Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 966
Filtrar
Más filtros

Intervalo de año de publicación
1.
Acta Biomater ; 179: 284-299, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494084

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is the primary pathogenic agent responsible for epidermal wound infection and suppuration, seriously threatening the life and health of human beings. To address this fundamental challenge, we propose a heterojunction nanocomposite (Ca-CN/MnS) comprised of Ca-doped g-C3N4 and MnS for the therapy of MRSA-accompanied wounds. The Ca doping leads to a reduction in both the bandgap and the singlet state S1-triplet state T2 energy gap (ΔEST). The Ca doping also facilitates the two-photon excitation, thus remarkably promoting the separation and transfer of 808 nm near-infrared (NIR) light-triggered electron-hole pairs together with the built-in electric field. Thereby, the production of reactive oxygen species and heat are substantially augmented nearby the nanocomposite under 808 nm NIR light irradiation. Consequently, an impressive photocatalytic MRSA bactericidal efficiency of 99.98 ± 0.02 % is achieved following exposure to NIR light for 20 min. The introduction of biologically functional elements (Ca and Mn) can up-regulate proteins such as pyruvate kinase (PKM), L-lactate dehydrogenase (LDHA), and calcium/calmodulin-dependent protein kinase (CAMKII), trigger the glycolysis and calcium signaling pathway, promote cell proliferation, cellular metabolism, and angiogenesis, thereby expediting the wound-healing process. This heterojunction nanocomposite, with its precise charge-transfer pathway, represents a highly effective bactericidal and bioactive system for treating multidrug-resistant bacterial infections and accelerating tissue repair. STATEMENT OF SIGNIFICANCE: Due to the bacterial resistance, developing an antibiotic-free and highly effective bactericidal strategy to treat bacteria-infected wounds is critical. We have designed a heterojunction consisting of calcium doped g-C3N4 and MnS (Ca-CN/MnS) that can rapidly kill methicillin-resistant Staphylococcus aureus (MRSA) without damaging normal tissue through a synergistic effect of two-photon stimulated photothermal and photodynamic therapy. In addition, the release of trace amounts of biofunctional elements Mn and Ca triggers glycolysis and calcium signaling pathways that promote cellular metabolism and cell proliferation, contributing to tissue repair and wound healing.


Asunto(s)
Calcio , Glucólisis , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Glucólisis/efectos de los fármacos , Animales , Calcio/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Fototerapia , Infección de Heridas/microbiología , Infección de Heridas/patología , Infección de Heridas/tratamiento farmacológico , Humanos , Nanocompuestos/química , Cicatrización de Heridas/efectos de los fármacos , Ratones , Rayos Infrarrojos
2.
Adv Healthc Mater ; 13(19): e2400071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38501563

RESUMEN

The treatment of infected wounds remains a challenging biomedical problem. Some bioactive small-molecule hydrogelators with unique rigid structures can self-assemble into supramolecular hydrogels for wound healing. However, they are still suffered from low structural stability and bio-functionality. Herein, a supramolecular hydrogel antibacterial dressing with a dual nanofibrillar network structure is proposed. A nanofibrillar network created by a small-molecule hydrogelator, puerarin extracted from the traditional Chinese medicine Pueraria, is interconnected with a secondary macromolecular silk fibroin nanofibrillar network induced by Ga ions via charge-induced supramolecular self-assembly. The resulting hydrogel features adequate mechanical strength for sustainable retention at wounds. Good biocompatibility and efficient bacterial inhibition are obtained when the Ga ion concentration is 0.05%. Otherwise, the substantial release of Ga ions and puerarin endows the hydrogel with excellent hemostatic and antioxidative properties. In vivo, evaluation of a mouse-infected wound model demonstrates that its healing effect outperformed that of a commercially available silver-containing wound dressing. The experimental group successfully achieves a 100% wound closure rate on day 10. This study sheds new light on the design of nanofibrillar hydrogels based on supramolecular self-assembly of naturally derived bioactive molecules as well as their clinical use for treating chronic infected wounds.


Asunto(s)
Fibroínas , Hidrogeles , Isoflavonas , Nanofibras , Cicatrización de Heridas , Fibroínas/química , Animales , Isoflavonas/química , Isoflavonas/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Cicatrización de Heridas/efectos de los fármacos , Nanofibras/química , Antibacterianos/química , Antibacterianos/farmacología , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Vendajes , Masculino , Staphylococcus aureus/efectos de los fármacos
3.
Small Methods ; 8(8): e2301378, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38326028

RESUMEN

The improvement of photocatalytic activity of g-C3N4 is expected for its advanced applications but remains a challenge due to the limitations of current strategies, such as single function, inefficiency, and uneconomical. Herein, a modified g-C3N4 with improved interface properties is constructed through the modulation of the ionic microenvironment affected by ionic liquids (ILs) and exhibits a 2.3-fold enhanced photodegradation efficiency and a 3.5-fold enhanced reaction rate relative to pristine g-C3N4. It has demonstrated excellent performance in photo-therapy bacterial-infected wounds. Theoretical calculation indicated that the precursor can be regulated by designing the specific ILs microenvironment to form "ILs-Mel" clusters due to the diversity of interaction energy and electrostatic potential. The cluster results in uneven stress on the 2D plane, further inducing the reconstruction of the microstructure. The synergistic effect of cations and anions of ILs on regulating the interface properties of g-C3N4 due to the change of skeleton structure during thermolysis of ILs. The microstructure, surface, and optical-electrical properties can be adjusted by selecting different cations of ILs, and the custom-made band structure and wettability can be obtained by selecting different anions. This work provides a facile strategy to modulate the interface properties of g-C3N4 by building specific a microenvironment of precursor.


Asunto(s)
Líquidos Iónicos , Fotólisis , Cicatrización de Heridas , Líquidos Iónicos/química , Líquidos Iónicos/farmacología , Cicatrización de Heridas/efectos de los fármacos , Compuestos de Nitrógeno/química , Nitrilos/química , Nitrilos/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Humanos , Staphylococcus aureus/efectos de los fármacos , Ratones , Infección de Heridas/tratamiento farmacológico , Grafito
4.
J Nanobiotechnology ; 22(1): 80, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418972

RESUMEN

The advancement of biomaterials with antimicrobial and wound healing properties continues to present challenges. Macrophages are recognized for their significant role in the repair of infection-related wounds. However, the interaction between biomaterials and macrophages remains complex and requires further investigation. In this research, we propose a new sequential immunomodulation method to enhance and expedite wound healing by leveraging the immune properties of bacteria-related wounds, utilizing a novel mixed hydrogel dressing. The hydrogel matrix is derived from porcine acellular dermal matrix (PADM) and is loaded with a new type of bioactive glass nanoparticles (MBG) doped with magnesium (Mg-MBG) and loaded with Curcumin (Cur). This hybrid hydrogel demonstrates controlled release of Cur, effectively eradicating bacterial infection in the early stage of wound infection, and the subsequent release of Mg ions (Mg2+) synergistically inhibits the activation of inflammation-related pathways (such as MAPK pathway, NF-κB pathway, TNF-α pathway, etc.), suppressing the inflammatory response caused by infection. Therefore, this innovative hydrogel can safely and effectively expedite wound healing during infection. Our design strategy explores novel immunomodulatory biomaterials, offering a fresh approach to tackle current clinical challenges associated with wound infection treatment.


Asunto(s)
Antiinfecciosos , Curcumina , Infección de Heridas , Animales , Porcinos , Hidrogeles/farmacología , Cicatrización de Heridas , Biomimética , Vendajes , Antibacterianos/uso terapéutico , Materiales Biocompatibles , Inmunoterapia , Infección de Heridas/tratamiento farmacológico
5.
J Photochem Photobiol B ; 252: 112868, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387147

RESUMEN

Bidirectional photobiomodulation (PBM) therapy is an active research area. However, most studies have focused on its dependence on optical parameters rather than on its tissue-dependent effects. We constructed mouse models of wounds in three inflammatory states (normal, low, and high levels of inflammations) to assess the bidirectional regulatory effect of PBM on inflammation. Mice were divided into three groups to prepare common wounds, diabetic wounds, and bacteria-infected wounds. The same PBM protocol was used to regularly irradiate the wounds over a 14 d period. PBM promoted healing of all three kinds of wounds, but the inflammatory manifestations in each were significantly different. In common wounds, PBM slightly increased the aggregation of inflammatory cells and expression of IL-6 but had no effect on the inflammatory score. For wounds in a high level of inflammation caused by infection, PBM significantly increased TNF-α expression in the first 3 d of treatment but quickly eliminated inflammation after the acute phase. For the diabetic wounds in a low level of inflammation, PBM intervention significantly increased inflammation scores and prevented neutrophils from falling below baseline levels at the end of the 14 d observation period. Under fixed optical conditions, PBM has a bidirectional (pro- or anti-inflammatory) effect on inflammation, depending on the immune state of the target organism and the presence of inflammatory stimulants. Our results provide a basis for the formulation of clinical guidelines for PBM application.


Asunto(s)
Diabetes Mellitus , Terapia por Luz de Baja Intensidad , Infección de Heridas , Ratones , Animales , Modelos Animales de Enfermedad , Cicatrización de Heridas , Inflamación/radioterapia
6.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396777

RESUMEN

The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.


Asunto(s)
Antibacterianos , Infección de Heridas , Humanos , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Staphylococcus aureus , Escherichia coli , Serratia marcescens
7.
Int J Biol Macromol ; 262(Pt 1): 129988, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325692

RESUMEN

Bacterial infection and oxidative stress impede clinical wound healing. Herein, the plant-derived cowberry extract (CE) was first explored as a natural photothermal agent and antioxidant to deal with bacterial infection and oxidative stress. After loading in the carboxymethyl chitosan (CMCs)/oxidized dextran (Odex) hydrogel, the photothermal effect of CE was highly enhanced by CMCs. The controlled temperature induced by CE-containing hydrogel under NIR laser irradiation could rapidly (10 min) and effectively kill Staphylococcus aureus (S. aureus, 99.3 %) and Escherichia coli (E. coli, 94.6 %). Besides, this hydrogel exhibited a fast gelation and hemostasis abilities, high stability, adhesion and ROS scavenging capabilities, as well as good injectability and biocompatibility. Above superior properties make this hydrogel to accelerate the wound healing in S. aureus-infected mice, and it is expected to be a potential clinical wound dressing.


Asunto(s)
Quitosano , Infecciones Estafilocócicas , Infección de Heridas , Animales , Ratones , Antioxidantes/farmacología , Hidrogeles/farmacología , Escherichia coli , Staphylococcus aureus , Extractos Vegetales/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología
8.
Int J Biol Macromol ; 263(Pt 2): 129887, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383251

RESUMEN

Infected wound management is a great challenge to healthcare, especially in emergencies such as accidents or battlefields. Hydrogels as wound dressings can replace or supplement traditional wound treatment strategies, such as bandages or sutures. It is significant to develop novel hydrogel-based wound dressings with simple operation, inexpensive, easy debridement, effective antibacterial, biocompatibility, etc. Here, we designed a novel gelatin-based hydrogel wound dressing Gel-TA-Fe3+. The hydrogels used tannic-modified gelatin as the main body and Fe3+ as the crosslinking agent to achieve a controllable rapid sol-gel transition. The hydrogels exhibited tough mechanical properties, excellent antibacterial ability, biocompatibility and an acceptable temperature response to near-infrared light (NIR). Moreover, the hydrogels could promote the healing process of MRSA-infected skin wound in rats. This multifunctional hydrogel was thought to have potential for emergency treatment of bacterial infected wound.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Ratas , Gelatina/farmacología , Cicatrización de Heridas , Suplementos Dietéticos , Antibacterianos/farmacología , Hidrogeles/farmacología , Infección de Heridas/tratamiento farmacológico
9.
J Burn Care Res ; 45(3): 675-684, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38243579

RESUMEN

To evaluate the effect of glutamine supplement on patients with burns, we conducted a systematic review and meta-analysis via synthesizing up-to-date studies. Databases including PubMed, Cochrane Central Register, EMBASE, Google scholar, Wanfang data, and ClinicalTrials.gov were searched up to October 2023 to find randomized trials evaluating glutamine supplement on patients with burns. The main outcomes included hospital stay, in-hospital mortality, infection, and wound healing. Twenty-two trials that randomized a total of 2170 patients were included in this meta-analysis. Pooled the length of hospital stay was shortened by glutamine supplement (weighted mean differences [WMD] = -7.95, 95% confidence interval [CI] -10.53 to -5.36, I2 = 67.9%, 16 trials). Both pooled wound healing rates (WMD = 9.15, 95% CI 6.30 to 12.01, I2 = 82.7%, 6 studies) and wound healing times (WMD = -5.84, 95% CI -7.42 to -4.27, I2 = 45.7%, 7 studies) were improved by glutamine supplement. Moreover, glutamine supplement reduced wound infection (risk ratios [RR] = 0.38, 95% CI 0.21 to 0.69, I2 = 0%, 3 trials), but not nonwound infection (RR = 0.88, 95% CI 0.73 to 1.05, I2 = 39.6%, 9 trials). Neither in-hospital mortality (RR = 0.95, 95% CI 0.74 to 1.22, I2 = 36.0%, 8 trials) nor the length of intensive care unit stay (WMD = 1.85, 95% CI -7.24 to 10.93, I2 = 78.2%, 5 studies) was improved by glutamine supplement. Subgroup analysis showed positive effects were either influenced by or based on small-scale, single-center studies. Based on the current available data, we do not recommend the routine use of glutamine supplement for burn patients in hospital. Future large-scale randomized trials are still needed to give a conclusion about the effect of glutamine supplement on burn patients.


Asunto(s)
Quemaduras , Suplementos Dietéticos , Glutamina , Tiempo de Internación , Cicatrización de Heridas , Humanos , Quemaduras/terapia , Quemaduras/mortalidad , Glutamina/uso terapéutico , Tiempo de Internación/estadística & datos numéricos , Cicatrización de Heridas/efectos de los fármacos , Mortalidad Hospitalaria , Infección de Heridas/prevención & control
10.
Biomed Mater ; 19(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38181448

RESUMEN

Antimicrobial wound dressings play a crucial role in treatment of wound infections. However, existing commercial options fall short due to antibiotic resistance and the limited spectrum of activity of newly emerging antimicrobials against bacteria that are frequently encountered in wound infections. Antimicrobial photodynamic therapy (aPDT) is very promising alternative therapeutic approach against antibiotic resistant microbes such as methicillin resistantStaphylococcus aureus (MRSA). However, delivery of the photosensitizer (PS) homogeneously to the wound site is a challenge. Though polymeric wound dressings based on synthetic and biopolymers are being explored for aPDT, there is paucity of data regarding theirin vivoefficacy. Moreover, there are no studies on use of PS loaded, pluoronic (PL) and pectin (PC) based films for aPDT. We report development of a polymeric film for potential use in aPDT. The film was prepared using PL and PC via solvent casting approach and impregnated with methylene blue (MB) for photodynamic inactivation of MRSAin vitroandin vivo. Atomic force microscopic imaging of the films yielded vivid pictures of surface topography, with rough surfaces, pores, and furrows. The PL:PC ratio (2:3) was optimized that would result in an intact film but exhibit rapid release of MB in time scale suitable for aPDT. The film showed good antibacterial activity against planktonic suspension, biofilm of MRSA upon exposure to red light. Investigations on MRSA infected excisional wounds of mice reveal that topical application of MB loaded film for 30 min followed by red light exposure for 5 min (fluence; ∼30 J cm-2) or 10 min (fluence; ∼60 J cm-2) reduces ∼80% or ∼92% of bioburden, respectively. Importantly, the film elicits no significant cytotoxicity against keratinocytes and human adipose derived mesenchymal stem cells. Taken together, our data demonstrate that PS-loaded PL-PC based films are a promising new tool for treatment of MRSA infected wounds.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Animales , Ratones , Humanos , Meticilina/uso terapéutico , Poloxámero/uso terapéutico , Azul de Metileno/uso terapéutico , Pectinas/uso terapéutico , Fármacos Fotosensibilizantes , Antibacterianos , Polímeros , Biopelículas , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología
11.
Clin Chim Acta ; 554: 117704, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185284

RESUMEN

BACKGROUND: Systemically administered antibiotics are thought to penetrate the wounds more effectively during negative pressure wound therapy (NPWT).To test this hypothesis total and free antibiotic concentrations were quantified in serum and wound exudate. METHODS: UHPLC-MS/MS methods were developed and validated for the determination of ceftazidime, cefepime, cefotaxime, cefuroxime, cefazolin, meropenem, oxacillin, piperacillin with tazobactam, clindamycin, ciprofloxacin, sulfamethoxazole/trimethoprim (cotrimoxazole), gentamicin, vancomycin, and linezolid. The unbound antibiotic fraction was obtained by ultrafiltration using a Millipore Microcon-30kda Centrifugal Filter Unit. Analysis was performed on a 1.7-µm Acquity UPLC BEH C18 2.1 × 100-mm column with a gradient elution. RESULTS: The validation was performed for serum, exudates and free fractions. For all matrices, requirements were met regarding linearity, precision, accuracy, limit of quantitation, and matrix effect. The coefficient of variation was in the range of 1.2-13.6%.and the recovery 87.6-115.6%, respectively. Among the 29 applications of antibiotics thus far, including vancomycin, clindamycin, ciprofloxacin, oxacillin, cefepime, cefotaxime, cotrimoxazole, and gentamicin, total and free antibiotic concentrations in serum and exudate were correlated. CONCLUSION: This method can accurately quantify the total and free concentrations of 16 antibiotics. Comparison of concentration ratios between serum and exudates allows for monitoring individual antibiotics' penetration capacity in patients receiving NPWT.


Asunto(s)
Terapia de Presión Negativa para Heridas , Infección de Heridas , Humanos , Antibacterianos , Espectrometría de Masas en Tándem/métodos , Cefepima , Vancomicina , Combinación Trimetoprim y Sulfametoxazol , Clindamicina , Esternotomía , Cromatografía Liquida/métodos , Ciprofloxacina , Cefotaxima , Oxacilina , Gentamicinas , Exudados y Transudados , Cromatografía Líquida de Alta Presión/métodos
12.
J Mater Chem B ; 12(5): 1307-1316, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38226460

RESUMEN

Bacterial infection is a key factor affecting wound healing. Conventional treatments might lead to the widespread emergence of drug-resistant bacteria due to the long-term and excessive use of antibiotics. It is necessary to develop an antibiotic-free method for effective treatment of bacterial wound infections. In this work, we constructed an antibiotic-free polysaccharide-based hydrogel dressing (ATB) with near-infrared light-actuated on-demand botanicals release and hyperthermia for the synergistic treatment of wound infections. The ATB hydrogel dressing was made up of agarose as a support matrix, berberine hydrochloride as the active botanicals and TA-Fe(III) nanoparticles as NIR laser-activated photothermal reagents. The ATB hydrogel dressing showed spatiotemporal botanicals release and excellent photothermal properties with NIR irradiation. With the results of in vitro and in vivo antibacterial experiments, the antibiotic-free ATB hydrogel could synergistically eliminate bacteria and accelerate wound healing. Overall, the near-infrared light-responsive ATB hydrogel could provide a promising antibiotic-free strategy for the treatment of bacterial wound infections.


Asunto(s)
Hipertermia Inducida , Infección de Heridas , Humanos , Hidrogeles/farmacología , Compuestos Férricos , Hipertermia , Polisacáridos/farmacología , Rayos Infrarrojos , Vendajes , Antibacterianos/farmacología , Infección de Heridas/tratamiento farmacológico
13.
Int J Biol Macromol ; 254(Pt 3): 128027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37952801

RESUMEN

Infected wounds pose a serious threat to public health and pose a significant challenge and financial burden worldwide. The treatment of infected wounds is now an urgent problem to be solved. Herein, mild hyperthermia-assisted hydrogels composed of carboxymethyl chitosan (CMCs), oxidized dextran (Odex), epigallocatechin gallate (EGCG) and PtNPs@PVP (CAT-like nanoenzymes) were proposed for the repair of infected wounds. The incorporation of PtNPs@PVP nanoenzymes give the hydrogels excellent photothermal property and CAT-like activity. When the temperature is maintained at 42-45 °C under 808 nm near infrared (NIR) exposure, the CMCs/Odex/EGCG/Nanoenzymes (COEN2) hydrogel demonstrated highly enhanced antibacterial ability (95.9 % in vivo), hydrogen peroxide (H2O2) scavenging ratio (85.1 % in vitro) and oxygen supply (20.7 mg/L in vitro). Furthermore, this mild-heat stimulation also promoted angiogenesis in the damaged skin area. Overall, this multifunctional hydrogel with antibacterial, antioxidant, oxygen supply, hemostasis, and angiogenesis capabilities has shown great promise in the repair of infected wounds. This study establishes the paradigm of enhanced infected wound healing by mild hyperthermia-assisted H2O2 scavenging, oxygen supplemental, and photothermal antibacterial hydrogels.


Asunto(s)
Quitosano , Hipertermia Inducida , Infección de Heridas , Humanos , Hidrogeles/farmacología , Peróxido de Hidrógeno , Infección de Heridas/tratamiento farmacológico , Oxígeno , Antibacterianos/farmacología , Cicatrización de Heridas
14.
J Control Release ; 365: 744-758, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38072085

RESUMEN

Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing. Physicochemical characterizations showed that AmB did not bind chemically to the polymeric matrix. Electronic and topographical images showed small crystalline aggregates from AmB crystals on the polymer surface. About 56.6% of AmB was released by the NRL in 120 h. However, 33.6% of this antifungal was delivered in the first 24 h due to the presence of AmB on the polymer surface. The biomaterial's excellent hemo- and cytocompatibility with erythrocytes and human dermal fibroblasts (HDF) confirmed its safety for dermal wound application. Antifungal assay against Candida albicans showed that AmB-NRL presented a dose-dependent behavior with an inhibition halo of 30.0 ± 1.0 mm. Galleria mellonella was employed as an in vivo model for C. albicans infection. Survival rates of 60% were observed following the injection of AmB (0.5 mg.mL-1) in G. mellonella larvae infected by C. albicans. Likewise, AmB-NRL (0.5 mg.mL-1) presented survival rates of 40%, inferring antifungal activity against fungus. Thus, NRL adequately acts as an AmB-sustained release matrix, which is an exciting approach, since this antifungal is toxic at high concentrations. Our findings suggest that AmB-NRL is an efficient, safe, and reasonably priced ($0.15) dressing for the treatment of cutaneous fungal infections.


Asunto(s)
Candidiasis , Infección de Heridas , Humanos , Anfotericina B , Antifúngicos/química , Vendajes , Candida albicans , Candidiasis/tratamiento farmacológico , Látex , Pruebas de Sensibilidad Microbiana , Infección de Heridas/tratamiento farmacológico
15.
J Mater Chem B ; 12(1): 264-274, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-38088036

RESUMEN

The physicochemical environment at the sites of chronic diabetic wounds is an ideal habitat for bacteria, which exacerbate the deterioration of the microenvironment at the wound sites and consequently delay wound healing. In recent years, photothermal therapy has been considered an ideal non-antibiotic antimicrobial strategy. However, photothermal therapy alone is prone to cause damage to the body tissues. Herein, a (zeolitic imidazolate framework-8) ZIF-8/(mesoporous polydopamine) MPDA@(deoxyribonuclease I) DNase I ternary nanocomposite system was constructed, which exhibited good antimicrobial and antioxidant properties. Specifically, DNase I was first encapsulated into MPDA nanoparticles (NPs) and then coated with ZIF-8, which rapidly degrades in an acidic bacterial environment, triggering the release of antimicrobial Zn2+ and DNase I, thus enabling low-temperature (∼45 °C) PTT antimicrobial therapy. Meanwhile, the NPs can effectively regulate the oxidative stress environment at the trauma site because of the antioxidant effect of MPDA. Moreover, the experimental results of the diabetic wound infection mouse model showed that the prepared NPs could kill bacteria well and accelerate wound healing. Overall, the phototherapy strategy proposed in this study shows great potential in the treatment of chronically infected wounds.


Asunto(s)
Antiinfecciosos , Diabetes Mellitus , Infección de Heridas , Animales , Ratones , Temperatura , Fototerapia , Antioxidantes , Infección de Heridas/tratamiento farmacológico , Desoxirribonucleasa I
16.
Int J Pharm ; 646: 123502, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37827392

RESUMEN

The increasing prevalence of non-healing infected wounds has become a serious concern in the clinical practice, being associated to population aging and to the rising prevalence of several chronic conditions such as diabetes. Herein, the evaluation of the bactericidal and antibiofilm effects of the natural antiseptic terpenes thymol and farnesol standing alone or in combination with the standard care antiseptic chlorhexidine was carried out both in vitro and in vivo. The in vitro combinatorial treatment of chlorhexidine associated with those terpenes against Staphylococcus aureus in its planktonic and sessile forms demonstrated a superior antibacterial activity than that of chlorhexidine alone. Real-time in vivo monitoring of infection progression and antimicrobial treatment outcomes were evaluated using the bioluminescent S. aureus strain Xen36. In vivo studies on infected wound splinting murine models corroborated the superior bactericidal effects of the combinatorial treatments here proposed. Moreover, the encapsulation of thymol in electrospun Eudragit® S100 (i.e., a synthetic anionic copolymer of methacrylic acid and ethyl acrylate)-based wound dressings was also carried out in order to design efficient antimicrobial wound dressings.


Asunto(s)
Antiinfecciosos Locales , Antiinfecciosos , Infección de Heridas , Humanos , Animales , Ratones , Clorhexidina/farmacología , Staphylococcus aureus , Timol/farmacología , Antiinfecciosos Locales/farmacología , Antibacterianos , Antiinfecciosos/farmacología , Infección de Heridas/tratamiento farmacológico
17.
J Tissue Viability ; 32(4): 527-535, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37716845

RESUMEN

Chronic ischemic wounds affect millions of people causing significant pain and disability. They can be considered to be stalled in the inflammatory stage and cannot heal without additional measures. A valid animal model is necessary to evaluate the efficacy of topical wound healing therapies and wearable technologies. A porcine model, although higher in cost, maintenance, and space requirements, is superior to the commonly used rodent or rabbit model for wound healing. Previous studies have shown that pig wounds have greater similarity to human wounds in responses to a variety of treatments, including wound dressings and antibiotics. The current study created a porcine model of large chronic wounds to assess a wearable electroceutical technology, with monitoring of healing variables and infection. Electroceutical therapy is the only adjunctive treatment recommended for chronic wound therapy. A porcine model of large chronic wounds of clinically realistic size was created and utilized to evaluate a wearable electroceutical biotechnology. Multivariate non-invasive assessment was used to monitor wound progression over multiple timepoints. Outcomes suggest that a wearable electrostimulation bandage, has the potential to offer therapeutic benefit in human wounds. The tested wearable device provides the same proven effectiveness of traditional electroceutical therapy while mitigating commonly cited barriers, including substantial time requirements, and availability and complexity of currently available equipment, preventing its implementation in routine wound care. The model is also appropriate for evaluation of other wearables or topical therapeutics.


Asunto(s)
Infección de Heridas , Humanos , Porcinos , Animales , Conejos , Infección de Heridas/terapia , Vendajes , Cicatrización de Heridas , Antibacterianos
18.
Altern Ther Health Med ; 29(8): 540-544, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678851

RESUMEN

Background: To date, there is no effective solution for preventing the formation of blisters around negative-pressure wound dressings. In this study, we aim to address this problem and identify techniques to improve the negative-pressure drainage technique. Methods: A total of 129 patients from 2021.11 to 2022.11 who were previously treated in Fuyang People's Hospital were included in this retrospective analysis. All patients had negative-pressure drainage dressings applied to their wounds after undergoing thorough wound debridement. The patients were divided into the following groups: a traditional treatment group and a modified treatment group. The traditional treatment group comprised 60 patients who received negative-pressure wound therapy (NPWT) and a modified treatment group comprised 69 patients who received NPWT plus Vaseline gauze. The dressing coverage area, wound location, incidence of blisters around the dressing 3 days after NPWT, wound infection rate, and length of hospitalization were recorded. The incidence of blisters, wound infection rate, and wound location in the 2 groups were included as the categorical data and were compared using a chi-squared test. The dressing coverage area and length of hospitalization in the 2 groups were included as the quantitative data and were compared using an independent samples t test or with the Mann-Whitney test if the data were abnormally distributed. Results: The incidence rates of blisters in the traditional and modified treatment groups were 33.3% (20/60) and 13.0% (9/69), respectively, displaying a statistically significant difference (χ2 = 7.581, P = .006). The infection rates of the 2 groups were 38.3% (23/60) and 20.3% (14/69), respectively, showing a statistically significant difference (χ2 = 5.108; P = .024). The lengths of hospitalization in the 2 groups were 26.05 ± 14.74 days and 18.17 ± 7.54 days, respectively, showing a statistically significant difference (t = 3.892; P = .000). The dressing coverage areas were 150 cm2 (88.75 cm2, 600 cm2) and 150 cm2 (124 cm2, 600 cm2), respectively, showing no statistical difference (P = .759). Conclusion: Modified NPWT can effectively reduce the incidence of blisters, length of hospitalization, and infection rate of patients.


Asunto(s)
Terapia de Presión Negativa para Heridas , Infección de Heridas , Humanos , Terapia de Presión Negativa para Heridas/métodos , Cicatrización de Heridas , Vesícula/prevención & control , Vesícula/epidemiología , Estudios Retrospectivos
19.
J Photochem Photobiol B ; 244: 112720, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37186990

RESUMEN

Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Infección de Heridas , Humanos , Vitamina K 3/farmacología , Vitamina K 3/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Biopelículas , Infecciones Estafilocócicas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
20.
Cell Chem Biol ; 30(5): 513-526.e5, 2023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37148883

RESUMEN

Chronic wounds frequently become infected with bacterial biofilms which respond poorly to antibiotic therapy. Aminoglycoside antibiotics are ineffective at treating deep-seated wound infections due to poor drug penetration, poor drug uptake into persister cells, and widespread antibiotic resistance. In this study, we combat the two major barriers to successful aminoglycoside treatment against a biofilm-infected wound: limited antibiotic uptake and limited biofilm penetration. To combat the limited antibiotic uptake, we employ palmitoleic acid, a host-produced monounsaturated fatty acid that perturbs the membrane of gram-positive pathogens and induces gentamicin uptake. This novel drug combination overcomes gentamicin tolerance and resistance in multiple gram-positive wound pathogens. To combat biofilm penetration, we examined the ability of sonobactericide, a non-invasive ultrasound-mediated-drug delivery technology to improve antibiotic efficacy using an in vivo biofilm model. This dual approach dramatically improved antibiotic efficacy against a methicillin-resistant Staphylococcus aureus (MRSA) wound infection in diabetic mice.


Asunto(s)
Diabetes Mellitus Experimental , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Infección de Heridas , Ratones , Animales , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Aminoglicósidos/farmacología , Gentamicinas/farmacología , Gentamicinas/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Biopelículas , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA