Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209728

RESUMEN

Parental behaviour is a comprehensive set of neural responses to social cues. The neural circuits that govern parental behaviour reside in several putative nuclei in the brain. Melanin concentrating hormone (MCH), a neuromodulator that integrates physiological functions, has been confirmed to be involved in parental behaviour, particularly in crouching behaviour during nursing. Abolishing MCH neurons in innate MCH knockout males promotes infanticide in virgin male mice. To understand the mechanism and function of neural networks underlying parental care and aggression against pups, it is essential to understand the basic organisation and function of the involved nuclei. This review presents newly discovered aspects of neural circuits within the hypothalamus that regulate parental behaviours.


Asunto(s)
Hipotálamo/citología , Red Nerviosa/fisiología , Comportamiento de Nidificación/fisiología , Agresión/psicología , Animales , Conducta Animal/fisiología , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/fisiología , Hipotálamo/fisiología , Masculino , Melaninas/genética , Melaninas/fisiología , Ratones , Ratones Noqueados , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/fisiología
2.
Peptides ; 137: 170476, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33370567

RESUMEN

Given the increased prevalence of obesity and its associated comorbidities, understanding the mechanisms through which the brain regulates energy balance is of critical importance. The neuropeptide melanin-concentrating hormone (MCH) is produced in the lateral hypothalamic area and the adjacent incerto-hypothalamic area and promotes both food intake and energy conservation, overall contributing to body weight gain. Decades of research into this system has provided insight into the neural pathways and mechanisms (behavioral and neurobiological) through which MCH stimulates food intake. Recent technological advancements that allow for selective manipulation of MCH neuron activity have elucidated novel mechanisms of action for the hyperphagic effects of MCH, implicating neural "volume" transmission in the cerebrospinal fluid and sex-specific effects of MCH on food intake control as understudied areas for future investigation. Highlighted here are historical and recent findings that illuminate the neurobiological mechanisms through which MCH promotes food intake, including the identification of various specific neural signaling pathways and interactions with other peptide systems. We conclude with a framework that the hyperphagic effects of MCH signaling are predominantly mediated through enhancement of an "appetition" process in which early postoral prandial signals promote further caloric consumption.


Asunto(s)
Apetito/genética , Ingestión de Alimentos/genética , Hormonas Hipotalámicas/genética , Melaninas/genética , Neuropéptidos/genética , Hormonas Hipofisarias/genética , Apetito/fisiología , Ingestión de Alimentos/fisiología , Metabolismo Energético/genética , Femenino , Humanos , Hipotálamo , Masculino , Neuronas/metabolismo , Neuronas/patología , Neuropéptidos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Transducción de Señal/genética
3.
PLoS Genet ; 16(12): e1009244, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33301440

RESUMEN

The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Pigmentación de la Piel/genética , Animales , Hormonas Hipotalámicas/genética , Hipotálamo/citología , Hipotálamo/metabolismo , Melaninas/genética , Hormonas Estimuladoras de los Melanocitos/genética , Hormonas Estimuladoras de los Melanocitos/metabolismo , Melanocitos/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/genética , Pez Cebra
4.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 36(3): 245-249, 2020 May.
Artículo en Chino | MEDLINE | ID: mdl-32981280

RESUMEN

Objective: To explore the effects of repeated immobilization stress on hypothalamic-pituitary-ovarian axis in female rats. Methods: Forty female SD rats were randomly divided into two groups: control group (n=20) and experimental group (n=20). One group was fed normally, the other group was subjected to incremental load restraint stress. Brake stress once a day in the retainer (starting at 9: 00 a.m.), braking for 2 hours on the first day, increasing load by 0.5 hours a day for two weeks. Body weight, estrous cycle, sex hormone, organ coefficient, pathology and expression of related genes were detected to explore the harm of hypothalamic-pituitary-ovarian axis. Results: Repeated immobilization stress caused weight loss, prolonged estrous cycle, and changed the organ coefficient and morphology of ovaries and uterus. QPCR technique was used to detect the related genes. It was found that the expressions of gonadotropin releasing hormone, pituitary gonadotropin releasing hormone receptor, follicle stimulating hormone and luteinizing hormone mRNA were decreased significantly, while the expressions of ovarian follicle stimulating hormone and luteinizing hormone receptor mRNA were increased significantly. The expression of estrogen receptor mRNA in ovary and uterus was decreased significantly. Conclusion: Repeated immobilization stress may disrupt the estrous cycle by interfering with the endocrine regulation of the hypothalamic-pituitary-ovarian axis, thus damaging the gonadal and reproductive endocrine function of female animals.


Asunto(s)
Regulación de la Expresión Génica , Hipotálamo , Inmovilización , Ovario , Hipófisis , Hormonas Hipofisarias , Estrés Fisiológico , Animales , Femenino , Hormona Folículo Estimulante/genética , Regulación de la Expresión Génica/fisiología , Hormona Liberadora de Gonadotropina/genética , Hipotálamo/fisiopatología , Inmovilización/fisiología , Inmovilización/psicología , Hormona Luteinizante/genética , Ovario/fisiopatología , Hipófisis/fisiopatología , Hormonas Hipofisarias/genética , Ratas , Ratas Sprague-Dawley
5.
Sci Rep ; 9(1): 11146, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31366942

RESUMEN

Targeting specific neuronal cell types is a major challenge for unraveling their function and utilizing specific cells for gene therapy strategies. Viral vector tools are widely used to target specific cells or circuits for these purposes. Here, we use viral vectors with short promoters of neuropeptide genes to target distinct neuronal populations in the hypothalamus of rats and mice. We show that lowering the amount of genomic copies is effective in increasing specificity of a melanin-concentrating hormone promoter. However, since too low titers reduce transduction efficacy, there is an optimal titer for achieving high specificity and sufficient efficacy. Other previously identified neuropeptide promoters as those for oxytocin and orexin require further sequence optimization to increase target specificity. We conclude that promoter-driven viral vectors should be used with caution in order to target cells specifically.


Asunto(s)
Vectores Genéticos/administración & dosificación , Hipotálamo/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptidos/administración & dosificación , Regiones Promotoras Genéticas/genética , Animales , Hormonas Hipotalámicas/genética , Melaninas/genética , Ratones , Ratones Endogámicos C57BL , Orexinas/genética , Oxitocina/genética , Hormonas Hipofisarias/genética , Ratas , Ratas Long-Evans , Ratas Wistar
6.
Proc Natl Acad Sci U S A ; 116(34): 17061-17070, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31375626

RESUMEN

Hypocretin/orexin (HCRT) and melanin concentrating hormone (MCH) neuropeptides are exclusively produced by the lateral hypothalamus and play important roles in sleep, metabolism, reward, and motivation. Loss of HCRT (ligands or receptors) causes the sleep disorder narcolepsy with cataplexy in humans and in animal models. How these neuropeptides are produced and involved in diverse functions remain unknown. Here, we developed methods to sort and purify HCRT and MCH neurons from the mouse late embryonic hypothalamus. RNA sequencing revealed key factors of fate determination for HCRT (Peg3, Ahr1, Six6, Nr2f2, and Prrx1) and MCH (Lmx1, Gbx2, and Peg3) neurons. Loss of Peg3 in mice significantly reduces HCRT and MCH cell numbers, while knock-down of a Peg3 ortholog in zebrafish completely abolishes their expression, resulting in a 2-fold increase in sleep amount. We also found that loss of HCRT neurons in Hcrt-ataxin-3 mice results in a specific 50% decrease in another orexigenic neuropeptide, QRFP, that might explain the metabolic syndrome in narcolepsy. The transcriptome results were used to develop protocols for the production of HCRT and MCH neurons from induced pluripotent stem cells and ascorbic acid was found necessary for HCRT and BMP7 for MCH cell differentiation. Our results provide a platform to understand the development and expression of HCRT and MCH and their multiple functions in health and disease.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neuronas/metabolismo , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo , Animales , Hormonas Hipotalámicas/genética , Hipotálamo/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Melaninas/genética , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Orexinas/genética , Hormonas Hipofisarias/genética
7.
Fish Physiol Biochem ; 45(2): 805-817, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30426273

RESUMEN

Melanin-concentrating hormone (MCH) was initially known as a regulator of teleost skin color and possesses multiple functions in mammals, such as the regulation of energy balance and reproduction. However, the role of MCH in fish remains unclear. In the present study, a 590 bp cDNA fragment of common carp (Cyprinus carpio) MCH gene was cloned. Amino acid sequence similarities with other teleost ranged from 23 to 93%. The mature MCH peptide (DTMRCMVGRVYRPCWEV) located in the C-terminal region of MCH precursor was 100% identical to that of goldfish, zebrafish, chum salmon, and rainbow trout. Tissue expression profiles showed that MCH mRNA was ubiquitously expressed throughout the brain and peripheral tissues and highly expressed in the brain and pituitary. Within the brain, MCH mRNA was expressed preponderantly in the hypothalamus. MCH mRNA expression in the hypothalamus was increased after feeding, decreased after 3, 5, or 7 days fasting, and increased upon refeeding. These results suggested that MCH might have anorexigenic actions in common carp. Meanwhile, MCH gene expression varied based on reproductive cycle, which might be related to the long-term regulation of MCH in energy balance. In conclusion, our novel finding revealed that MCH was involved in the regulation of appetite and energy balance in common carp.


Asunto(s)
Carpas/metabolismo , Privación de Alimentos , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Reproducción/fisiología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica , Hormonas Hipotalámicas/genética , Hipotálamo , Melaninas/genética , Hormonas Hipofisarias/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma
8.
Sleep ; 41(6)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29618134

RESUMEN

Study Objectives: Experimental studies over the last 15 years established a role in sleep of the tuberal hypothalamic neurons that express melanin-concentrating hormone (MCH). Controversies still remain regarding their actual contribution to both slow-wave sleep (SWS) and paradoxical sleep (PS also known as REM sleep) or PS alone. Methods: To address this point, we compared effects of chemogenetic activation and inhibition of MCH neurons on SWS and PS amounts and EEG rhythmic activities in transgenic Pmch-cre mice. Results: In agreement with recently reported optogenetic data, the activation of MCH neurons invariably facilitates PS onset and maintenance. Our chemogenetic experiments further disclose that the ultradian rhythm of SWS is also notably related to the activity of MCH neurons. We observed that the mean duration of SWS episodes is significantly extended when MCH neurons are inhibited. Conversely, when they were excited, SWS bouts were drastically shortened and depicted substantial changes in δ rhythmic activities in electroencephalographic recording likely reflecting a deeper SWS. Conclusions: According to these original findings, we propose that when MCH neurons are physiologically recruited, SWS depth is increased and the extinction of SWS episodes is accelerated, two joint physiological processes strengthening the probability for natural SWS to PS transition and likely facilitating PS onset.


Asunto(s)
Electroencefalografía/métodos , Hormonas Hipotalámicas/biosíntesis , Melaninas/biosíntesis , Neuronas/metabolismo , Hormonas Hipofisarias/biosíntesis , Sueño REM/fisiología , Sueño de Onda Lenta/fisiología , Animales , Expresión Génica , Hormonas Hipotalámicas/genética , Hipotálamo/fisiología , Masculino , Melaninas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Hormonas Hipofisarias/genética , Sueño/fisiología , Ritmo Ultradiano/fisiología
9.
Nat Neurosci ; 21(1): 29-32, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180747

RESUMEN

Excitation of accumbal D2 cells governs vital actions, including avoidance of learned risks, but the origins of this excitation and roles of D2 cells in innate risk-avoidance are unclear. Hypothalamic neurons producing orexins (also called hypocretins) enhance innate risk-avoidance via poorly understood neurocircuits. We describe a direct orexin→D2 excitatory circuit and show that D2 cell activity is necessary for orexin-dependent innate risk-avoidance in mice, thus revealing an unsuspected hypothalamus-accumbens interplay in action selection.


Asunto(s)
Reacción de Prevención/fisiología , Instinto , Neuronas/fisiología , Orexinas/metabolismo , Transducción de Señal/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/metabolismo , Hipotálamo/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Melaninas/genética , Melaninas/metabolismo , Ratones , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Neuronas/efectos de los fármacos , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Orexinas/genética , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/metabolismo , Receptor de Adenosina A2A/genética , Receptor de Adenosina A2A/metabolismo , Receptores de Dopamina D1/genética
10.
Mol Cell Endocrinol ; 459: 28-42, 2017 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-28630022

RESUMEN

As one of the most basal living vertebrates, lampreys represent an excellent model system to study the evolution of thyroid hormone (TH) signaling. The lamprey hypothalamic-pituitary-thyroid and reproductive axes overlap functionally. Lampreys have 3 gonadotropin-releasing hormones and a single glycoprotein hormone from the hypothalamus and pituitary, respectively, that regulate both the reproductive and thyroid axes. TH synthesis in larval lampreys takes place in an endostyle that transforms into typical vertebrate thyroid tissue during metamorphosis; both the endostyle and follicular tissue have all the typical TH synthetic components found in other vertebrates. Furthermore, lampreys also have the vertebrate suite of peripheral regulators including TH distributor proteins (THDPs), deiodinases and TH receptors (TRs). Although at the molecular level the components of the lamprey thyroid system are ancestral to other vertebrates, their functions have been largely conserved. TH signaling as it relates to lamprey metamorphosis represents a particularly interesting phenomenon. Unlike other metamorphosing vertebrates, lamprey THs increase throughout the larval period, peak prior to metamorphosis and decline rapidly at the onset of metamorphosis; patterns of deiodinase activity are consistent with these increases and declines. Moreover, goitrogens (which suppress TH levels) initiate precocious metamorphosis, and exogenous TH treatment blocks goitrogen-induced metamorphosis and disrupts natural metamorphosis. Despite this clear physiological difference, TH action via TRs is consistent with higher vertebrates. Based on observations that TRs are upregulated in a tissue-specific fashion during morphogenesis and the finding that lamprey TRs upregulate genes via THs in a fashion similar to higher vertebrates, we propose the following hypothesis for further testing. THs have a dual role in lampreys where high TH levels promote larval feeding and growth and then at the onset of metamorphosis TH levels decrease rapidly; at this time the relatively low TH levels function via TRs in a fashion similar to that of other metamorphosing vertebrates.


Asunto(s)
Lampreas/metabolismo , Sistemas Neurosecretores/fisiología , Receptores de Hormona Tiroidea/metabolismo , Reproducción/fisiología , Transducción de Señal , Hormonas Tiroideas/metabolismo , Animales , Conducta Alimentaria/fisiología , Regulación del Desarrollo de la Expresión Génica , Hipotálamo/fisiología , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Lampreas/genética , Lampreas/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica/fisiología , Hipófisis/fisiología , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/metabolismo , Receptores de Hormona Tiroidea/genética , Glándula Tiroides/fisiología , Hormonas Tiroideas/genética
11.
Mol Cell Endocrinol ; 459: 21-27, 2017 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-28412521

RESUMEN

This mini review summarizes the current knowledge of the hypothalamic-pituitary-thyroid (HPT) endocrine system in lampreys, jawless vertebrates. Lampreys and hagfish are the only two extant members of the class of agnathans, the oldest lineage of vertebrates. The high conservation of the hypothalamic-pituitary-gonadal (HPG) axis in lampreys makes the lamprey model highly appropriate for comparative and evolutionary analyses. However, there are still many unknown questions concerning the hypothalamic-pituitary (HP) axis in its regulation of thyroid activities in lampreys. As an example, the hypothalamic and pituitary hormone(s) that regulate the HPT axis have not been confirmed and/or characterized. Similar to gnathostomes (jawed vertebrates), lampreys produce thyroxine (T4) and triiodothyronine (T3) from thyroid follicles that are suggested to be involved in larval development, metamorphosis, and reproduction. The existing data provide evidence of a primitive, overlapping yet functional HPG and HPT endocrine system in lamprey. We hypothesize that lampreys are in an evolutionary intermediate stage of hypothalamic-pituitary development, leading to the emergence of the highly specialized HPG and HPT endocrine axes in jawed vertebrates. Study of the ancient lineage of jawless vertebrates, the agnathans, is key to understanding the origins of the neuroendocrine system in vertebrates.


Asunto(s)
Lampreas/fisiología , Sistemas Neurosecretores/fisiología , Hipófisis/fisiología , Reproducción/fisiología , Transducción de Señal , Células Epiteliales Tiroideas/fisiología , Animales , Evolución Biológica , Regulación de la Expresión Génica , Hipotálamo/fisiología , Lampreas/clasificación , Metamorfosis Biológica/fisiología , Filogenia , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/metabolismo , Tiroxina/genética , Tiroxina/metabolismo , Triyodotironina/genética , Triyodotironina/metabolismo
12.
Gene ; 615: 57-67, 2017 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-28300612

RESUMEN

Melanin-concentrating hormone (MCH) is a neuropeptide expressed in the brain and exerts its actions through interaction with the two known G protein-coupled receptors, namely melanin-concentrating hormone receptor 1 and 2 (MCHR1 and MCHR2) in mammals. However, the information regarding the expression and functionality of MCH and MCHR(s) remains largely unknown in birds. In this study, using RT-PCR and RACE PCR, we amplified and cloned a MCHR1-like receptor, which is named cMCHR4 according to its evolutionary origin, and a MCHR2 from chicken brain. The cloned cMCHR4 was predicted to encode a receptor of 367 amino acids, which shares high amino acid identities with MCHR4 of ducks (90%), western painted turtles (85%), and coelacanths (77%), and a comparatively low identity to human MCHR1 (58%) and MCHR2 (38%), whereas chicken MCHR2 encodes a putative C-terminally truncated receptor and is likely a pseudogene. Using cell-based luciferase reporter assays or Western blot, we further demonstrated that chicken (and duck) MCHR4 could be potently activated by chicken MCH1-19, and its activation can elevate calcium concentration and activate MAPK/ERK and cAMP/PKA signaling pathways, indicating an important role of MCHR4 in mediating MCH actions in birds. Quantitative real-time PCR revealed that both cMCH and cMCHR4 mRNA are expressed in various brain regions including the hypothalamus, and cMCH expression in the hypothalamus of 3-week-old chicks could be induced by 36-h fasting, indicating that cMCH expression is correlated with energy balance. Taken together, characterization of chicken MCH and MCHR4 will aid to uncover the conserved roles of MCH across vertebrates.


Asunto(s)
Pollos/genética , Hormonas Hipotalámicas/genética , Hipotálamo/metabolismo , Melaninas/genética , Hormonas Hipofisarias/genética , Receptores de la Hormona Hipofisaria/genética , Animales , Clonación Molecular , Patos/genética , Ayuno , Regulación de la Expresión Génica , Células HEK293 , Humanos , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Receptores de la Hormona Hipofisaria/metabolismo , Regulación hacia Arriba
13.
Cell Rep ; 17(10): 2512-2521, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27926856

RESUMEN

Melanin-concentrating-hormone (MCH)-expressing neurons (MCH neurons) in the lateral hypothalamus (LH) are critical regulators of energy and glucose homeostasis. Here, we demonstrate that insulin increases the excitability of these neurons in control mice. In vivo, insulin promotes phosphatidylinositol 3-kinase (PI3K) signaling in MCH neurons, and cell-type-specific deletion of the insulin receptor (IR) abrogates this response. While lean mice lacking the IR in MCH neurons (IRΔMCH) exhibit no detectable metabolic phenotype under normal diet feeding, they present with improved locomotor activity and insulin sensitivity under high-fat-diet-fed, obese conditions. Similarly, obesity promotes PI3 kinase signaling in these neurons, and this response is abrogated in IRΔMCH mice. In turn, acute chemogenetic activation of MCH neurons impairs locomotor activity but not insulin sensitivity. Collectively, our experiments reveal an insulin-dependent activation of MCH neurons in obesity, which contributes via distinct mechanisms to the manifestation of impaired locomotor activity and insulin resistance.


Asunto(s)
Hormonas Hipotalámicas/genética , Resistencia a la Insulina/genética , Insulina/metabolismo , Melaninas/genética , Obesidad/metabolismo , Hormonas Hipofisarias/genética , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Glucosa/metabolismo , Humanos , Hipotálamo/metabolismo , Insulina/administración & dosificación , Locomoción/efectos de los fármacos , Ratones , Neuronas/efectos de los fármacos , Neuronas/patología , Obesidad/tratamiento farmacológico , Obesidad/patología , Fosfatidilinositol 3-Quinasas/genética
14.
EMBO Rep ; 17(12): 1738-1752, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733491

RESUMEN

Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro-inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin-concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.


Asunto(s)
Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Inflamación/metabolismo , Melaninas/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo , Transducción de Señal , Animales , Quimiocina CCL2/deficiencia , Quimiocina CCL2/inmunología , Citocinas/biosíntesis , Citocinas/genética , Citocinas/inmunología , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/inmunología , Conducta de Enfermedad , Lipopolisacáridos/inmunología , Melaninas/genética , Melaninas/inmunología , Ratones , Neuronas/inmunología , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/inmunología , Receptores CCR2/metabolismo , Pérdida de Peso
15.
Eur J Neurosci ; 44(10): 2846-2857, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27657541

RESUMEN

Neurons containing melanin-concentrating hormone (MCH) are located in the hypothalamus. In mice, optogenetic activation of the MCH neurons induces both non-rapid eye movement (NREM) and rapid eye movement (REM) sleep at night, the normal wake-active period for nocturnal rodents [R. R. Konadhode et al. (2013) J. Neurosci., 33, 10257-10263]. Here we selectively activate these neurons in rats to test the validity of the sleep network hypothesis in another species. Channelrhodopsin-2 (ChR2) driven by the MCH promoter was selectively expressed by MCH neurons after injection of rAAV-MCHp-ChR2-EYFP into the hypothalamus of Long-Evans rats. An in vitro study confirmed that the optogenetic activation of MCH neurons faithfully triggered action potentials. In the second study, in Long-Evans rats, rAAV-MCH-ChR2, or the control vector, rAAV-MCH-EYFP, were delivered into the hypothalamus. Three weeks later, baseline sleep was recorded for 48 h without optogenetic stimulation (0 Hz). Subsequently, at the start of the lights-off cycle, the MCH neurons were stimulated at 5, 10, or 30 Hz (1 mW at tip; 1 min on - 4 min off) for 24 h. Sleep was recorded during the 24-h stimulation period. Optogenetic activation of MCH neurons increased both REM and NREM sleep at night, whereas during the day cycle, only REM sleep was increased. Delta power, an indicator of sleep intensity, was also increased. In control rats without ChR2, optogenetic stimulation did not increase sleep or delta power. These results lend further support to the view that sleep-active MCH neurons contribute to drive sleep in mammals.


Asunto(s)
Potenciales de Acción , Hormonas Hipotalámicas/metabolismo , Hipotálamo/fisiología , Melaninas/metabolismo , Neuronas/fisiología , Hormonas Hipofisarias/metabolismo , Sueño REM , Ciclos de Actividad , Animales , Células Cultivadas , Ritmo Delta , Hormonas Hipotalámicas/genética , Hipotálamo/citología , Hipotálamo/metabolismo , Masculino , Melaninas/genética , Neuronas/metabolismo , Optogenética , Hormonas Hipofisarias/genética , Ratas , Ratas Long-Evans
16.
Nat Commun ; 7: 11395, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27102565

RESUMEN

The lateral hypothalamus (LH) controls energy balance. LH melanin-concentrating-hormone (MCH) and orexin/hypocretin (OH) neurons mediate energy accumulation and expenditure, respectively. MCH cells promote memory and appropriate stimulus-reward associations; their inactivation disrupts energy-optimal behaviour and causes weight loss. However, MCH cell dynamics during wakefulness are unknown, leaving it unclear if they differentially participate in brain activity during sensory processing. By fiberoptic recordings from molecularly defined populations of LH neurons in awake freely moving mice, we show that MCH neurons generate conditional population bursts. This MCH cell activity correlates with novelty exploration, is inhibited by stress and is inversely predicted by OH cell activity. Furthermore, we obtain brain-wide maps of monosynaptic inputs to MCH and OH cells, and demonstrate optogenetically that VGAT neurons in the amygdala and bed nucleus of stria terminalis inhibit MCH cells. These data reveal cell-type-specific LH dynamics during sensory integration, and identify direct neural controllers of MCH neurons.


Asunto(s)
Redes Reguladoras de Genes , Hormonas Hipotalámicas/metabolismo , Hipotálamo/metabolismo , Melaninas/metabolismo , Neuronas/metabolismo , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo , Amígdala del Cerebelo/citología , Amígdala del Cerebelo/metabolismo , Animales , Mapeo Encefálico , Metabolismo Energético/genética , Conducta Exploratoria/fisiología , Tecnología de Fibra Óptica , Regulación de la Expresión Génica , Hormonas Hipotalámicas/genética , Hipotálamo/citología , Masculino , Melaninas/genética , Ratones , Ratones Transgénicos , Neuronas/clasificación , Neuronas/citología , Optogenética , Receptores de Orexina/genética , Orexinas/genética , Técnicas de Placa-Clamp , Hormonas Hipofisarias/genética , Núcleos Septales/citología , Núcleos Septales/metabolismo , Técnicas Estereotáxicas , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores , Vigilia/genética
17.
Fish Physiol Biochem ; 42(3): 883-93, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26690629

RESUMEN

Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.


Asunto(s)
Cyprinidae , Ingestión de Alimentos/genética , Ayuno/fisiología , Proteínas de Peces , Hormonas Hipotalámicas , Melaninas , Hormonas Hipofisarias , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Clonación Molecular , Cyprinidae/genética , Cyprinidae/fisiología , ADN Complementario/genética , Femenino , Proteínas de Peces/genética , Proteínas de Peces/fisiología , Hormonas Hipotalámicas/genética , Hormonas Hipotalámicas/fisiología , Hipotálamo/metabolismo , Masculino , Melaninas/genética , Melaninas/fisiología , Hormonas Hipofisarias/genética , Hormonas Hipofisarias/fisiología , ARN Mensajero/metabolismo
18.
Fish Physiol Biochem ; 42(1): 321-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26468115

RESUMEN

The effects of adding rutin to the diet (0, 0.15 or 0.30%) of silver catfish for 21 days on blood parameters, oxidative stress biomarkers and pituitary hormones expression were investigated. Fish that received the diet containing 0.15% rutin exhibited reduced plasma cortisol levels. The levels of lipid peroxidation were lowered in the all tissues of animals receiving the diet containing rutin. Rutin increased the activity of the superoxide dismutase (SOD), catalase (CAT), nonprotein thiols (NPSH), ascorbic acid content (AA) and total reactive antioxidant potential (TRAP) in the brain; glutathione S-transferase (GST) activity and TRAP in the gills; SOD, CAT and GST activity, NPSH, AA levels and TRAP in the liver; CAT and GST activity and TRAP levels in the kidneys; and glutathione peroxidase activity, NPSH, AA levels and TRAP in the muscle. There were no changes regarding the expression of growth hormone, prolactin and somatolactin in fish fed with the diet containing rutin when compared with the control. The supplementation of rutin to the diet of fish is beneficial because it increases the antioxidant responses of tissues.


Asunto(s)
Bagres , Estrés Oxidativo/efectos de los fármacos , Rutina/farmacología , Animales , Biomarcadores/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Catalasa/metabolismo , Bagres/sangre , Bagres/genética , Bagres/metabolismo , ADN Complementario/genética , Dieta , Branquias/efectos de los fármacos , Branquias/metabolismo , Glutatión Peroxidasa/metabolismo , Glutatión Transferasa/metabolismo , Hidrocortisona/sangre , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculos/efectos de los fármacos , Músculos/metabolismo , Fenoles/análisis , Hormonas Hipofisarias/genética , ARN Mensajero/metabolismo , Superóxido Dismutasa/metabolismo
19.
Neuroscience ; 310: 163-75, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26365610

RESUMEN

Clinical and animal studies indicate that maternal consumption of ethanol during pregnancy increases alcohol drinking in the offspring. Possible underlying mechanisms may involve orexigenic peptides, which are stimulated by prenatal ethanol exposure and themselves promote drinking. Building on evidence that ethanol stimulates neuroimmune factors such as the chemokine CCL2 that in adult rats is shown to colocalize with the orexigenic peptide, melanin-concentrating hormone (MCH) in the lateral hypothalamus (LH), the present study sought to investigate the possibility that CCL2 or its receptor CCR2 in LH is stimulated by prenatal ethanol exposure, perhaps specifically within MCH neurons. Our paradigm of intraoral administration of ethanol to pregnant rats, at low-to-moderate doses (1 or 3g/kg/day) during peak hypothalamic neurogenesis, caused in adolescent male offspring twofold increase in drinking of and preference for ethanol and reinstatement of ethanol drinking in a two-bottle choice paradigm under an intermittent access schedule. This effect of prenatal ethanol exposure was associated with an increased expression of MCH and density of MCH(+) neurons in LH of preadolescent offspring. Whereas CCL2(+) cells at this age were low in density and unaffected by ethanol, CCR2(+) cells were dense in LH and increased by prenatal ethanol, with a large percentage (83-87%) identified as neurons and found to colocalize MCH. Prenatal ethanol also stimulated the genesis of CCR2(+) and MCH(+) neurons in the embryo, which co-labeled the proliferation marker, BrdU. Ethanol also increased the genesis and density of neurons that co-expressed CCR2 and MCH in LH, with triple-labeled CCR2(+)/MCH(+)/BrdU(+) neurons that were absent in control rats accounting for 35% of newly generated neurons in ethanol-exposed rats. With both the chemokine and MCH systems believed to promote ethanol consumption, this greater density of CCR2(+)/MCH(+) neurons in the LH of preadolescent rats suggests that these systems function together in promoting alcohol drinking during adolescence.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Hormonas Hipotalámicas/metabolismo , Hipotálamo/efectos de los fármacos , Melaninas/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/metabolismo , Efectos Tardíos de la Exposición Prenatal/patología , Receptores CCR2/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Quimiocina CCL2/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Hormonas Hipotalámicas/genética , Hipotálamo/metabolismo , Recién Nacido , Masculino , Melaninas/genética , Neuronas/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , Hormonas Hipofisarias/genética , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ratas , Ratas Sprague-Dawley
20.
Gen Comp Endocrinol ; 224: 278-82, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26248228

RESUMEN

Beta-cell-tropin, a peptide derived from adrenocorticotropic hormone, is an insulin secretagogue. When centrally injected, it increases food intake in rats, but its appetite-associated effects have not been reported in any other species. Thus, the present study was designed to evaluate the effects of central beta-cell-tropin on appetite-associated parameters in an alternative vertebrate model, the chick. Central injection of 2 or 4 nmol beta-cell-tropin increased food intake for 60 min. Whole hypothalamus was collected at 60 min post-injection, and real-time PCR performed to measure mRNA abundance of agouti-related peptide, corticotropin releasing factor, galanin, melanin concentrating hormone, neuropeptide Y, orexin, prohormone convertase 2, pro-opiomelanocortin, peroxisome proliferator-activated receptor γ, urotensin 2, and visfatin, not one of which were affected by beta-cell-tropin treatment. Results demonstrate that beta-cell-tropin is associated with short-term stimulation of food intake.


Asunto(s)
Hormona Adrenocorticotrópica/farmacología , Pollos/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Hipotálamo/metabolismo , Fragmentos de Péptidos/farmacología , Animales , Apetito/efectos de los fármacos , Apetito/fisiología , Hormona Liberadora de Corticotropina/genética , Hormonas/farmacología , Hormonas Hipotalámicas/genética , Melaninas/genética , Neuropéptido Y/genética , PPAR gamma/genética , Hormonas Hipofisarias/genética , Proopiomelanocortina/genética , ARN Mensajero/genética , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA