Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 267(Pt 1): 131539, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608994

RESUMEN

Sustainable strategies to improve the water resistance of cellulose paper are actively sought. In this work, polymeric microspheres (PMs), prepared through emulsion polymerization of cellulose nanofibers stabilized rubber seed oil-derived monomer, were investigated as coatings on corrugated medium paper (CMP). After infiltrating porous paper with PMs, the water-resistant corrugated papers (WRCPn) with enhanced mechanical properties were obtained. When 30 wt% PMs were introduced, WRCP30 turned out to be highly compacted with an increased water contact angle of 106.3° and a low water vapor transmission rate of 81 g/(m2 d) at 23 °C. Meanwhile, the tensile strength of WRCP30 increased to 22.2 MPa, a 4-fold increase from CMP. When tested in a well-hydrated state, 71% of its mechanical strength in the dry state was maintained. Even with a low content of 10 wt% PMs, WRCP10 also exhibited stable tensile strength and water wettability during the cyclic soaking-drying process. Thus, the plant oil based sustainable emulsion polymers provide a convenient route for enhancing the overall performance of cellulose paper.


Asunto(s)
Celulosa , Microesferas , Aceites de Plantas , Resistencia a la Tracción , Agua , Celulosa/química , Agua/química , Aceites de Plantas/química , Papel , Humectabilidad , Polímeros/química , Emulsiones/química , Porosidad , Nanofibras/química
2.
Food Res Int ; 175: 113670, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129023

RESUMEN

The current study reported high internal phase emulsions (HIPEs) stabilized by phosphorylated walnut protein/pectin complexes (PWPI/Pec) and elucidated how their rheological properties were modulated by pH conditions, mass ratios, and concentrations of the complexes. At pH 3.0, the HIPEs stabilized by PWPI/Pec exhibited smaller oil droplet sizes, as well as higher storage modulus (G') and flow stress, in comparison to those stabilized by the complexes formed at pH 4.0-6.0. These observations can be directly linked to pH-dependent changes in particle size, surface hydrophobicity, and wettability of the PWPI/Pec complexes. Rheological analysis revealed that all generated HIPEs displayed weak strain overshoot behavior, irrespective of pH conditions. Notably, HIPEs stabilized by PWPI/Pec at mass ratios of 2:1 and 4:1 showed enlarged oil droplet sizes, lower G' and flow stress but higher flow strain with unaffected loss factor compared to those stabilized by PWPI/Pec 1:1. However, reducing the concentration of PWPI/Pec led to a simultaneous decrease in G', flow stress, and flow strain, along with a significant increase in the loss factor of the HIPEs. Furthermore, the HIPEs formed with 1% PWPI/Pec 1:1 at pH 3.0 demonstrated excellent stability against heat treatment and long-term storage. These results provide valuable insights into the modulation of rheological characteristics of HIPEs and offer guidance for the application of walnut protein-based stabilizers in HIPE systems.


Asunto(s)
Juglans , Pectinas , Emulsiones/química , Pectinas/química , Humectabilidad , Concentración de Iones de Hidrógeno
3.
Plant Physiol Biochem ; 205: 108170, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38008008

RESUMEN

Foliar fertilisation is an alternative form of nutrient application, which is of particular interest for phosphorus (P), where the efficiency of soil fertilisation is low. However, the uptake of foliar-applied nutrients is insufficiently characterised. The aim of this study was to investigate the individual and combined significance of wettability, foliar fertiliser properties and surfactant on foliar P uptake in P-deficient maize (Zea mays L.). Sorption and desorption properties of two P salts used as foliar fertilisers (KH2PO4, K2HPO4) were determined with dynamic vapor sorption isotherms. Leaf surfaces and foliar spray depositions of two differently wettable maize cultivars were investigated by scanning electron microscopy and contact angle measurement. Phosphorus uptake was then linked to leaf and fertiliser solution properties and its effect on cell ultrastructure was characterised by transmission electron microscopy. Wettability was the key factor for P absorption, as all foliar fertilisers were taken up reaching a tissue-P level of adequately nourished plants. For unwettable leaves, only solutions with surfactant, especially the combination of surfactant and hygroscopic P salt (K2HPO4) were taken up. This study provides novel insights into the significance of leaf surface and fertiliser properties, which can thus contribute to an improvement of P fertilisation strategies.


Asunto(s)
Fertilizantes , Zea mays , Fertilizantes/análisis , Humectabilidad , Hojas de la Planta/metabolismo , Fósforo/metabolismo , Tensoactivos
4.
Zhongguo Zhong Yao Za Zhi ; 48(15): 3997-4006, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802767

RESUMEN

Hard capsules of traditional Chinese medicine(TCM) have different degrees of hygroscopicity, which affects the stability and efficacy of drugs. In this paper, 30 kinds of commercially available TCM capsules were used as the research object. The hygroscopicity curves of capsule contents, capsule shells, and capsules were tested respectively, and the first-order kinetic equation was used for fitting. The results show that during the 24 h hygroscopicity process, the capsule shell can reduce the weight gain caused by the hygroscopicity of the contents by 0.80%-53.0% and the hygroscopicity rate of the capsule contents by 1.74%-91.3%, indicating that the capsule shell has a strong delay effect on the hygroscopicity of the contents of the TCM capsules. Seven physical parameters of the contents of 30 kinds of TCM capsules were determined, and 14 prescription process-related parameters were sorted out. A partial least squares model for predicting the hygroscopicity rate of the contents of TCM capsules(with shell) for 24 h was established. It is found that the hygroscopicity rate of the capsule shell is positively correlated with the hygroscopicity of the contents of TCM capsules(with shell), suggesting that the capsule shell with a low hygroscopicity rate is helpful for moisture prevention. In addition, the pre-treatment process route of the preparation and the type of molding raw materials affect the hygroscopicity. A larger proportion of the extract in the capsule content and a smaller proportion of the fine powder of the decoction pieces indicate stronger hygroscopicity of the capsule content. The 24 h hygroscopicity rate of 15% was used as the classification node of hygroscopicity strength, and the hygroscopicity rate constant of 0.58 was used as the classification node of hygroscopicity speed. The classification system of hygroscopicity behaviors of TCM capsules was established: the varieties with strong and fast hygroscopicity accounted for about 6.67%, while those with strong and slow hygroscopicity accounted for about 33.3%; the varieties with weak and fast hygroscopicity accounted for about 26.7%, while those with weak and slow hygroscopicity accounted for about 33.3%. The classification system is helpful to quantify and compare the hygroscopicity behavior of different TCM capsules and provides a reference for the quality improvement, moisture prevention technologies, and material research of TCM capsules.


Asunto(s)
Medicamentos Herbarios Chinos , Medicina Tradicional China , Humectabilidad , Cápsulas , Polvos , Tecnología
5.
Chem Commun (Camb) ; 59(49): 7559-7578, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199096

RESUMEN

Effective separation of highly viscous crude oil/water mixtures remains a worldwide challenge. Employing special wettable materials with adsorptive properties as an emerging separation strategy has attracted extensive attention in the treatment of crude oil spillage. Such a separation technique combines excellent wettability materials and their adsorption performance to achieve energy efficient removal or recovery of high viscosity crude oil. Particularly, special wettable adsorption materials with thermal properties provide novel ideas and directions for the construction of rapid, green, economic and all-weather crude oil/water adsorption separation materials. Negatively, the high viscosity of crude oil makes most special wettable adsorption separation materials and surfaces extremely susceptible to adhesion and contamination in practical applications, leading to rapid functional failure. Moreover, such an adsorption separation strategy towards high-viscosity crude oil/water mixture separation has rarely been summarized. Consequently, there are still some potential challenges in separation selectivity and adsorption capacity of special wettable adsorption separation materials which urgently need to be summarized to guide the future development. In this review, the special wettability theories and construction principles of adsorption separation materials are first introduced. Then, the composition and classification of crude oil/water mixtures, particularly focusing on enhancing the separation selectivity and adsorption capacity of adsorption separation materials, are comprehensively and systematically discussed via regulating surface wettability, designing pore structures and reducing crude oil viscosity. Meanwhile, the separation mechanisms, construction ideas, fabrication strategies, separation performances, practical applications, and the advantages and disadvantages of special wettable adsorption separation materials are also analyzed. Finally, the challenges and future prospects for adsorption separation of high-viscosity crude oil/water mixtures are expounded.


Asunto(s)
Petróleo , Adsorción , Viscosidad , Humectabilidad
6.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047485

RESUMEN

In order to explore the diffusion and regeneration of bio-oil in aged bitumen, waste cooking oil (WCO), waste wood oil (WWO) and straw liquefied residue oil (SLRO) were selected in this paper. According to the surface wetting theory, the contact angle is obtained by combining laboratory experiments with molecular dynamics (MD) simulation, and the wetting parameters are calculated to evaluate the wetting behavior of bio-oil. The experimental phenomena of the wetting process and the main factors driving wetting are further analyzed. A permeation experiment is designed to obtain the permeation fusion layer (PFL). If the crossover modulus of PFLs changes compared with that of the aged bitumen, it is determined that the bio-oil penetrates the corresponding fusion layer. The results show that the motion of bio-oil included spreading and shrinking processes, and a precursor film played a pivotal role in the transportation of nanodroplets. Higher surface tension, lower viscosity and cohesion can effectively promote the wettability of bio-oil. A higher temperature and a longer permeation time are conducive to the permeation of bio-oil in aged bitumen. WCO with the strongest wettability has the weakest permeability, while WWO has superior permeability and can activate the macromolecules' surface activity, but its wettability is relatively weak. It is necessary to further modify WCO and WWO to be suitable rejuvenators.


Asunto(s)
Hidrocarburos , Aceites de Plantas , Humectabilidad , Aceites de Plantas/química
7.
Int J Biol Macromol ; 226: 61-71, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36493922

RESUMEN

In this paper, buckwheat protein colloidal particles (BPCPs) were prepared by heat treatment to stabilize oil-water interface. The results of particle size, surface hydrophobicity and wettability indicated that the prepared BPCPs could be used as novel Pickering emulsifier. The effects of BPCPs concentration, ionic strength and heat treatment on the structure and properties of Pickering emulsions were explored. The microstructure results showed that BPCPs could tightly coated on the surface of oil droplets to form a tight interfacial film, confirming that BPCPs could be used as an effective Pickering-like stabilizer. With the increase of BPCPs concentration, the droplet size of the Pickering emulsion gradually decreased, and the viscoelasticity and storage stability of the emulsion were effectively improved. Different from the effect of ionic strength, heat treatment was beneficial to increasing the viscoelasticity of BPCPs-stabilized Pickering emulsion. The Pickering emulsions exhibited certain flocculation at different temperatures and ionic strengths, while still maintained good solid-like behavior. These results suggest that the structure and properties of BPCPs-stabilized Pickering emulsion could be regulated by changing the ionic strength and temperature.


Asunto(s)
Fagopyrum , Emulsiones/química , Emulsionantes/química , Temperatura , Humectabilidad , Tamaño de la Partícula
8.
J Mater Chem B ; 10(11): 1763-1774, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35254375

RESUMEN

The growing problem of skin diseases due to allergies often causing atopic dermatitis, which is characterized by itching, burning, and redness, constantly motivates researchers to look for solutions to soothe these effects by moisturizing skin properly. For this purpose, we combined poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun fibers with evening primrose oil (EPO) into a system of patches to ensure skin hydration. Moreover, the dressing or patch application requires appropriate stretchability and wettability of the electrospun material. Thus, we examined the mechanical properties of the PHBV blend with EPO, as well as changes in wettability of the fiber surface depending on the share of EPO additive in the blend. The effectiveness of the patches has been characterized using the water vapor transmission rate as well as by the skin moisturizing index. The thermal insulation effect of the patches on human skin has been verified as well. The patches made by combining the polymer with natural oil showed enhanced mechanical properties and increased skin hydration, indicating the potential applicability of PHBV-based patches. The presented discovery of PHBV patches with EPO is a prospective and alternative treatment for patients for whom current state-of-the-art methods do not bring satisfactory results.


Asunto(s)
Poliésteres , Ácido gammalinolénico , Humanos , Ácidos Linoleicos , Oenothera biennis , Aceites de Plantas , Estudios Prospectivos , Piel , Humectabilidad
9.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613516

RESUMEN

Unconventional heavy oil ores (UHO) have been considered an important part of petroleum resources and an alternative source of chemicals and energy supply. Due to the participation of water and extractants, oil-solid separation (OSS) and oil-water separation (OWS) processes are inevitable in the industrial separation processes of UHO. Therefore, this critical review systematically reviews the basic theories of OSS and OWS, including solid wettability, contact angle, oil-solid interactions, structural characteristics of natural surfactants and interface characteristics of interfacially active asphaltene film. With the basic theories in mind, the corresponding OSS and OWS mechanisms are discussed. Finally, the present challenges and future research considerations are touched on to provide insights and theoretical fundamentals for OSS and OWS. Additionally, this critical review might even be useful for the provision of a framework of research prospects to guide future research directions in laboratories and industries that focus on the OSS and OWS processes in this important heavy oil production field.


Asunto(s)
Petróleo , Humectabilidad , Agua/química
10.
Environ Sci Pollut Res Int ; 29(41): 61881-61895, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34545517

RESUMEN

The current improvement in science and engineering, actively dealing with surfaces and interfaces, turns into a functioning control with a thriving advancement propensity. Superlyophobic/superlyophilic phenomena in surface sciences have pulled in broad considerations of researchers and specialists. Inspired by the natural and living organism, researchers have designed different biomimetic materials with exceptional surface wettability, such as the smart wetting of asymmetric spider silk surfaces. These smart materials with superlyophobic/superlyophilic wettability are generally utilized for water assortment, self-cleaning, fluid transportation and separation, and many researchers' domains. Among them, emulsion separation, including division of oil-water blend, mixtures of immiscible liquids and oil-water emulsions, is highlighted by an increasing number of researchers. Numerous materials with one- and two-dimensional morphology, smart surfaces, and super wettability have been effectively designed and utilized in various scientific research applications. We expect that these bioinspired materials with super wettability can have promising applications in practical for emulsion destabilization and liquid transportation.


Asunto(s)
Petróleo , Emulsiones , Hidrocarburos , Agua , Humectabilidad
11.
J Colloid Interface Sci ; 608(Pt 2): 1718-1727, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742086

RESUMEN

HYPOTHESIS: Contact-line motion upon drying of a sessile droplet strongly affects the solute transport and solvent evaporation profile. Hence, it should have a strong impact on the deposit formation and might be responsible for volcano-like, dome-like and flat deposit morphologies. EXPERIMENTS: A method based on a thin-film interference was used to track the drop height profile and contact line motion during the drying. A diverse set of drying scenarios was obtained by using inks with different solvent compositions and by adjusting the substrate wetting properties. The experimental data was compared to the predictions of a phenomenological model. FINDINGS: We highlight the essential role of contact-line mobility on the deposit morphology of solution-based inks. A pinned contact line produces exclusively ring-like deposits under normal conditions. On the contrary, drops with a mobile contact line can produce ring-, flat- or dome-like morphology. The developed phenomenological model shows that the deposit morphology depends on solvent evaporation profile, evolution of the drop radius relative to its contact angle, and the ratio between initial and maximal (gelling) solute concentration. These parameters can be adjusted by the ink solvent composition and substrate wetting behaviour, which provides a way for deposition of uniform and flat deposits via inkjet printing.


Asunto(s)
Café , Colorantes , Coloides , Soluciones , Humectabilidad
12.
Chemosphere ; 286(Pt 1): 131520, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34298294

RESUMEN

The remediation of oil spills and treatment of oily wastewater remains challenging to cope with nowadays. This has caused a surge in demand on adsorbent materials with multi-functionalities to effectively separate oils and nonpolar solvents from water. A superhydrophobic composite aerogel prepared from industrial waste-derived leached carbon black waste (LCBW) and polyvinyl alcohol (PVA) was developed in this work via conventional freeze-casting followed by surface coating. The composite aerogel was ultralight and porous with porosity >85% and tunable density ranging between 0.015 and 0.065 g/cm3. It was found that the embedded LCBW in the PVA network is crucial to impart superhydrophobicity and superoleophilicity to the aerogel as it enhances the surface roughness. Wettability test showed that composite aerogel prepared from 0.5 wt% PVA at PVA/LCBW ratio of 1 exhibited the highest water contact angle (156.7 ± 2.9°). LCBW also improved the thermal stability of the composite aerogel. With its superior selectivity, PVA/LCBW aerogel was used as selective adsorbent for a variety of oils and organic solvents. The adsorption test showed that the composite aerogel exhibited an adsorption capacity up to 35 times its original weight and could be reused repeatedly and easily recovered through a simple drying method.


Asunto(s)
Alcohol Polivinílico , Agua , Geles , Aceites , Aceites de Plantas , Hollín , Humectabilidad
13.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6020-6027, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34951228

RESUMEN

This study was designed to investigate the correlations of the spatial structure properties of Chinese medicinal extracts with hygroscopicity and the anti-hygroscopic techniques. With Poria extract used as the model drug, pregelatinised starch and microcrystalline cellulose at different ratios were added into Poria fluid extract for preparing powder particles with diverse spatial structures using different drying processes. Then, their hygroscopic behaviours were characterized by equilibrium hygroscopicity(F~∞) and semi-hygroscopic time(t_(1/2)). The correlations of the hygroscopicity of each powder with the spatial structure properties such as particle size(D_(90)), porosity(ε), true density(ρ_t), and surface element distribution were analyzed using partial least-squares method. The F~∞ and t_(1/2) values of Poria extract prepared by three drying methods were sorted in a descending order as follows: F~∞(spray drying>drying at ordinary pressure>drying at reduced pressure); t_(1/2)(drying at reduced pressure>drying at ordinary pressure>spray drying). The powder obtained by spray drying showed a spherical structure with the smallest particle size and intra-particle ε but relatively stronger hygroscopicity. The large-scale surface element enrichment of the powders dried by reduced pressure effectively reduced their hygroscopicity. F~∞ and t_(1/2) were negatively correlated with ε but positively with D_(90), and the interactive influence of each spatial structural properties was not significant. There existed a correlation between the spatial structure of the powder particles of Chinese medicine extracts and their hygroscopicity, and the hygroscopicity could be improved by designing the spatial structure. This study has provided some practical basis for developing the moisture-proof technology of Chinese medicinal preparations.


Asunto(s)
Extractos Vegetales , Tecnología , China , Tamaño de la Partícula , Polvos , Humectabilidad
14.
Zhongguo Zhong Yao Za Zhi ; 46(23): 6053-6061, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34951232

RESUMEN

Based on the defects in powder properties of the contents of Ziyin Yiwei Capsules, this study screened out the main medicinal slice powders causing the poor powdery properties, and introduced the powder modification process to improve the powdery properties of these slice powders, the pharmaceutical properties of the capsule contents, and the content uniformity of Ziyin Yiwei Capsules, so as to provide a demonstration for the application of powder modification technology to the preparation of Chinese medicinal solid preparations. Through the investigation on the powder properties of the contents of Ziyin Yiwei Capsules, it was clarified that the pulverized particle size of the capsule contents had a good correlation with the pulverization time. According to the measurement results of the powder fluidity and wettability, the quality defects of the capsule contents were caused by the fine powders of Taraxaci Herba and Lungwortlike Herba. "Core-shell" composite particles were prepared from medicinal excipients magnesium stearate and fine powders of Taraxaci Herba and Lungwortlike Herba slices after ultra-fine pulverization to improve the powder properties of the problematic fine powders. Powder characterization data including fluidity and wettability were measured, followed by scanning electron microscopy(SEM) and infrared ray(IR) detection. It was determined that the optimal dosage of magnesium stearate was 2%, and the compositing time was 3 min. The composite particles were then used as content components of the Ziyin Yiwei Capsules. The powder characteristics between the original capsule and the modified composite capsule including the particle size, fluidity, wettability, uniformity of bulk density, and uniformity of chromatism as well as the content uniformity and in vitro dissolution were compared. The results showed that the powder characteristics and content uniformity of the prepared composite capsule were significantly improved, while the material basis of the preparation was not changed before and after modification. The preparation process was proved to be stable and feasible. The powder modification technology solved the pharmaceutical defects that were easy to appear in the preparation of traditional capsules, which has provided experimental evidence for the use of powder modification technology for improving the quality of Chinese medicinal solid preparations and promoting the secondary development and upgrading of traditional Chinese medicinal dosage forms such as capsules.


Asunto(s)
Excipientes , Cápsulas , Tamaño de la Partícula , Polvos , Humectabilidad
15.
J Food Sci ; 86(6): 2255-2263, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33997988

RESUMEN

Freeze-drying and spray-drying are two techniques used to produce dehydrated food products. Both techniques are easy to use and offer high sensory, nutritive value, and functional quality to foods. However, both processes become difficult for foods with high sugar and acid content, such as fruits. This is because these products, once dehydrated, moisten quickly, causing a change in their physical properties, mainly in the mechanical aspects related to the start of a caking phenomenon. Therefore, incorporating high molecular weight biopolymers that act as facilitators or processors, prevent the structural collapse of the product. The aim of this study was to select the best process, between freeze-drying or spray-drying, to obtain a powdered grapefruit product with the higher quality. The impact of the biopolymers used to stabilize the powdered product was also tested. The properties analyzed were the solubility, wettability, hygroscopicity, porosity, and color of the powder together with the flow behavior, both in air and water. The results of this study show that using the freeze-drying technique, products have a better flow behavior, greater porosity, and a color more like fresh grapefruit. Biopolymers, especially when in combination, have a positive effect on the quality parameters studied. PRACTICAL APPLICATION: The results of this study allow freeze-drying to be proposed as a process to obtain a grapefruit product with better properties, both powdered and rehydrated, than that obtained by spray-drying. On the other hand, although the incorporation of biopolymers is necessary to facilitate the process and stabilize the product, no significant differences have been found between the different formulations tested, although it seems that their combination favours some of the properties of the powder, such as solubility, hygroscopicity, wetting time and dispersibility.


Asunto(s)
Citrus paradisi/química , Frutas/química , Biopolímeros , Desecación , Manipulación de Alimentos , Liofilización , Extractos Vegetales/química , Polvos , Solubilidad , Agua/análisis , Humectabilidad
16.
Molecules ; 26(7)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918502

RESUMEN

Electroactive biomaterials are fascinating for tissue engineering applications because of their ability to deliver electrical stimulation directly to cells, tissue, and organs. One particularly attractive conductive filler for electroactive biomaterials is silver nanoparticles (AgNPs) because of their high conductivity, antibacterial activity, and ability to promote bone healing. However, production of AgNPs involves a toxic reducing agent which would inhibit biological scaffold performance. This work explores facile and green synthesis of AgNPs using extract of Cilembu sweet potato and studies the effect of baking and precursor concentrations (1, 10 and 100 mM) on AgNPs' properties. Transmission electron microscope (TEM) results revealed that the smallest particle size of AgNPs (9.95 ± 3.69 nm) with nodular morphology was obtained by utilization of baked extract and ten mM AgNO3. Polycaprolactone (PCL)/AgNPs scaffolds exhibited several enhancements compared to PCL scaffolds. Compressive strength was six times greater (3.88 ± 0.42 MPa), more hydrophilic (contact angle of 76.8 ± 1.7°), conductive (2.3 ± 0.5 × 10-3 S/cm) and exhibited anti-bacterial properties against Staphylococcus aureus ATCC3658 (99.5% reduction of surviving bacteria). Despite the promising results, further investigation on biological assessment is required to obtain comprehensive study of this scaffold. This green synthesis approach together with the use of 3D printing opens a new route to manufacture AgNPs-based electroactive with improved anti-bacterial properties without utilization of any toxic organic solvents.


Asunto(s)
Antiinfecciosos/farmacología , Tecnología Química Verde , Ipomoea batatas/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Impresión Tridimensional , Plata/farmacología , Andamios del Tejido/química , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Coloides/química , Fuerza Compresiva , Dispersión Dinámica de Luz , Módulo de Elasticidad , Conductividad Eléctrica , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Poliésteres/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Humectabilidad , Difracción de Rayos X
17.
Chemosphere ; 278: 130405, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33823342

RESUMEN

The highly robust, effective, and sustainable remediation of hydrocarbon-contaminated wastewater matrices, which is mainly generated from petroleum and related petrochemical industries, is of supreme interest. Owing to the notable presence of suspended solids, oil, and grease, organic matter, highly toxic elements, high salts, and recalcitrant chemicals, crude oil emulsions, and hydrocarbon-contaminated wastewater are considered a potential threat to the environments, animals, plants, and humans. To effectively tackle this challenging issue, magnetic hybrid materials assembled at nano- and micro-scale with unique structural, chemical, and functional entities are considered robust candidates for demulsification purposes. The current research era on magnetic materials has superwettability, leading to an effective system of superwettability, which is vibrant and promising. The wettability of magnetic and magnetic hybrid materials explaining the theme of superhydrophobicity and superhydrophilicity under the liquid. Herein, we reviewed the applications of magnetic nanoparticles (MNPs) as effective demulsifiers. The demulsifier wettability, dose, pH, salinity, and surface morphology of compelling, magnetic nanoparticles are the main hidden factors in effective demulsifiers. There is a comprehensive discussion on the reuse and recyclability of MNPs after oil, water separation. Furthermore, the main challenges, coupled with the magnetic nanoparticles in the effective separation of emulsions, are intensified in detail. This review will compare the current literature and the utilization of MNPs for the demulsification of oil and water emulsions. This is envisioned that the MNPs would be critical in the petroleum and petrochemical industry to effectively eliminate water from a crude oil emulsion.


Asunto(s)
Contaminantes Ambientales , Petróleo , Emulsiones , Humanos , Aguas Residuales , Humectabilidad
18.
J Nanobiotechnology ; 19(1): 67, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663532

RESUMEN

BACKGROUND: Nanoparticles assembled from food-grade calcium carbonate have attracted attention because of their biocompatibility, digestibility, particle and surface features (such as size, surface area, and partial wettability), and stimuli-responsiveness offered by their acid-labile nature. RESULTS: Herein, a type of edible oil-in-water Pickering emulsion was structured by calcium carbonate nanoparticles (CaCO3 NPs; mean particle size: 80 nm) and medium-chain triglyceride (MCT) for delivery of lipophilic drugs and simultaneous oral supplementation of calcium. The microstructure of the as-made CaCO3 NPs stabilized Pickering emulsion can be controlled by varying the particle concentration (c) and oil volume fraction (φ). The emulsification stabilizing capability of the CaCO3 NPs also favored the formation of high internal phase emulsion at a high φ of 0.7-0.8 with excellent emulsion stability at room temperature and at 4 °C, thus protecting the encapsulated lipophilic bioactive, vitamin D3 (VD3), against degradation. Interestingly, the structured CaCO3 NP-based Pickering emulsion displayed acid-trigged demulsification because of the disintegration of the CaCO3 NPs into Ca2+ in a simulated gastric environment, followed by efficient lipolysis of the lipid in simulated intestinal fluid. With the encapsulation and delivery of the emulsion, VD3 exhibited satisfying bioavailability after simulated gastrointestinal digestion. CONCLUSIONS: Taken together, the rationally designed CaCO3 NP emulsion system holds potential as a calcium-fortified formulation for food, pharmaceutical and biomedical applications.


Asunto(s)
Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Calcio/química , Calcio/farmacología , Nanopartículas/administración & dosificación , Nanopartículas/química , Animales , Colecalciferol , Digestión , Emulsiones/química , Femenino , Tracto Gastrointestinal , Ratones , Ratones Endogámicos ICR , Tamaño de la Partícula , Humectabilidad
19.
Chem Asian J ; 16(9): 1081-1085, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33742553

RESUMEN

Control promotion and prevention of platelet adhesion are important for various biomedical applications. In the past, surface topography and chemical modifications have been commonly utilized for tailoring the promotion and prevention of platelet adhesion. Recently, lotus-leaf-inspired superhydrophobicity has appeared as an efficient avenue to prevent platelet adhesion. However, such extreme water repellent interfaces fail to perform upon prolonged and continuous exposure to aqueous phase. In this communication, the strategic use of a catalyst-free 1,4-conjugate addition reaction between amine and acrylate allowed us to investigate the impact of two distinct underwater oil-wettability on platelet adhesion activity. While underwater superoleophobicity inhibited platelet-adhesion, a highly aggregated fibrous network of adhered platelets was observed on underwater superoleophilic coating. Further, this biocompatible and haemocompatible underwater superoleophobic multilayer coating was deposited on a commercially available catheter tube to examine its potential towards the prevention of platelet attachment.


Asunto(s)
Materiales Biocompatibles/química , Aceites de Plantas/química , Polifenoles/química , Tamaño de la Partícula , Adhesividad Plaquetaria , Propiedades de Superficie , Humectabilidad
20.
Food Chem ; 350: 129251, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588282

RESUMEN

The pea protein isolate-high methoxyl pectin-epigallocatechin gallate (PPI-HMP-EGCG) complex was used to stabilize Pickering emulsions (PEs) and high internal phase PEs (HIPPEs), and the effect of interfacial rheology on the microstructure, bulk rheology and stability of these emulsions was investigated. The PPI-HMP-EGCG complex with PPI to EGCG 30:1 exhibited partial wettability (81.6 ± 0.4°) and optimal viscoelasticity for the formation of stable interfacial layer. The microstructure demonstrated that the PPI-HMP-EGCG complex acted as an interfacial layer and surrounded the oil droplets, and continuous phases were mainly filled with excessive HMP, which enhanced emulsion stability. The formation of a firm gel-like network structure required a dense interfacial layer to provide the PEs (complex concentration of 0.1%) and HIPPEs (oil-phase up to 0.83) with ideal viscoelasticity and stability. The results provide the guidelines for the rational design of EGCG-loaded HIPPEs stabilized by water-soluble protein/polysaccharide complexes.


Asunto(s)
Catequina/análogos & derivados , Proteínas de Guisantes/química , Pectinas/química , Catequina/química , Emulsiones , Reología , Viscosidad , Agua/química , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA