Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Virus Res ; 344: 199362, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38508402

RESUMEN

We report the characterization of a novel tri-segmented RNA virus infecting Mercurialis annua, a common crop weed and model species in plant science. The virus, named "Mercurialis latent virus" (MeLaV) was first identified in a mixed infection with the recently described Mercurialis orthotospovirus 1 (MerV1) on symptomatic plants grown in glasshouses in Lausanne (Switzerland). Both viruses were found to be transmitted by Thrips tabaci, which presumably help the inoculation of infected pollen in the case of MeLaV. Complete genome sequencing of the latter revealed a typical ilarviral architecture and close phylogenetic relationship with members of the Ilarvirus subgroup 1. Surprisingly, a short portion of MeLaV replicase was found to be identical to the partial sequence of grapevine angular mosaic virus (GAMV) reported in Greece in the early 1990s. However, we have compiled data that challenge the involvement of GAMV in angular mosaic of grapevine, and we propose alternative causal agents for this disorder. In parallel, three highly-conserved MeLaV isolates were identified in symptomatic leaf samples in The Netherlands, including a herbarium sample collected in 1991. The virus was also traced in diverse RNA sequencing datasets from 2013 to 2020, corresponding to transcriptomic analyses of M. annua and other plant species from five European countries, as well as metaviromics analyses of bees in Belgium. Additional hosts are thus expected for MeLaV, yet we argue that infected pollen grains have likely contaminated several sequencing datasets and may have caused the initial characterization of MeLaV as GAMV.


Asunto(s)
Genoma Viral , Ilarvirus , Filogenia , Enfermedades de las Plantas , Polen , Vitis , Vitis/virología , Enfermedades de las Plantas/virología , Polen/virología , Ilarvirus/genética , Ilarvirus/aislamiento & purificación , Ilarvirus/clasificación , Animales , ARN Viral/genética , Secuenciación Completa del Genoma , Thysanoptera/virología
2.
J Econ Entomol ; 116(4): 1091-1101, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37402628

RESUMEN

Prunus necrotic ringspot virus (PNRSV) and prune dwarf virus (PDV) are pollen-borne viruses of important stone fruit crops, including peaches, which can cause substantial yield loss. Although both horizontal and vertical (i.e., seed) transmission of both viruses occurs through pollen, the role of flower-visiting insects in their transmission is not well understood. Bees and thrips reportedly spread PNRSV and PDV in orchards and greenhouse studies; however, the field spread of PNRSV and PDV in peach orchards in the southeastern United States is not explored. We hypothesized that bees and thrips may facilitate virus spread by carrying virus-positive pollen. Our 2-yr survey results show that 75% of captured bees are carrying virus-positive pollen and moving across the orchard while a subsample of thrips were also found virus positive. Based on morphology, Bombus, Apis, Andrena, Eucera, and Habropoda are the predominant bee genera that were captured in peach orchards. Understanding the role of bees and thrips in the spread of PNRSV and PDV will enhance our understanding of pollen-borne virus ecology.


Asunto(s)
Ilarvirus , Prunus persica , Thysanoptera , Abejas , Animales , South Carolina , Polen
3.
Phytopathology ; 113(9): 1729-1744, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37399026

RESUMEN

High-throughput sequencing (HTS) and sequence mining tools revolutionized virus detection and discovery in recent years, and implementing them with classical plant virology techniques results in a powerful approach to characterize viruses. An example of a virus discovered through HTS is Solanum nigrum ilarvirus 1 (SnIV1) (Bromoviridae), which was recently reported in various solanaceous plants from France, Slovenia, Greece, and South Africa. It was likewise detected in grapevines (Vitaceae) and several Fabaceae and Rosaceae plant species. Such a diverse set of source organisms is atypical for ilarviruses, thus warranting further investigation. In this study, modern and classical virological tools were combined to accelerate the characterization of SnIV1. Through HTS-based virome surveys, mining of sequence read archive datasets, and a literature search, SnIV1 was further identified from diverse plant and non-plant sources globally. SnIV1 isolates showed relatively low variability compared with other phylogenetically related ilarviruses. Phylogenetic analyses showed a distinct basal clade of isolates from Europe, whereas the rest formed clades of mixed geographic origin. Furthermore, systemic infection of SnIV1 in Solanum villosum and its mechanical and graft transmissibility to solanaceous species were demonstrated. Near-identical SnIV1 genomes from the inoculum (S. villosum) and inoculated Nicotiana benthamiana were sequenced, thus partially fulfilling Koch's postulates. SnIV1 was shown to be seed-transmitted and potentially pollen-borne, has spherical virions, and possibly induces histopathological changes in infected N. benthamiana leaf tissues. Overall, this study provides information to better understand the diversity, global presence, and pathobiology of SnIV1; however, its possible emergence as a destructive pathogen remains uncertain. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Ilarvirus , Solanum , Filogenia , Enfermedades de las Plantas , Nicotiana
4.
Virus Res ; 284: 197979, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32335149

RESUMEN

Tobacco streak virus incidence in the cotton field, cv.CO14 at Department of Cotton, Tamil Nadu Agricultural University (TNAU), Coimbatore, India was nearly 36.50 %. Cotton plants infected with TSV exhibits different types of symptoms, including necrotic spots, lesions, mosaic, purplish necrotic rings, square drying, veinal necrosis and drying of terminal shoots. The highly prevalent thrips species in this cotton ecosystem was established as Thrips palmi (60.00 %) by morphological (ESEM) and molecular methods (RT-PCR using mtCOI primers). The density of the alternate weed host, Parthenium hysterophorus, was 15.05 plants per m2 in these fields. Association of Thrips palmi with Parthenium was confirmed, when observed under environmental scanning electron microscope (ESEM), Parthenium pollen grains (i.e., average size @ 15000X =12.94 µm) were found adhering to its body. Molecular studies through RT-PCR confirmed the presence of TSV in the leaves and pollen grains of symptomatic and symptom-free Parthenium plants collected from the cotton field (cv. CO14). Therefore, the combined role of Thrips palmi and the Parthenium pollen grains in the transmission of TSV was examined; acquiring of TSV and its presence in the body of Thrips palmi instars and adults after 72 h of AAP was convincingly demonstrated using RT-PCR, NASH and qPCR. However virus acquired thrips could not transmit the virus. Pollen from TSV infected Parthenium plants when dusted on cotton (ANKUR 2110) seedlings along with virus acquired or non-acquired thrips led to symptom development 22 days after sowing. From the study it is evident that thrips only facilitate the movement of TSV borne pollen grains, and thereby contributing to active spread of the virus.


Asunto(s)
Asteraceae/virología , Ecosistema , Gossypium/virología , Ilarvirus/fisiología , Hojas de la Planta/virología , Polen/virología , Thysanoptera/virología , Animales , Ilarvirus/genética , Ilarvirus/aislamiento & purificación , Virosis/transmisión
5.
Virus Res ; 282: 197944, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222379

RESUMEN

Potato yellowing virus (PYV, original code SB-22), an unassigned member of the Genus Ilarvirus Family Bromoviridae, has been reported infecting potatoes in Peru, Ecuador and Chile. It is associated with symptomless infections, however yellowing of young leaves has been observed in some potato cultivars. Thirteen potato and yacon isolates were selected after routine screening of CIP-germplasm and twenty-four were identified from 994 potato plants collected in Peru whereas one was intercepted from yacon in the UK. These isolates were identified using high throughput sequencing, ELISA, host range and RT-PCR. Here we report the sequence characterization of the complete genomes of nine PYV isolates found infecting Solanum tuberosum, four complete genome isolates infecting Smallanthus sonchifolius (yacon), and in addition 15 complete RNA3 sequences from potato and partial sequences of RNA1, 2 and 3 of isolates infecting potato and yacon from Ecuador, Peru and Bolivia. Results of phylogenetic and recombination analysis showed RNA3 to be the most variable among the virus isolates and suggest potato infecting isolates have resulted through acquisition of a movement protein variant through recombination with an unknown but related ilarvirus, whereas one yacon isolate from Bolivia also had resulted from a recombination event with another related viruses in the same region. Yacon isolates could be distinguished from potato isolates by their inability to infect Physalis floridana, and potato isolates from Ecuador and Peru could be distinguished by their symptomatology in this host as well as phylogenetically. The non-recombinant yacon isolates were closely related to a recently described isolate from Solanum muricatum (pepino dulce), and all isolates were related to Fragaria chiloensis latent virus (FCiLV) reported in strawberry from Chile, and probably should be considered the same species. Although PYV is not serologically related to Alfalfa mosaic virus (AMV), they are both transmitted by aphids and share several other characteristics that support the previous suggestion to reclassify AMV as a member in the genus Ilarvirus.


Asunto(s)
Áfidos/virología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad del Huésped , Ilarvirus/genética , Enfermedades de las Plantas/virología , Animales , Ilarvirus/clasificación , Ilarvirus/aislamiento & purificación , Filogenia , Hojas de la Planta/virología , Recombinación Genética , Solanum tuberosum/virología , América del Sur , Reino Unido
6.
J Virol Methods ; 271: 113673, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31170470

RESUMEN

Pollen transmitted viruses require accurate detection and identification to minimize the risk of spread through the global import and export of pollen. Therefore in this study we developed RT-qPCR assays for the detection of Cherry leaf roll virus (CLRV), Prune dwarf virus (PDV), Prunus necrotic ringspot virus (PNRSV), and Cherry virus A (CVA), four viruses that infect pollen of Prunus species. Assays were designed against alignments of extant sequences, optimized, and specificity was tested against known positive, negative, and non-target controls. An examination of assay sensitivity showed that detection of virus at concentrations as low as 101 copies was possible, although 102 copies was more consistent. Furthermore, comparison against extant assays showed that in both pollen and plant samples, the newly developed RT-qPCR assays were more sensitive and could detect a greater range of isolates than extant endpoint RT-PCR and ELISA assays. Use of updated assays will improve biosecurity protocols as well as the study of viruses infecting pollen.


Asunto(s)
Abastecimiento de Alimentos , Virus de Plantas/genética , Virus de Plantas/aislamiento & purificación , Polen/virología , Prunus/virología , Cartilla de ADN/genética , Ensayo de Inmunoadsorción Enzimática , Flexiviridae/genética , Flexiviridae/aislamiento & purificación , Ilarvirus/genética , Ilarvirus/aislamiento & purificación , Nepovirus/genética , Nepovirus/aislamiento & purificación , Enfermedades de las Plantas/virología , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
7.
Phytopathology ; 104(9): 1001-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25116643

RESUMEN

Asparagus virus 2 (AV-2) is a member of the genus Ilarvirus and thought to induce the asparagus decline syndrome. AV-2 is known to be transmitted by seed, and the possibility of pollen transmission was proposed 25 years ago but not verified. In AV-2 sequence analyses, we have unexpectedly found mixed infection by two distinct AV-2 isolates in two asparagus plants. Because mixed infections by two related viruses are normally prevented by cross protection, we suspected that pollen transmission of AV-2 is involved in mixed infection. Immunohistochemical analyses and in situ hybridization using AV-2-infected tobacco plants revealed that AV-2 was localized in the meristem and associated with pollen grains. To experimentally produce a mixed infection via pollen transmission, two Nicotiana benthamiana plants that were infected with each of two AV-2 isolates were crossed. Derived cleaved-amplified polymorphic sequence analysis identified each AV-2 isolate in the progeny seedlings, suggesting that pollen transmission could indeed result in a mixed infection, at least in N. benthamiana.


Asunto(s)
Asparagus/virología , Ilarvirus/fisiología , Enfermedades de las Plantas/virología , Polen/virología , Protección Cruzada , Flores/citología , Flores/virología , Interacciones Huésped-Patógeno , Ilarvirus/aislamiento & purificación , Inmunohistoquímica , Hibridación in Situ , Meristema/citología , Meristema/virología , Brotes de la Planta/citología , Brotes de la Planta/virología , Polen/citología , Polinización , Plantones/citología , Plantones/virología , Semillas/citología , Semillas/virología , Nicotiana/citología , Nicotiana/virología
8.
Commun Agric Appl Biol Sci ; 69(4): 427-32, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15756822

RESUMEN

The detection throughout the year of latent and ILAR viruses in fruit tress by classical serological tests appear to be unreliable. We have developed RT-PCR tests for a reliable detection of latent and ILAR viruses in fruit trees. These assays were then simplified to allow the direct use of crude plant extracts instead of total RNA preparations, and the analyses of pooled samples. In this way, such RT-PCR protocols are suitable for a routine diagnosis of latent and ILAR viruses in fruit tree certification.


Asunto(s)
Frutas/virología , Ilarvirus/aislamiento & purificación , Ilarvirus/patogenicidad , Ilarvirus/fisiología , Enfermedades de las Plantas/virología , ARN Viral/genética , ARN Viral/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Árboles/virología , Latencia del Virus
9.
EMBO J ; 18(17): 4856-64, 1999 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-10469663

RESUMEN

3' untranslated regions of alfamo- and ilar-virus RNAs fold into a series of stem-loop structures to which the coat protein binds with high affinity. This binding plays a role in initiation of infection ('genome activation') and has been thought to substitute for a tRNA-like structure that is found at the 3' termini of related plant viruses. We propose the existence of an alternative conformation of the 3' ends of alfamo- and ilar-virus RNAs, including a pseudoknot. Based on (i) phylogenetic comparisons, (ii) in vivo and in vitro functional analyses of mutants in which the pseudoknot has been disrupted or restored by compensatory mutations, (iii) competition experiments between coat protein and viral replicase, and (iv) investigation of the effect of magnesium, we demonstrate that this pseudoknot is required for replication of alfalfa mosaic virus. This conformation resembles the tRNA-like structure of the related bromo- and cucumo-viruses. A low but specific interaction with yeast CCA-adding enzyme was found. The existence of two mutually exclusive conformations for the 3' termini of alfamo- and ilar-virus RNAs could enable the virus to switch from translation to replication and vice versa. The role of coat protein in this modulation and in genome activation is discussed.


Asunto(s)
Virus del Mosaico de la Alfalfa/genética , Ilarvirus/genética , Conformación de Ácido Nucleico , ARN Viral/química , Regiones no Traducidas 3'/genética , Secuencia de Bases , Cápside/química , Cápside/metabolismo , Secuencia Conservada , ADN Complementario/metabolismo , Magnesio/metabolismo , Datos de Secuencia Molecular , Mutagénesis , Mutágenos/farmacología , Plantas Tóxicas , Plásmidos/metabolismo , ARN de Transferencia/química , Ésteres del Ácido Sulfúrico/farmacología , Nicotiana/virología
10.
Acta Virol ; 41(2): 101-3, 1997 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-9219641

RESUMEN

Thirteen cultivars of hop (Humulus lupulus L.) were tested by reverse transcription-polymerase chain reaction (RT-PCR) for the presence of apple mosaic virus (ApMV). The virus was detected in various amounts in all tested cultivars. Control hop clones derived from tissue cultures, treated by thermotherapy and maintained in greenhouse were virus-free. The procedure for sample preparation and RT-PCR of ApMV is described in detail.


Asunto(s)
Ilarvirus/genética , Enfermedades de las Plantas/virología , Plantas/virología , ARN Viral/análisis , Secuencia de Bases , República Checa , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA