guía de Kinetoplastida/genética , Sistemas CRISPR-Cas , Medios de Cultivo , Endonucleasas/genética , Edición Génica , Ingeniería Genética , Genoma de Planta , Homocigoto , Hordeum/embriología , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo
19.
Methods Mol Biol ; 2287: 215-226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270032

RESUMEN

The generation of doubled haploid barley plants by means of the so-called "Bulbosum" method has been practiced for meanwhile five decades. It rests upon the pollination of barley by its wild relative Hordeum bulbosum. This can result in the formation of hybrid embryos whose further development is typically associated with the loss of the pollinator's chromosomes. In recent years, this principle has, however, only rarely been used owing to the availability of efficient methods of anther and microspore culture. On the other hand, immature pollen-derived embryogenesis is to some extent prone to segregation bias in the resultant populations of haploids, which is due to its genotype dependency. Therefore, the principle of uniparental genome elimination has more recently regained increasing interest within the plant research and breeding community. The development of the present protocol relied on the use of the spring-type barley cultivar Golden Promise. The protocol is the result of a series of comparative experiments, which have addressed various methodological facets. The most influential ones included the method of emasculation, the temperature at flowering and early embryo development, the method, point in time and concentration of auxin administration for the stimulation of caryopsis development, the developmental stage at embryo dissection, as well as the nutrient medium used for embryo rescue. The present protocol allows the production of haploid barley plants at an efficiency of ca. 25% of the pollinated florets.


Asunto(s)
Hordeum/crecimiento & desarrollo , Hordeum/genética , Fitomejoramiento/métodos , Técnicas de Cultivo de Tejidos/métodos , Genotipo , Haploidia , Hordeum/embriología , Polen/genética , Polen/crecimiento & desarrollo , Polinización
20.
Methods Mol Biol ; 2289: 149-166, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34270069

RESUMEN

This chapter deals with microspore embryogenesis in Citrus. Microspore embryogenesis allows to induce immature gametes (microspores) and to deviate them, in this case, the male one, from the normal gametophytic developmental route in the direction of the sporophytic one, yielding homozygous organisms (embryos and plants).


Asunto(s)
Citrus/genética , Desarrollo Embrionario/genética , Polen/genética , Regulación de la Expresión Génica de las Plantas/genética , Haploidia , Hordeum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA