Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
País/Región como asunto
Intervalo de año de publicación
1.
Front Immunol ; 11: 2119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072073

RESUMEN

Neurotoxicity is a common side effect of chemotherapeutics that often leads to the development of chemotherapy-induced peripheral neuropathy (CIPN). The peptide Prokineticin 2 (PK2) has a key role in experimental models of CIPN and can be considered an insult-inducible endangering mediator. Since primary afferent sensory neurons are highly sensitive to anticancer drugs, giving rise to dysesthesias, the aim of our study was to evaluate the alterations induced by vincristine (VCR) and bortezomib (BTZ) exposure in sensory neuron cultures and the possible preventive effect of blocking PK2 signaling. Both VCR and BTZ induced a concentration-dependent reduction of total neurite length that was prevented by the PK receptor antagonist PC1. Antagonizing the PK system also reduced the upregulation of PK2, PK-R1, TLR4, IL-6, and IL-10 expression induced by chemotherapeutic drugs. In conclusion, inhibition of PK signaling with PC1 prevented the neurotoxic effects of chemotherapeutics, suggesting a promising strategy for neuroprotective therapies against the sensory neuron damage induced by exposure to these drugs.


Asunto(s)
Antineoplásicos/toxicidad , Bortezomib/toxicidad , Hormonas Gastrointestinales/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuropéptidos/antagonistas & inhibidores , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Células Receptoras Sensoriales/efectos de los fármacos , Triazinas/farmacología , Vincristina/toxicidad , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo , Evaluación Preclínica de Medicamentos , Hormonas Gastrointestinales/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/fisiología , Neuritas/efectos de los fármacos , Neuritas/ultraestructura , Neuroinmunomodulación/efectos de los fármacos , Neuropéptidos/fisiología , Fármacos Neuroprotectores/uso terapéutico , ARN Mensajero/biosíntesis , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Triazinas/uso terapéutico
2.
Mol Nutr Food Res ; 63(23): e1801187, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31556210

RESUMEN

SCOPE: The characteristics of gut microbiota and host metabolism are hypothesized to be associated with constipation status, but the regulation mechanism is not fully understood. Thus, the current study investigates the effect of constipation symptoms on gut functionality following the modulation of gut microbiota and metabolites via dietary fiber intervention. METHODS AND RESULTS: Constipation causes a significantly reduced short-chain fatty acids (SCFAs) production and a higher level of iso-butyrate. The feces of constipated people are characterized with inhibited Faecalibacterium, Ruminococcaceae and Roseburia abundance. Desulfovibrionaceae is identified to be an important endotoxin producer in constipated patients, and a butyrate-enriched SCFAs profile achieved by dietary fiber supplement accelerates gastrointestinal transit and increases the thickness of the mucosal layer, possibly through triggering the secretion of colonic hormones and enhancing the expression of tight junction proteins for maintaining intestinal barrier integrity. More importantly, an interacting regulatory mechanism among SCFAs, in particular butyrate and propionate, may be involved in signaling between the microbiome and host cells in the colon. CONCLUSION: Gut microbiota, characterized with enriched butyrate-producing and depressed Desulfovibrionaceae bacteria, attenuates constipation symptoms through promoting intestinal hormones secretion and maintaining gut barrier integrity.


Asunto(s)
Butiratos/metabolismo , Estreñimiento/terapia , Ácidos Grasos Volátiles/biosíntesis , Hormonas Gastrointestinales/fisiología , Microbioma Gastrointestinal/fisiología , Mananos/administración & dosificación , Oligosacáridos/administración & dosificación , Probióticos/farmacología , Animales , Estreñimiento/metabolismo , Fibras de la Dieta/administración & dosificación , Heces/química , Heces/microbiología , Humanos , Resistencia a la Insulina , Masculino , Ratas , Ratas Sprague-Dawley
3.
Endocr Regul ; 51(1): 52-70, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28222022

RESUMEN

The maintenance of the body weight at a stable level is a major determinant in keeping the higher animals and mammals survive. Th e body weight depends on the balance between the energy intake and energy expenditure. Increased food intake over the energy expenditure of prolonged time period results in an obesity. Th e obesity has become an important worldwide health problem, even at low levels. The obesity has an evil effect on the health and is associated with a shorter life expectancy. A complex of central and peripheral physiological signals is involved in the control of the food intake. Centrally, the food intake is controlled by the hypothalamus, the brainstem, and endocannabinoids and peripherally by the satiety and adiposity signals. Comprehension of the signals that control food intake and energy balance may open a new therapeutic approaches directed against the obesity and its associated complications, as is the insulin resistance and others. In conclusion, the present review summarizes the current knowledge about the complex system of the peripheral and central regulatory mechanisms of food intake and their potential therapeutic implications in the treatment of obesity.


Asunto(s)
Regulación del Apetito/fisiología , Tronco Encefálico/fisiología , Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Hormonas Gastrointestinales/fisiología , Hipotálamo/fisiología , Obesidad/fisiopatología , Respuesta de Saciedad/fisiología , Adiposidad , Tronco Encefálico/metabolismo , Endocannabinoides/metabolismo , Endocannabinoides/fisiología , Hormonas Gastrointestinales/metabolismo , Humanos , Hipotálamo/metabolismo , Obesidad/metabolismo
4.
Obes Surg ; 27(1): 70-77, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27236777

RESUMEN

INTRODUCTION: The goals of this experiment were to study therapeutic potential of intestinal electrical stimulation (IES) for obesity, its mechanisms involving gastrointestinal motility and hormones, and role of pulse width in diet-induced obese rats. METHODS: In a 4-week study, rats equipped with one pair of electrodes at the duodenum were assigned to receive either a sham or IES of varied pulse widths in a sequential way. Food intake was measured daily and body weight measured weekly. Blood samples were collected for the measurement of glucagon-like peptide-1 (GLP-1). Solid gastric emptying (GE) and small bowel transit (SIT) tests were performed at the end of the experiment. RESULTS: The results of the study were as follows: (1) Daily food intake, not affected by IES of 0.3 ms, was pulse width-dependently reduced by 1.9 g with 1 ms and by 5.7 g with 3 ms. Accordingly, body weight was pulse width-dependently reduced by 2.4 g with 1 ms and by 12.8 g with 3 ms compared to a gain of 5.6 g in sham. (2) GLP-1 level was elevated by both 0.3 and 3 ms at 15 min, but was elevated only with 3 ms at 60 min. (3) GE was delayed to 52.3 % by IES of 3 ms but not 0.3 ms, compared to that at 64.4 % with sham IES. (4) Compared to the geometric center of 7.0 with sham IES, SIT was accelerated by 3 ms to 7.8 but not by 0.3 ms. CONCLUSION: IES pulse width-dependently reduces food intake and body weight, attributed to the delay of gastric emptying and the acceleration of small bowel transit, as well as the enhancement of GLP-1 secretion.


Asunto(s)
Terapia por Estimulación Eléctrica , Hormonas Gastrointestinales/fisiología , Motilidad Gastrointestinal/fisiología , Obesidad/fisiopatología , Obesidad/terapia , Animales , Peso Corporal , Modelos Animales de Enfermedad , Duodeno/fisiopatología , Ingestión de Alimentos/fisiología , Estimulación Eléctrica , Vaciamiento Gástrico/fisiología , Tránsito Gastrointestinal/fisiología , Péptido 1 Similar al Glucagón/sangre , Masculino , Obesidad/sangre , Ratas , Ratas Sprague-Dawley
5.
J Neuroendocrinol ; 28(9)2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27203571

RESUMEN

Peripheral anorectic hormones, such as glucagon-like peptide (GLP)-1, cholecystokinin (CCK)-8 and leptin, suppress food intake. The newly-identified anorectic neuropeptide, nesfatin-1, is synthesised in both peripheral tissues and the central nervous system, particularly by various nuclei in the hypothalamus and brainstem. In the present study, we examined the effects of i.p. administration of GLP-1 and CCK-8 and co-administrations of GLP-1 and leptin at subthreshold doses as confirmed by measurement of food intake, on nesfatin-1-immunoreactive (-IR) neurones in the hypothalamus and brainstem of rats by Fos immunohistochemistry. Intraperitoneal administration of GLP-1 (100 µg/kg) caused significant increases in the number of nesfatin-1-IR neurones expressing Fos-immunoreactivity in the supraoptic nucleus (SON), the area postrema (AP) and the nucleus tractus solitarii (NTS) but not in the paraventricular nucleus (PVN), the arcuate nucleus (ARC) or the lateral hypothalamic area (LHA). On the other hand, i.p. administration of CCK-8 (50 µg/kg) resulted in marked increases in the number of nesfatin-1-IR neurones expressing Fos-immunoreactivity in the SON, PVN, AP and NTS but not in the ARC or LHA. No differences in the percentage of nesfatin-1-IR neurones expressing Fos-immunoreactivity in the nuclei of the hypothalamus and brainstem were observed between rats treated with saline, GLP-1 (33 µg/kg) or leptin. However, co-administration of GLP-1 (33 µg/kg) and leptin resulted in significant increases in the number of nesfatin-1-IR neurones expressing Fos-immunoreactivity in the AP and the NTS. Furthermore, decreased food intake induced by GLP-1, CCK-8 and leptin was attenuated significantly by pretreatment with i.c.v. administration of antisense nesfatin-1. These results indicate that nesfatin-1-expressing neurones in the brainstem may play an important role in sensing peripheral levels of GLP-1 and leptin in addition to CCK-8, and also suppress food intake in rats.


Asunto(s)
Tronco Encefálico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al ADN/metabolismo , Conducta Alimentaria , Hormonas Gastrointestinales/fisiología , Hipotálamo/metabolismo , Leptina/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Animales , Ingestión de Alimentos , Hormonas Gastrointestinales/administración & dosificación , Péptido 1 Similar al Glucagón/administración & dosificación , Péptido 1 Similar al Glucagón/sangre , Péptido 1 Similar al Glucagón/fisiología , Inyecciones Intraperitoneales , Leptina/administración & dosificación , Leptina/sangre , Masculino , Nucleobindinas , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas Wistar , Sincalida/administración & dosificación , Sincalida/fisiología , Núcleo Supraóptico/metabolismo
6.
Med Sci (Paris) ; 31(2): 168-73, 2015 Feb.
Artículo en Francés | MEDLINE | ID: mdl-25744263

RESUMEN

Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance.


Asunto(s)
Encéfalo/fisiología , Glucosa/metabolismo , Homeostasis/fisiología , Intestinos/fisiología , Animales , Regulación del Apetito/fisiología , Vías Autónomas/fisiología , Glucemia/metabolismo , Conducta Alimentaria/fisiología , Hormonas Gastrointestinales/fisiología , Gluconeogénesis/fisiología , Humanos , Hambre/fisiología , Hipotálamo/fisiología , Intestinos/inervación , Intestinos/microbiología , Hígado/metabolismo , Microbiota , Respuesta de Saciedad/fisiología
7.
Curr Opin Endocrinol Diabetes Obes ; 22(1): 9-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25517024

RESUMEN

PURPOSE OF REVIEW: To summarize the recent findings. RECENT FINDINGS: Studies of changes in the plasma levels confirm the earlier concepts, but offer little proof of causal effect. It is increasingly realized that peptides produced in the gut have a paracrine role or an indirect effect via the gut-brain axis. Interest in prokinetic peptide agonists remains high despite the failure of two candidate drugs, but relamorelin and camicinal offer new hope. SUMMARY: We review the original studies published since January 2013 on peptides produced in the gut and with an effect on gastrointestinal motility.


Asunto(s)
Hormonas Gastrointestinales/metabolismo , Motilidad Gastrointestinal/fisiología , Tracto Gastrointestinal/fisiología , Hipotálamo/fisiología , Animales , Regulación del Apetito/fisiología , Modelos Animales de Enfermedad , Sistema Nervioso Entérico/fisiología , Hormonas Gastrointestinales/fisiología , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Ratones
8.
Vnitr Lek ; 59(9): 808-17, 2013 Sep.
Artículo en Checo | MEDLINE | ID: mdl-24073953

RESUMEN

The review article summarizes a very complex process of appetite regulation: the part focused on homeostatic regulation of food intake. The aim of homeostatic regulation is to achieve energy balance, stabile weight and optimal nutrient intake, in contrast to hedonic regulation of food intake, in which emotional and motivational factors are involved. Homeostatic regulation could be divided into shortterm and longterm regulation and comprises mainly gastrointestinal peptides, fat tissue hormones and central mechanisms localized in hypothalamus. It is a resultant of the action of orexigenic factors (increasing appetite and food intake) and anorexigenic factors (decreasing appetite and thus food intake), respectively. The anorexigenic factors include gastrointestinal peptides (e.g. cholecystokinin, glucagonlike peptide 1, bombesin, peptide YY and others), hormone of fat tissue leptin and centrally acting melanocortin system. On the contrary, orexigenic factors comprise of gastric ghrelin and centrally acting system of neuropeptide Y/ Agoutirelated peptide. Understanding the principles of the regulation of food intake is essential for comprehension of pathogenesis of eating disorders and obesity, whose prevalence has been recently increasing, and it provides potential targets for pharmacological interventions.


Asunto(s)
Regulación del Apetito/fisiología , Ingestión de Alimentos/fisiología , Tejido Adiposo/fisiopatología , Peso Corporal , Metabolismo Energético/fisiología , Hormonas Gastrointestinales/fisiología , Homeostasis/fisiología , Humanos , Hipotálamo/fisiopatología , Leptina/fisiología , Neuropéptido Y , Obesidad/fisiopatología
9.
Phytother Res ; 27(10): 1564-71, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23339028

RESUMEN

Although Berberine (BER) is popular in treating gastrointestinal (GI) disorders, its mechanisms are not clear yet. In order to investigate the effects and possible mechanism of BER on GI motility in rodents, we first explored GI motility by recording the myoelectrical activity of jejunum and colon in rats, and upper GI transit with a charcoal marker in mice. Then, the plasma levels of gastrin, motilin, somatostatin and glucagon-like-peptide-1 (Glp-1) were measured by ELISA or radioimmunoassay (RIA). Furthermore, endogenous opioid-peptides (ß-endorphin, dynorphin-A, met-enkephalin) were detected by RIA after treatment with BER. Our results showed that BER concentration-dependently inhibited myoelectrical activity and GI transit, which can be antagonized by opioid-receptor antagonists to different extents. The elevated somatostatin and Glp-1, and decreased gastrin and motilin in plasma, which were caused by BER application, also could be antagonized by the opioid-receptor antagonists. Additionally, plasma level of ß-endorphin, but not dynorphin-A and met-enkephalin, was increased by applying BER. Taken together, these studies show that BER plays inhibiting roles on GI motility and up-regulating roles on somatostatin, Glp-1 and down-regulating roles on gastrin, motilin. The pharmacological mechanisms of BER on GI motility and plasma levels of GI hormones were discovered to be closely related to endogenous opioid system.


Asunto(s)
Berberina/farmacología , Hormonas Gastrointestinales/fisiología , Motilidad Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Péptidos Opioides/fisiología , Animales , Colon/efectos de los fármacos , Colon/fisiología , Dinorfinas/fisiología , Encefalina Metionina/fisiología , Gastrinas/fisiología , Tracto Gastrointestinal/fisiología , Tránsito Gastrointestinal/efectos de los fármacos , Tránsito Gastrointestinal/fisiología , Péptido 1 Similar al Glucagón/fisiología , Yeyuno/efectos de los fármacos , Yeyuno/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Motilina/fisiología , Ratas , Ratas Sprague-Dawley , Somatostatina/fisiología , betaendorfina/fisiología
10.
World J Gastroenterol ; 18(19): 2309-19, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22654422

RESUMEN

The prevalence of obesity is growing to epidemic proportions, and there is clearly a need for minimally invasive therapies with few adverse effects that allow for sustained weight loss. Behavior and lifestyle therapy are safe treatments for obesity in the short term, but the durability of the weight loss is limited. Although promising obesity drugs are in development, the currently available drugs lack efficacy or have unacceptable side effects. Surgery leads to long-term weight loss, but it is associated with morbidity and mortality. Gastric electrical stimulation (GES) has received increasing attention as a potential tool for treating obesity and gastrointestinal dysmotility disorders. GES is a promising, minimally invasive, safe, and effective method for treating obesity. External gastric pacing is aimed at alteration of the motility of the gastrointestinal tract in a way that will alter absorption due to alteration of transit time. In addition, data from animal models and preliminary data from human trials suggest a role for the gut-brain axis in the mechanism of GES. This may involve alteration of secretion of hormones associated with hunger or satiety. Patient selection for gastric stimulation therapy seems to be an important determinant of the treatment's outcome. Here, we review the current status, potential mechanisms of action, and possible future applications of gastric stimulation for obesity.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Motilidad Gastrointestinal/fisiología , Obesidad/terapia , Estómago/fisiología , Pérdida de Peso , Apetito/fisiología , Hormonas Gastrointestinales/fisiología , Humanos , Intestinos/fisiología , Saciedad/fisiología , Nervio Vago/fisiología
11.
Gynecol Endocrinol ; 28 Suppl 1: 27-32, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22394301

RESUMEN

Metabolism is controlled through homeostatic system consisting of central centers, gut hormones, hormones from adipose tissue and the other hormonal axes. This cooperation is based on cross-talk between central and peripheral signals. Among them the hypothalamus plays a crucial role, with interconnected nuclei forming neuronal circuits. Other regions in the brain, such as the brain stem, the endocannabinoid system, the vagal afferents, are also involved in energy balance. The second component is peripheral source of signals--the gastrointestinal tract hormones. Additionally, adipokines from adipose tissue, thyrotropic, gonadotropic and somatotropic axes play a role in energy homeostasis. Knowledge about all components of this neuroendocrine circuit will be helpful in developing novel therapeutic approaches against the metabolic syndrome and its components.


Asunto(s)
Metabolismo Energético/fisiología , Sistemas Neurosecretores/fisiología , Animales , Regulación del Apetito/genética , Regulación del Apetito/fisiología , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiología , Metabolismo Energético/genética , Hormonas Gastrointestinales/metabolismo , Hormonas Gastrointestinales/fisiología , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiología , Sistemas Neurosecretores/metabolismo , Recompensa
12.
J Immunol ; 186(12): 7205-14, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21555532

RESUMEN

Guanylate cyclase C (GUCY2C or GC-C) and its ligands, guanylin (GUCA2A or Gn) and uroguanylin (GUCA2B or Ugn), are expressed in intestinal epithelial cells and regulate ion secretion, intestinal barrier function, and epithelial monolayer homeostasis via cGMP-dependent signaling pathways. The aim of this study was to determine whether GC-C and its ligands direct the course of intestinal inflammation. In this article, we show that dextran sodium sulfate (DSS)-induced clinical disease and histological damage to the colonic mucosa were significantly less severe in GC-C(-/-) mice and moderately reduced in Gn(-/-) animals. Relative to wild-type controls, GC-C(-/-) and Gn(-/-) mice had reduced apoptosis and increased proliferation of intestinal epithelial cells during DSS colitis. Basal and DSS-induced production of resistin-like molecule ß (RELMß) was substantially diminished in GC-C(-/-) mice. RELMß is thought to stimulate cytokine production in macrophages in this disease model and, consistent with this, TNF-α and IFN-γ production was minimal in GC-C(-/-) animals. RELMß and cytokine levels were similar to wild-type in Gn(-/-) mice, however. Colonic instillation of recombinant RELMß by enema into GC-C(-/-) mice restores sensitivity to DSS-mediated mucosal injury. These findings demonstrate a novel role for GC-C signaling in facilitating mucosal wounding and inflammation, and further suggest that this may be mediated, in part, through control of RELMß production.


Asunto(s)
Guanilato Ciclasa/fisiología , Animales , Enfermedades del Colon/etiología , Enfermedades del Colon/patología , Hormonas Gastrointestinales/fisiología , Hormonas Ectópicas/biosíntesis , Hormonas Ectópicas/fisiología , Inflamación/etiología , Péptidos y Proteínas de Señalización Intercelular , Interferón gamma/biosíntesis , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Péptidos Natriuréticos/fisiología , Factor de Necrosis Tumoral alfa/biosíntesis
13.
Clin Exp Pharmacol Physiol ; 38(1): 1-10, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21083697

RESUMEN

1. Obesity is a metabolic disease of pandemic proportions largely arising from positive energy balance, a consequence of sedentary lifestyle, conditioned by environmental and genetic factors. Several central and peripheral neurohumoral factors (the major ones being the anorectic adipokines leptin and adiponecin and the orexigenic gut hormone ghrelin) acting on the anorectic (pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript) and orexigenic (neuropeptide Y and agouti gene-related protein) neurons regulate energy balance. These neurons, mainly in the arcuate nucleus of the hypothalamus, project to parts of the brain modulating functions such as wakefulness, autonomic function and learning. A tilt in the anorectic-orexigenic balance, perhaps determined genetically, leads to obesity. 2. Excess fat deposition requires space, created by adipocyte (hypertrophy and hyperplasia) and extracellular matrix (ECM) remodelling. This process is regulated by several factors, including several adipocyte-derived Matrix metalloproteinases and the adipokine cathepsin, which degrades fibronectin, a key ECM protein. Excess fat, also deposited in visceral organs, generates chronic low-grade inflammation that eventually triggers insulin resistance and the associated comorbidities of metabolic syndrome (hypertension, atherosclerosis, dyslipidaemia and diabetes mellitus). 3. The perivascular adipose tissue (PVAT) has conventionally been considered non-physiological structural tissue, but has recently been shown to serve a paracrine function, including the release of adipose-derived relaxant and contractile factors, akin to the role of the vascular endothelium. Thus, PVAT regulates vascular function in vivo and in vitro, contributing to the cardiovascular pathophysiology of the metabolic syndrome. Defining the mechanism of PVAT regulation of vascular reactivity requires more and better controlled investigations than currently seen in the literature.


Asunto(s)
Adipocitos/fisiología , Vasos Sanguíneos/fisiopatología , Síndrome Metabólico/fisiopatología , Obesidad/fisiopatología , Animales , Vasos Sanguíneos/fisiología , Hormonas Gastrointestinales/fisiología , Salud Holística , Humanos , Síndrome Metabólico/complicaciones , Síndrome Metabólico/etiología , Modelos Biológicos , Obesidad/complicaciones , Obesidad/etiología , Percepción/fisiología
14.
Med Hypotheses ; 76(3): 429-33, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21144670

RESUMEN

An increase in pro-inflammatory cytokines, decrease in endothelial nitric oxide (eNO) and adiponectin levels and an alteration in hypothalamic peptides and gastrointestinal hormones such as incretins and cholecystokinin that regulate satiety, hunger, and food intake occur in metabolic syndrome. Thus, metabolic syndrome is a low-grade systemic inflammatory condition and could be due to inappropriate cross-talk between the peripheral tissues and the hypothalamic centers implying that methods designed to restore these two abnormalities to normal could be of significant benefit in metabolic syndrome. Vagus nerve stimulation has been shown to suppress inflammation and acetylcholine, the principal vagal neurotransmitter, modulates the actions of several hypothalamic peptides and incretins and cholecystokinin. Based on these evidences, it is proposed that vagus nerve stimulation could be of significant benefit in the management of the metabolic syndrome.


Asunto(s)
Síndrome Metabólico/prevención & control , Síndrome Metabólico/terapia , Estimulación del Nervio Vago/métodos , Acetilcolina/fisiología , Colecistoquinina/metabolismo , Colecistoquinina/fisiología , Citocinas/metabolismo , Ingestión de Alimentos/fisiología , Hormonas Gastrointestinales/fisiología , Humanos , Hambre/fisiología , Hipotálamo/metabolismo , Inflamación/metabolismo , Modelos Biológicos , Péptidos/fisiología , Saciedad/fisiología
15.
Minerva Endocrinol ; 36(4): 281-93, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22322652

RESUMEN

The gastrointestinal system can be considered the gateway for food entry in our body. Rather than being a passive player, it is now clear that gut strongly influence the feeding behavior and contribute to maintain energy balance with different signals. The aim of this review is to summarize the current knowledge about the role of gastrointestinal tract in the control of food intake, by focusing on the interplay existing between the enteric nervous system and gastrointestinal hormones and their ability to modulate digestive motility and sensitivity. Also the latest advances about the contribution of gut microbiota and gastrointestinal taste receptors are described. From the reported data it clearly emerges that gut hormones together with nervous signals likely contribute to the regulation of energy balance and modulate food intake through the control of digestive motility and sensations. The close linkage among gastrointestinal hormones, the gut and the central nervous systems appears very intriguing and has induced the development of a new field of research: the gastroendocrinology.


Asunto(s)
Ingestión de Alimentos/fisiología , Sistema Nervioso Entérico/fisiología , Hormonas Gastrointestinales/fisiología , Motilidad Gastrointestinal/fisiología , Animales , Apetito/fisiología , Carbohidratos de la Dieta/farmacología , Grasas de la Dieta/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Ghrelina/fisiología , Humanos , Hambre/fisiología , Hipotálamo/fisiología , Mecanorreceptores/fisiología , Metagenoma/fisiología , Modelos Biológicos , Motilina/fisiología , Neurotransmisores/fisiología , Receptores Acoplados a Proteínas G/fisiología , Saciedad/fisiología , Estómago/fisiología
16.
J Endocrinol ; 207(1): 87-93, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20631047

RESUMEN

Recently, glucagon-like peptide 1 (GLP1) and glucose-dependent insulinotropic polypeptide (GIP) have received much attention regarding possible roles in aetiology and treatment of type 2 diabetes. However, peptides co-secreted from the same enteroendocrine cells are less well studied. The present investigation was designed to characterise the in vitro and in vivo effects of xenin, a peptide co-secreted with GIP from intestinal K-cells. We examined the enzymatic stability, insulin-releasing activity and associated cAMP production capability of xenin in vitro. In addition, the effects of xenin on satiety, glucose homoeostasis and insulin secretion were examined in vivo. Xenin was time dependently degraded (t(1/2)=162±6 min) in plasma in vitro. In clonal BRIN-BD11 cells, xenin stimulated insulin secretion at 5.6 mM (P<0.05) and 16.7 mM (P<0.05 to P<0.001) glucose levels compared to respective controls. Xenin also exerted an additive effect on GIP, GLP1 and neurotensin-mediated insulin secretion. In clonal ß-cells, xenin did not stimulate cellular cAMP production, alter membrane potential or elevate intra-cellular Ca(2)(+). In normal mice, xenin exhibited a short-acting (P<0.01) satiety effect at high dosage (500 nmol/kg). In overnight fasted mice, acute injection of xenin enhanced glucose-lowering and elevated insulin secretion when injected concomitantly or 30 min before glucose. These effects were not observed when xenin was administered 60 min before the glucose challenge, reflecting the short half-life of the native peptide in vivo. Overall, these data demonstrate that xenin may have significant metabolic effects on glucose control, which merit further study.


Asunto(s)
Glucemia/metabolismo , Hormonas Gastrointestinales/farmacología , Hormonas Gastrointestinales/fisiología , Insulina/metabolismo , Neurotensina/farmacología , Neurotensina/fisiología , Respuesta de Saciedad/efectos de los fármacos , Respuesta de Saciedad/fisiología , Animales , Línea Celular , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Hormonas Gastrointestinales/administración & dosificación , Secreción de Insulina , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Ratones , Neurotensina/administración & dosificación , Estabilidad Proteica , Transducción de Señal/efectos de los fármacos
17.
Endocr J ; 57(5): 359-72, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20424341

RESUMEN

The World Health Organisation has estimated that by 2015 approximately 2.3 billion adults will be overweight and more than 700 million obese. Obesity is associated with an increased risk of diabetes, cardiovascular events, stroke and cancer. The hypothalamus is a crucial region for integrating signals from central and peripheral pathways and plays a major role in appetite regulation. In addition, there are reciprocal connections with the brainstem and higher cortical centres. In the arcuate nucleus of the hypothalamus, there are two major neuronal populations which stimulate or inhibit food intake and influence energy homeostasis. Within the brainstem, the dorsal vagal complex plays a role in the interpretation and relaying of peripheral signals. Gut hormones act peripherally to modulate digestion and absorption of nutrients. However, they also act as neurotransmitters within the central nervous system to control food intake. Peptide YY, pancreatic polypeptide, glucagon-like peptide-1 and oxyntomodulin suppress appetite, whilst ghrelin increases appetite through afferent vagal fibres to the caudal brainstem or directly to the hypothalamus. A better understanding of the role of these gut hormones may offer the opportunity to develop successful treatments for obesity. Here we review the current understanding of the role of gut hormones and the hypothalamus on food intake and body weight control.


Asunto(s)
Regulación del Apetito/fisiología , Hormonas Gastrointestinales/fisiología , Hipotálamo/fisiología , Adulto , Animales , Regulación del Apetito/genética , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiología , Conducta Alimentaria/fisiología , Hormonas Gastrointestinales/genética , Hormonas Gastrointestinales/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/fisiología , Humanos , Modelos Biológicos , Obesidad/genética , Obesidad/metabolismo , Obesidad/fisiopatología , Recompensa
18.
Diabetes ; 59(2): 397-406, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19933997

RESUMEN

OBJECTIVE: Prokineticin 2 (PK2) is a hypothalamic neuropeptide expressed in central nervous system areas known to be involved in food intake. We therefore hypothesized that PK2 plays a role in energy homeostasis. RESEARCH DESIGN AND METHODS: We investigated the effect of nutritional status on hypothalamic PK2 expression and effects of PK2 on the regulation of food intake by intracerebroventricular (ICV) injection of PK2 and anti-PK2 antibody. Subsequently, we investigated the potential mechanism of action by determining sites of neuronal activation after ICV injection of PK2, the hypothalamic site of action of PK2, and interaction between PK2 and other hypothalamic neuropeptides regulating energy homeostasis. To investigate PK2's potential as a therapeutic target, we investigated the effect of chronic administration in lean and obese mice. RESULTS: Hypothalamic PK2 expression was reduced by fasting. ICV administration of PK2 to rats potently inhibited food intake, whereas anti-PK2 antibody increased food intake, suggesting that PK2 is an anorectic neuropeptide. ICV administration of PK2 increased c-fos expression in proopiomelanocortin neurons of the arcuate nucleus (ARC) of the hypothalamus. In keeping with this, PK2 administration into the ARC reduced food intake and PK2 increased the release of alpha-melanocyte-stimulating hormone (alpha-MSH) from ex vivo hypothalamic explants. In addition, ICV coadministration of the alpha-MSH antagonist agouti-related peptide blocked the anorexigenic effects of PK2. Chronic peripheral administration of PK2 reduced food and body weight in lean and obese mice. CONCLUSIONS: This is the first report showing that PK2 has a role in appetite regulation and its anorectic effect is mediated partly via the melanocortin system.


Asunto(s)
Ingestión de Energía/efectos de los fármacos , Hormonas Gastrointestinales/farmacología , Hormonas Gastrointestinales/fisiología , Neuropéptidos/farmacología , Neuropéptidos/fisiología , Obesidad/fisiopatología , Animales , Relación Dosis-Respuesta a Droga , Hormonas Gastrointestinales/genética , Regulación de la Expresión Génica , Hipotálamo/fisiología , Inyecciones Intraventriculares , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neuropéptidos/genética , ARN Mensajero/genética , Ratas , Ratas Wistar
19.
Arq Bras Endocrinol Metabol ; 53(2): 120-8, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19466203

RESUMEN

Current estimates suggest that over 1 billion people are overweight and over 300 million people are obese. Weight gain is due to an imbalance between energy expenditure and dietary intake. This review discusses the hypothalamic control of appetite and highlights key developments in research that have furthered our understanding of the complex pathways involved. Nuclei within the hypothalamus integrate peripheral signals such as adiposity and caloric intake to regulate important pathways within the central nervous system controlling food intake and energy expenditure. Firmly established pathways involve the orexigenic NPY/AgRP and the anorexigenic POMC/CART neurons in the arcuate nucleus (ARC) of the hypothalamus. These project from the ARC to other important hypothalamic nuclei, including the paraventricular, dorsomedial, ventromedial and lateral hypothalamic nuclei. In addition there are many projections to and from the brainstem, cortical areas and reward pathways, which modulate food intake.


Asunto(s)
Regulación del Apetito/fisiología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Obesidad/fisiopatología , Núcleo Arqueado del Hipotálamo/fisiología , Hormonas Gastrointestinales/fisiología , Humanos , Obesidad/metabolismo , Obesidad/terapia
20.
Arq. bras. endocrinol. metab ; 53(2): 120-128, Mar. 2009. ilus
Artículo en Inglés | LILACS | ID: lil-513765

RESUMEN

Current estimates suggest that over 1 billion people are overweight and over 300 million people are obese. Weight gain is due to an imbalance between energy expenditure and dietary intake. This review discusses the hypothalamic control of appetite and highlights key developments in research that have furthered our understanding of the complex pathways involved. Nuclei within the hypothalamus integrate peripheral signals such as adiposity and caloric intake to regulate important pathways within the central nervous system controlling food intake and energy expenditure. Firmly established pathways involve the orexigenic NPY/AgRP and the anorexigenic POMC/CART neurons in the arcuate nucleus (ARC) of the hypothalamus. These project from the ARC to other important hypothalamic nuclei, including the paraventricular, dorsomedial, ventromedial and lateral hypothalamic nuclei. In addition there are many projections to and from the brainstem, cortical areas and reward pathways, which modulate food intake.


As estimativas atuais sugerem que mais de 1 bilhão de pessoas apresentam sobrepeso e 300 milhões são obesas. O ganho de peso representa um desequilíbrio entre o gasto energético e o consumo alimentar. Esta revisão discute o controle hipotalâmico do apetite e destaca os pontos-chave no desenvolvimento de pesquisas para ampliar o nosso entendimento dos complexos mecanismos envolvidos nesta regulação. Núcleos situados no hipotálamo integram uma série de sinais com o sistema nervoso central controlando a ingestão alimentar e o gasto energético. As vias mais estabelecidas envolvem os neurônios orexigênicos NPY/AgRP e os neurônios anorexigênicos POMC/CART no núcleo arqueado (ARC) do hipotálamo. Esses neurônios se projetam do ARC para outros importantes núcleos hipotalâmicos, tais quais: paraventricular, dorsomedial, ventromedial e lateral. Além disso, existem várias projeções que vão e vem do tronco cerebral, das áreas corticais e das vias de retroalimentação que modulam o consumo alimentar.


Asunto(s)
Humanos , Regulación del Apetito/fisiología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Obesidad/fisiopatología , Núcleo Arqueado del Hipotálamo/fisiología , Hormonas Gastrointestinales/fisiología , Obesidad/metabolismo , Obesidad/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA