Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.119
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Phytochemistry ; 221: 114047, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462213

RESUMEN

Hyperatins A-D (1-4), four previously undescribed polycyclic polyprenylated acylphloroglucinols, were isolated from Hypericum perforatum L. (St. John's wort). Compound 1 possessed a unique octahydroindeno[1,7a-b]oxirene ring system with a rare 2,7-dioxabicyclo[2.2.1]heptane fragment. Compounds 2-4 had an uncommon decahydrospiro[furan-3,7'-indeno[7,1-bc]furan] ring system. Their structures were established by spectroscopic analyses and X-ray crystallography. Plausible biosynthetic pathways of 1-4 were also proposed. Compounds 1 and 2 exerted promising hypoglycemic activity by inhibiting glycogen synthase kinase 3 expression in liver cells.


Asunto(s)
Antineoplásicos , Hypericum , Hypericum/química , Cristalografía por Rayos X , Hígado , Furanos , Floroglucinol/farmacología , Floroglucinol/química , Estructura Molecular
2.
Phytochemistry ; 220: 114016, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38364882

RESUMEN

Formohyperins A-F, previously undescribed meroterpenes, and grandone, a prenylated benzoylphloroglucinol being considered to be one of their biogenetic precursors, were isolated from the flowers of a Hypericaceous plant, Hypericum formosanum Maxim. Detailed spectroscopic analyses showed that formohyperins A-D were meroterpenes with an enolized 3-phenylpropane-1,3-dione moiety. Formohyperins E and F were elucidated as meroterpenes having a 4-benzoyl-5-hydroxycyclopent-4-ene-1,3-dione moiety. Formohyperins A-C and E were optically active, and their absolute configurations were deduced by comparison of the experimental and TDDFT calculated ECD spectra. In contrast, formohyperin D was concluded to be a racemate. Formohyperins A-F and grandone were found to show inhibitory activities against LPS-stimulated IL-1ß production from murine microglial cells with EC50 values of 13.2, 6.6, 8.5, 24.3, 4.1, 10.9, and 3.0 µM, respectively.


Asunto(s)
Hypericum , Floroglucinol , Ratones , Animales , Floroglucinol/farmacología , Floroglucinol/química , Hypericum/química , Flores , Microglía , Prenilación , Estructura Molecular
3.
Fitoterapia ; 174: 105852, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325587

RESUMEN

Phytochemical studies on the leaves and twigs of Hypericum ascyron Linn. led to the isolation of two previously undescribed rearranged polycyclic polyprenylated acylphloroglucinols (PPAP) with a 4,5-seco-3(2H)-furanone skeleton, named hyperascone A and B (1-2). Additionally, a known PPAP tomoeone A (3) and two known xanthones 1,3,5 -trihydroxy-6-O-prenylxanthone (4) and 3,7-dihydroxy-1,6-dimethoxyxanthone (5) were also isolated. The structures of the compounds were determined by the analysis of their spectroscopic data including HRMS, NMR and ECD. All of the five isolated compounds exhibited neuroprotective effects against MPP+ and microglia activation induced damage of SH-SY5Y cells.


Asunto(s)
Hypericum , Neuroblastoma , Fármacos Neuroprotectores , Propilaminas , Humanos , Hypericum/química , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Estructura Molecular , Floroglucinol/farmacología , Floroglucinol/química
4.
Clin Pharmacol Drug Dev ; 13(3): 297-306, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38176912

RESUMEN

Tacrolimus is metabolized by cytochrome P450 3A (CYP3A) and is susceptible to interactions with the CYP3A and P-glycoprotein inducer St. John's Wort (SJW). CYP3A isozymes are predominantly expressed in the small intestine and liver. Prolonged-release tacrolimus (PR-Tac) is largely absorbed in distal intestinal segments and is less susceptible to CYP3A inhibition. The effect of induction by SJW is unknown. In this randomized, crossover trial, 18 healthy volunteers received single oral tacrolimus doses (immediate-release [IR]-Tac or PR-Tac, 5 mg each) alone and during induction by SJW. Concentrations were quantified using ultra-high performance liquid chromatography coupled with tandem mass spectrometry and non-compartmental pharmacokinetics were evaluated. SJW decreased IR-Tac exposure (area under the concentration-time curve) to 73% (95% confidence interval 60%-88%) and maximum concentration (Cmax ) to 61% (52%-73%), and PR-Tac exposure to 67% (55%-81%) and Cmax to 69% (58%-82%), with no statistical difference between the 2 formulations. The extent of interaction appeared to be less pronounced in volunteers with higher baseline CYP3A4 activity and in CYP3A5 expressors. In contrast to CYP3A inhibition, CYP3A induction by SJW showed a similar extent of interaction with both tacrolimus formulations. A higher metabolic baseline capacity appeared to attenuate the extent of induction by SJW.


Asunto(s)
Hypericum , Tacrolimus , Humanos , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Hypericum/química , Hypericum/metabolismo , Extractos Vegetales , Tacrolimus/farmacocinética , Estudios Cruzados
5.
Naunyn Schmiedebergs Arch Pharmacol ; 397(6): 3803-3818, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38175276

RESUMEN

The herb Hypericum perforatum, also referred to as St. John's wort, has drawn a lot of interest because of its potential therapeutic benefits in treating neurodegenerative illnesses. Due to the absence of effective therapies, illnesses like Alzheimer's and Parkinson's disease pose an increasing worldwide health concern. Because of its wide variety of phytochemicals, especially hyperforin, and hypericin, Hypericum perforatum is well known for its neuroprotective properties. These substances have proven to be able to affect different cellular processes linked to neurodegeneration. They can act as anti-inflammatory, antioxidant, and neurotransmitter system regulators, which may help halt neurodegenerative illnesses' progression. The use of Hypericum perforatum extracts and its contents has shown encouraging results in research on animal models of neurodegenerative disorders. These advantages include higher nerve cell survival, lowered oxidative stress, and higher cognitive performance. Underscoring its versatile potential to combat neurodegeneration, Hypericum perforatum has neuroprotective mechanisms that modulate neuroinflammation and prevent apoptotic pathways. In conclusion, Hypericum perforatum shows tremendous promise as a potential treatment for neurological illnesses due to its wide variety of phytochemicals. To completely comprehend its specific mechanisms of action and turn these discoveries into efficient clinical therapies, additional research is needed. Investigating Hypericum perforatum's function in neurodegenerative disorders may present new opportunities for the advancement of ground-breaking therapeutic strategies.


Asunto(s)
Hypericum , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Extractos Vegetales , Hypericum/química , Humanos , Animales , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Fitoterapia
6.
Int J Biol Macromol ; 254(Pt 1): 127757, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287573

RESUMEN

There is a growing demand for the development of functional wound dressings enriched with bioactive natural compounds to improve the quality of life of the population by accelerating the healing process of chronic wounds. In this regard, a functional composite film of okra mucilage (OM) and methylcellulose (MC) incorporated with Hypericum perforatum oil (Hp) and gentamicin (G) was prepared and characterized as a wound dressing. Increasing Hp resulted in improved film properties with a more porous structure, higher WVTR, and lower surface hydrophobicity. Furthermore, incorporating Hp into OM:MC films led to increased elongation at the break while reducing the tensile strength of the films. The highest values of total antioxidant capacity (1.09-1.16 mM trolox equivalent) and total phenolic content (13.76-16.94 µg GA equivalent mL-1) were measured in the composite films containing the highest Hp concentration (1.5 %). In addition, OM:MC/HpG composite films exhibited significant antibacterial activity against both E. coli and S. aureus and prevented the transmission of these bacteria through the films. Hp incorporation reduced the cytotoxic effects of OM:MC films on BJ cells and increased the wound closure rate in vitro. In conclusion, the developed OM:MC/HpG composite film can be a promising candidate as a novel wound dressing with its superior properties.


Asunto(s)
Abelmoschus , Hypericum , Hypericum/química , Gentamicinas/farmacología , Metilcelulosa/farmacología , Escherichia coli , Staphylococcus aureus , Calidad de Vida , Antibacterianos/farmacología , Polisacáridos/farmacología , Vendajes/microbiología , Aceites de Plantas/química
7.
Int J Mol Sci ; 25(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38279301

RESUMEN

Hypericum perforatum (St. John's wort) has been described to be beneficial for the treatment of Alzheimer's disease (AD). Different extractions have demonstrated efficiency in mice and humans, esp. extracts with a low hypericin and hyperforin content to reduce side effects such as phototoxicity. In order to systematically elucidate the therapeutic effects of H. perforatum extracts with different polarities, APP-transgenic mice were treated with a total ethanol extract (TE), a polar extract obtained from TE, and an apolar supercritical CO2 (scCO2) extract. The scCO2 extract was formulated with silicon dioxide (SiO2) for better oral application. APP-transgenic mice were treated with several extracts (total, polar, apolar) at different concentrations. We established an early treatment paradigm from the age of 40 days until the age of 80 days, starting before the onset of cerebral ß-amyloid (Aß) deposition at 45 days of age. Their effects on intracerebral soluble and insoluble Aß were analyzed using biochemical analyses. Our study confirms that the scCO2H. perforatum formulation shows better biological activity against Aß-related pathological effects than the TE or polar extracts. Clinically, the treatment resulted in a dose-dependent improvement in food intake with augmentation of the body weight, and, biochemically, it resulted in a significant reduction in both soluble and insoluble Aß (-27% and -25%, respectively). We therefore recommend apolar H. perforatum extracts for the early oral treatment of patients with mild cognitive impairment or early AD.


Asunto(s)
Enfermedad de Alzheimer , Hypericum , Humanos , Ratones , Animales , Lactante , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Fitoterapia , Hypericum/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/inducido químicamente , Dióxido de Silicio/uso terapéutico , Péptidos beta-Amiloides/toxicidad , Ratones Transgénicos
8.
Int J Biol Macromol ; 260(Pt 1): 129444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38232881

RESUMEN

Hydrogels prepared with natural and synthetic polymers were found to be applicable for the development of resistance against some Gram positive and negative bacterial species. Numerous studies have shown that chitosan polymers can be advantageous to be used in medicine due to their high antibacterial activity. In this study, biocompatible yellow cantorone oil doped hydrogels (chitosan/poly(vinyl alcohol) based) with antimicrobial properties were synthesized. The structural, morphological, swelling and mechanical properties of these biocompatible hydrogels prepared by double crosslinking were investigated and characterized. FTIR spectroscopy showed the appearance of new imine and acetal bonds due to both covalent cross-linking. In vitro cytotoxicity evaluation revealed that hydrogels showed weak cytotoxic effect. In the antimicrobial evaluation, it was determined that the hydrogel containing only chitosan showed better antimicrobial effect against Escherichia coli, Pseudomonas auriginosa, Staphylococcus aureus and Enterococcus faecalis bacteria than the one containing St. John's Wort oil. The antibacterial effect of polyvinyl alcohol/chitosan hydrogel was low. In our wound healing study, chitosan hydrogel loaded with yellow St. John's Wort oil was more effective in reducing wound size.


Asunto(s)
Antiinfecciosos , Quitosano , Hypericum , Alcohol Polivinílico , Quitosano/farmacología , Quitosano/química , Hidrogeles/química , Hypericum/química , Antibacterianos/química , Polímeros
9.
Phytochemistry ; 218: 113953, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101592

RESUMEN

In this work, nine previous undescribed polycyclic polyprenylated acylphloroglucinols with adamantine/homoadamantane skeletons, cumilcinols A-I (1-9), along with six known analogues, were isolated and identified from the stems, leaves and flowers of Hypericum wilsonii. Their structures were determined by HRESIMS, NMR spectroscopic analysis, single-crystal X-ray crystallography as well as electronic circular dichroism calculations and comparisons. Compound 2 formed a unique furan ring bearing a rare acetal functionality. In bioassays, hyperacmosin G (13) could significantly inhibit the production of NO in LPS-stimulated RAW264.7 cell (IC50 = 4.350 ± 1.146 µM), and increased expression of related transcription factors at the gene level, inhibit the nuclear translocation of NF-κBp65, and reduce the protein expression of COX-2. Additionally, compound 5 showed significant inhibitory activity on Con A-induced T-lymphocyte proliferation (IC50 = 4.803 ± 3.149 µM), and treatment of 5 could reduce the increased ratio of CD4 and CD8 subpopulations induced by Con A in vitro. Those results indicated 13 possesses potential anti-inflammatory activity, and 5 exhibits a certain degree of immunosuppressive activity.


Asunto(s)
Hypericum , Hypericum/química , Floroglucinol , Estructura Molecular , Espectroscopía de Resonancia Magnética , Dicroismo Circular
10.
Org Lett ; 25(50): 8965-8969, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38064279

RESUMEN

Hypseudohenones A-C (1-3), the first rearranged homoadamantane-type polycyclic polyprenylated acylphloroglucinols, were isolated from Hypericum pseudohenryi. Their structures with an unprecedented tricyclo[4.3.1.13,8]undecane-2,4,10-trione core were determined by spectroscopic analysis, quantum-chemical calculations, and X-ray crystallography. A method for determining the relative configuration at C-3 was established by the peak shape of H-28 or J-value of H-3/H-28. Moreover, 2-3 exhibited significant AChE inhibitory activity, and the interactions of 2-3 with AChE were evaluated by molecular docking.


Asunto(s)
Hypericum , Estructura Molecular , Hypericum/química , Simulación del Acoplamiento Molecular , Floroglucinol/química , Cristalografía por Rayos X
11.
Chem Biodivers ; 20(11): e202301135, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37788977

RESUMEN

One of the endangered plant species in Saint Catherine protectorate is Hypericum sinaicum Boiss which is endemic to Egypt, Jordan, and Saudi Arabia. The fungus-host relationship can assist in the investigation of bioactive compounds produced by H. sinaicum paving the way for economic and medicinal implications. Therefore, a comprehensive metabolic approach via MS and chemical analysis was used to track and compare metabolites from H. sinaicum and Aspergillus foetidus var. pallidus, the endophytic fungus, with Hypericum perforatum. Metabolomics analysis revealed the presence of 25 metabolites distributed among samples and the discovery of new chemotaxonomic compounds, i. e., phloroglucinols and xanthones, allowing the discrimination between species. A. foetidus extract is considered a reliable source of furohyperforin and naphthodianthrone derivatives. In conclusion, using A. foetidus as an in vitro technique for producing potential phytoconstituents was cost effective, having easier optimization conditions and faster growth with fewer contamination rates than other in vitro methods.


Asunto(s)
Hypericum , Extractos Vegetales , Extractos Vegetales/química , Hypericum/química , Cromatografía Liquida , Quimiometría , Espectrometría de Masas en Tándem , Aceites de Plantas/metabolismo
12.
J Nat Prod ; 86(10): 2391-2397, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37843029

RESUMEN

Four previous papers reported the isolation and structural determination of 10 polycyclic polyprenylated acylphloroglucinols (PPAPs), uraliones F, G, K, and O, attenuatumiones E and F, and scabrumiones A-D, from Hypericum species. Their structures were identified as type B PPAPs that featured not only the characteristic acyl group at C-3 of the bicyclo[3.3.1]nonane core but also a partly reduced furan ring fused to the C-1-C-2-O-2 atoms of the core. However, the 1D and 2D NMR data of these compounds were more consistent with type A PPAPs that featured not only the acyl group at C-1 but also a partially reduced furan ring fused to the C-3-C-2-O-2 atoms of the core. Now we revise these 10 previously proposed structures to the corresponding type A PPAPs via NMR analysis. Additionally, we propose a rule that uses NMR data to determine whether a particular PPAP that is fused to a partly reduced furan ring at C-3-C-2-O-2 or C-1-C-2-O-2 is type A or type B, respectively. We also propose a rule to assign the relative configurations of corresponding type A PPAPs at C-18 and revise the configurations of sampsonione N, hypericumoxides A-C, and hyperscabin G.


Asunto(s)
Hypericum , Floroglucinol , Floroglucinol/química , Estructura Molecular , Hypericum/química , Espectroscopía de Resonancia Magnética
13.
J Nat Prod ; 86(8): 1910-1918, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37530709

RESUMEN

Four new δ- and γ-lactone derivatives, hyperelatolides A-D (1-4, respectively), were discovered from the aerial portions of Hypericum elatoides R. Keller. Their structures were elucidated by analysis of NMR spectra, HRESIMS, quantum chemical calculations of NMR and ECD spectra, and X-ray crystallographic data. Hyperelatolides A (1) and B (2) represent the first examples of δ-lactone derivatives characterized by a (Z)-(5,5-dimethyl-2-(2-oxopropyl)cyclohexylidene)methyl moiety and a benzoyloxy group attached to the ß- and γ-positions of the δ-lactone core, respectively, while hyperelatolides C (3) and D (4) are unprecedented γ-lactone derivatives featuring substituents similar to those of 1 and 2. All compounds were tested for their inhibitory effects on NO production in LPS-activated BV-2 cells. Lactones 1 and 2 exhibited considerable antineuroinflammatory activity, with IC50 values of 5.74 ± 0.27 and 7.35 ± 0.26 µM, respectively. Moreover, the mechanistic study revealed that lactone 1 significantly suppressed nuclear factor kappa B signaling and downregulated the expression of inducible nitric oxide synthase and cyclooxygenase-2 in LPS-induced cells, which may contribute to its antineuroinflammatory activity.


Asunto(s)
Hypericum , Hypericum/química , Lipopolisacáridos/farmacología , Espectroscopía de Resonancia Magnética , Lactonas/farmacología , Lactonas/química , Transducción de Señal , Estructura Molecular , Óxido Nítrico
14.
Chin J Nat Med ; 21(6): 443-453, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37407175

RESUMEN

This study employed the α-glucosidase inhibitory activity model as an anti-diabetic assay and implemented a bioactivity-guided isolation strategy to identify novel natural compounds with potential therapeutic properties. Hypericum sampsoniiwas investigated, leading to the isolation of two highly modified seco-polycyclic polyprenylated acylphloroglucinols (PPAPs) (1 and 2), eight phenolic derivatives (3-10), and four terpene derivatives (11-14). The structures of compounds 1 and 2, featuring an unprecedented octahydro-2H-chromen-2-one ring system, were fully characterized using extensive spectroscopic data and quantum chemistry calculations. Six compounds (1, 5-7, 9, and 14) exhibited potential inhibitory effects against α-glucosidase, with IC50 values ranging from 0.050 ± 0.0016 to 366.70 ± 11.08 µg·mL-1. Notably, compound 5 (0.050 ± 0.0016 µg·mL-1) was identified as the most potential α-glucosidase inhibitor, with an inhibitory effect about 6900 times stronger than the positive control, acarbose (IC50 = 346.63 ± 15.65 µg·mL-1). A docking study was conducted to predict molecular interactions between two compounds (1 and 5) and α-glucosidase, and the hypothetical biosynthetic pathways of the two unprecedented seco-PPAPs were proposed.


Asunto(s)
Hypericum , Estructura Molecular , Hypericum/química , alfa-Glucosidasas , Espectroscopía de Resonancia Magnética , Inhibidores de Glicósido Hidrolasas/farmacología
15.
Fitoterapia ; 169: 105610, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37451349

RESUMEN

Phytochemical investigation of Hypericum sampsonii Hance resulted in the isolation of thirty-five polycyclic polyprenylated acylphloroglucinols including six new ones (1, 3, 5, and 15-17). Their structures were elucidated by UV, IR, NMR, HRESIMS, and calculated ECD analysis. Some compounds were evaluated for their anti-inflammatory effects in LPS-induced RAW264.7 cells. Compounds 1 and 26 showed significant inhibitory effects on LPS-induced NO production, and markedly suppressed the protein expression of iNOS and COX-2 in LPS-activated RAW264.7 cells.


Asunto(s)
Hypericum , Estructura Molecular , Hypericum/química , Floroglucinol/farmacología , Floroglucinol/química , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química
16.
Biomed Res Int ; 2023: 4693765, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37284030

RESUMEN

In Cameroon, malaria is still the cause of several deaths yearly and leading to the continued search for new potent leads to fight against Plasmodium falciparum. Medicinal plants like Hypericum lanceolatum Lam. are introduced in local preparations for the treatment of affected people. The bioassay-guided fractionation of the crude extract of the twigs and stem bark of H. lanceolatum Lam. led to the identification of the dichloromethane-soluble fraction as the most active (with 32.6% of the parasite P. falciparum 3D7 survival) which was further purified by successive column chromatography to obtain four compounds identified by their spectrometric data as two xanthones 1,6-dihydroxyxanthone (1) and norathyriol (2) and two triterpenes betulinic acid (3) and ursolic acid (4). In the antiplasmodial assay against P. falciparum 3D7, the triterpenoids 3 and 4 displayed the most significant potencies with IC50 values of 2.8 ± 0.8 µg/mL and 11.8 ± 3.2 µg/mL, respectively. Furthermore, both compounds were also the most cytotoxic against P388 cell lines with IC50 values of 6.8 ± 2.2 µg/mL and 2.5 ± 0.6 µg/mL, respectively. Further insights on the inhibition method of the bioactive compounds and their drug-likeness were obtained from their molecular docking and ADMET studies. The results obtained help in identifying additional antiplasmodial agents from H. lanceolatum and support its use in folk medicine for the treatment of malaria. The plant might be considered as a promising source of new antiplasmodial candidates in new drug discovery.


Asunto(s)
Antimaláricos , Clusiaceae , Hypericum , Malaria Falciparum , Malaria , Triterpenos , Humanos , Antimaláricos/química , Hypericum/química , Extractos Vegetales/química , Simulación del Acoplamiento Molecular , Malaria/parasitología , Triterpenos/farmacología , Plasmodium falciparum , Malaria Falciparum/tratamiento farmacológico , Bioensayo
17.
Phytochem Anal ; 34(5): 548-559, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37199038

RESUMEN

INSTRUCTION: Hypericum bellum Li is rich in xanthones with various bioactivities, especially in anti-breast cancer. While the scarcity of mass spectral data of xanthones in Global Natural Products Social Molecular Networking (GNPS) libraries have challenged the rapid recognition of xanthones with similar structures. OBJECTIVE: This study is aimed to enhance the molecular networking (MN)-based dereplication and visualisation ability of potential anti-breast cancer xanthones from H. bellum to overcome the scarcity of xanthones mass spectral data in GNPS libraries. Separating and purifying the MN-screening bioactive xanthones to verify the practicality and accuracy of this rapid recognition strategy. METHODOLOGY: A combined strategy of "seed" mass spectra-based MN, in silico annotation tools, substructure identification tools, reverse molecular docking, ADMET screening, molecular dynamics (MDs) simulation experiments, and an MN-oriented separation procedure was first introduced to facilitate the rapid recognition and targeted isolation of potential anti-breast cancer xanthones in H. bellum. RESULTS: A total of 41 xanthones could only be tentatively identified. Among them, eight xanthones were screened to have potential anti-breast cancer activities, and six xanthones that were initially reported in H. bellum were obtained and verified to have good binding abilities with their paired targets. CONCLUSION: This is a successful case study that validated the application of "seed" mass spectral data could overcome the drawbacks of GNPS libraries with limited mass spectra and enhance the accuracy and visualisation of natural products (NPs) dereplication, and this rapid recognition and targeted isolation strategy can be also applicable for other types of NPs.


Asunto(s)
Productos Biológicos , Hypericum , Neoplasias , Xantonas , Espectrometría de Masas en Tándem/métodos , Hypericum/química , Xantonas/farmacología , Xantonas/química , Simulación del Acoplamiento Molecular
18.
Microbiol Spectr ; 11(3): e0060723, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199656

RESUMEN

Plants are no longer considered standalone entities; instead, they harbor a diverse community of plant growth-promoting rhizobacteria (PGPR) that aid them in nutrient acquisition and can also deliver resilience. Host plants recognize PGPR in a strain-specific manner; therefore, introducing untargeted PGPR might produce unsatisfactory crop yields. Consequently, to develop a microbe-assisted Hypericum perforatum L. cultivation technique, 31 rhizobacteria were isolated from the plant's high-altitude Indian western Himalayan natural habitat and in vitro characterized for multiple plant growth-promoting attributes. Among 31 rhizobacterial isolates, 26 produced 0.59 to 85.29 µg mL-1 indole-3-acetic acid and solubilized 15.77 to 71.43 µg mL-1 inorganic phosphate; 21 produced 63.12 to 99.92% siderophore units, and 15 exhibited 103.60 to 1,296.42 nmol α-ketobutyrate mg-1 protein h-1 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. Based on superior plant growth-promoting attributes, eight statistically significant multifarious PGPR were further evaluated for an in planta plant growth-promotion assay under poly greenhouse conditions. Plants treated with Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18 showed, by significant amounts, the highest photosynthetic pigments and performance, eventually leading to the highest biomass accumulation. Comparative genome analysis and comprehensive genome mining unraveled their unique genetic features, such as adaptation to the host plant's immune system and specialized metabolites. Moreover, the strains harbor several functional genes regulating direct and indirect plant growth-promotion mechanisms through nutrient acquisition, phytohormone production, and stress alleviation. In essence, the current study endorsed strains HypNH10 and HypNH18 as cogent candidates for microbe-assisted H. perforatum cultivation by highlighting their exclusive genomic signatures, which suggest their unison, compatibility, and multifaceted beneficial interactions with their host and support the excellent plant growth-promotion performance observed in the greenhouse trial. IMPORTANCE Hypericum perforatum L. (St. John's wort) herbal preparations are among the top-selling products to treat depression worldwide. A significant portion of the overall Hypericum supply is sourced through wild collection, prompting a rapid decline in their natural stands. Crop cultivation seems lucrative, although cultivable land and its existing rhizomicrobiome are well suited for traditional crops, and its sudden introduction can create soil microbiome dysbiosis. Also, the conventional plant domestication procedures with increased reliance on agrochemicals can reduce the diversity of the associated rhizomicrobiome and plants' ability to interact with plant growth-promoting microorganisms, leading to unsatisfactory crop production alongside harmful environmental effects. Cultivating H. perforatum with crop-associated beneficial rhizobacteria can reconcile such concerns. Based on a combinatorial in vitro, in vivo plant growth-promotion assay and in silico prediction of plant growth-promoting traits, here we recommend two H. perforatum-associated PGPR, Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18, to extrapolate as functional bioinoculants for H. perforatum sustainable cultivation.


Asunto(s)
Antineoplásicos , Hypericum , Hypericum/química , Hypericum/metabolismo , Desarrollo de la Planta , Genómica
19.
Phytochemistry ; 212: 113727, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37207991

RESUMEN

Ten spirocyclic polycyclic polyprenylated acylphloroglucinols (PPAP), hunascynols A-J (1-10), and 12 known analogs were isolated from the aerial parts of Hypericum ascyron Linn. Compounds 1 and 2, which share a 1,2-seco-spirocyclic PPAP skeleton, could be derived from spirocyclic PPAP, with a common octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core, through a cascade of Retro-Claisen, keto-enol tautomerism, and esterification reactions. Aldolization of normal spirocyclic PPAP yielded 3, which has a caged framework with a 6/5/6/5/6 ring system. The structures of these compounds were determined using spectroscopy and X-ray diffraction. The inhibitory activities of all isolates were tested in three human cancer cell lines and a zebrafish model. Compounds 1 and 2 displayed moderate cytotoxicity against HCT116 cells (IC50 6.87 and 9.86 µM, respectively). The mechanisms of these compounds were evaluated using Western blot assays. Compounds 3 and 5 inhibited the growth of sub-intestinal vessels in zebrafish embryos. Further, the target genes were screened using real-time PCR.


Asunto(s)
Hypericum , Humanos , Animales , Estructura Molecular , Hypericum/química , Pez Cebra , Línea Celular , Floroglucinol
20.
Biomed Res Int ; 2023: 6934398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37090192

RESUMEN

Background: The perennial plant Hypericum perforatum is widely distributed around the world. It has been used for many years in conventional medicine to treat a variety of illnesses, including stress, mild to moderate depression, and minor injuries. This study examined the antimicrobial activity of the H. perforatum total extract and its fractions (n-hexane, ethyl acetate, chloroform, and aqueous) against multi-drug-resistant (MDR) isolates that were gathered from clinical samples, including methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Escherichia coli, and Klebsiella pneumonia. Materials and Methods: Aerial parts of H. perforatum were collected and extracted using various solvents and were tested versus different isolated bacterial species. The inhibition zone of tested extracts was detected using an agar diffusion assay, and MICs were measured. Phytochemical analysis of promising H. perforatum extract was done using LC-ESI-MS/MS. Ultrastructure examination for the most altered bacteria used transmission electron microscopy. Antioxidant assays were done using DPPH and ABTS scavenging capacity methods. Cytotoxicity was reported versus Vero cells. Results: Different extracts of H. perforatum showed promising antibacterial activity against the pathogens. While the subfractions of the total extract were observed to show lesser inhibition zones and higher MIC values than the total extract of H. perforatum against MDR strains, the total extract of H. perforatum demonstrated the most potent antimicrobial action with an inhibition zone range of 17.9-27.9 mm. MDR-K. pneumoniae was discovered to be the most susceptible strain, which is consistent with the antibacterial inhibitory action of H. perforatum whole extract. Additionally, after treatment at the minimum inhibitory concentration (MIC 3.9 µg/ml), the transmission electron microscope showed alterations in the ultrastructure of the K. pneumoniae cells. Methanol extract from H. perforatum has a CC50 value of 976.75 µg/ml. Conclusion: Future inhibitors that target MDR strains may be revealed by these findings. Additionally, the extracts that were put to the test demonstrated strong antioxidant effects as shown by DPPH or ABTS radical-scavenging assays.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Resistencia a Múltiples Medicamentos , Hypericum , Extractos Vegetales , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Chlorocebus aethiops , Hypericum/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Espectrometría de Masas en Tándem , Células Vero , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Escherichia coli/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA